

A Markovian Kernel-based Approach for italian Speech act labEliNg

Danilo Croce and Roberto Basili University of Roma, Tor Vergata

ILISTEN@EVALITA - Torino 2018

Introduction

- In this talk, the UNITOR system participating in the iLISTEN@Evallta 2018 is presented
 - Task: given a list of sentences within a dialogue, to assign each turn to a speech act class
- It seems a "standard" sentence classification task...
 - ... but turns are not observed in isolation, they belong to the dialogue
- UNITOR is essentially a Markovian classifier
 - the classification of the i^{th} utterance also depends from the dialogue act assigned at the previous utterance.

If your are interested in Deep Methods...

Markovian SVM

- ▶ AIM: to make the classification of an example $x_i \in R^n$ (from a sequence) dependent on the label assigned to the previous elements
 - lacktriangle Within in a history of length m, i.e., x_{i-m}, \ldots, x_{i-1} .
- A dialogue is a sequence of utterances $x = (x_1, ..., x_s)$ each of them representing the specific i^{th} utterance.
- Given the corresponding sequence of expected labels $y = (y_1, ..., y_s)$, a sequence of m step-specific labels can be retrieved, in the form $y_{i-m}, ..., y_{i-1}$.
- ▶ IDEA: to augment the feature vector of x_i with a projection function $\psi_m(x_i) \in R^{md}$
 - lacktriangle We augment x_i with features indicating one of the possible labels observed in a history of length m

(slightly) More formally

■ Given the SVM, a projection function $φ_m(\cdot)$ can be defined to consider both x_i and the transitions $ψ_m(x_i)$ by concatenating the two representations:

$$\varphi_{m}(x_{i}) = x_{i} \parallel \psi_{m}(x_{i})$$

- Kernel-based methods can be applied:
 - the feature representing individual turns
 - the information about the transitions within the dialogue.
- We define a kernel function between turns surrogating the product between $\phi_m(\,\cdot\,)$ such that:

$$K_{m}(x_{i}, z_{j}) = \varphi_{m}(x_{i}) \varphi_{m}(z_{j}) = K^{obs}(x_{i}, z_{j}) + K^{tr}(\psi_{m}(x_{i}), \psi_{m}(z_{j}))$$

It does not depend on m

A Markovian Kernel-based Approach

If we define K^{tr} as a linear kernel between input instances, i.e. a dot-product in the space generated by $\psi_m(\cdot)$:

$$K_{m}(x_{i}, z_{j}) = K^{obs}(x_{i}, x_{j}) + \psi_{m}(x_{i}) \psi_{m}(z_{j})$$

At **training time** we just use the kernel-based SVM in a One-Vs-All schema over the feature space derived by $K_m(\cdot,\cdot)$

Structural kernels

- Convolution Kernels systematically account for structural analogies/similarities between discrete structures
- Tree Kernels account for structural analogies between syntactic parse trees
 - They express the number of the shared substructures between two syntactic trees

Tree Kernels: the IDEA

- Tree Kernels account for structural analogies between syntactic parse trees
- Smoothed Partial Tree Kernels (SPTKs) jointly model syntactic and lexical semantic similarity within Kernel functions

SPTK: Formal definition

- lacktriangle Given two trees T_1 and T_2
 - \blacksquare If n_1 and n_2 are leaves then

$$\Delta_{\sigma}(n_{1}, n_{2}) = \mu \lambda_{\sigma}(n_{1}, n_{2})$$

$$\Delta_{\sigma}(n_{1}, n_{2}) = \mu \sigma_{\tau}(n_{1}, n_{2}) \times \left(\lambda^{2} + \sum_{\vec{I}_{1}, \vec{I}_{2}, l(\vec{I}_{1}) = l(\vec{I}_{2})} \lambda^{d(\vec{I}_{1}) + d(\vec{I}_{2})} \prod_{j=1}^{l(\vec{I}_{1})} \Delta_{\sigma}(c_{n_{1}}(\vec{I}_{1j}), c_{n_{2}}(\vec{I}_{2j}))\right)$$

 $\sigma(n_1,n_2)$ is a similarity function among the tree nodes depending on their linguistic type τ

Algorithm 1 $\sigma_{\tau}(n_1, n_2, lw)$

```
\begin{split} &\sigma_{\tau} \leftarrow 0, \\ &\textbf{if } \tau(n_1) = \tau(n_2) = \text{SYNT} \wedge label(n_1) = label(n_2) \textbf{ then} \\ &\sigma_{\tau} \leftarrow 1 \\ &\textbf{end if} \\ &\textbf{if } \tau(n_1) = \tau(n_2) = \text{POS} \wedge label(n_1) = label(n_2) \textbf{ then} \\ &\sigma_{\tau} \leftarrow 1 \\ &\textbf{end if} \\ &\textbf{if } \tau(n_1) = \tau(n_2) = \text{LEX} \wedge pos(n_1) = pos(n_2) \textbf{ then} \\ &\sigma_{\tau} \leftarrow \sigma_{LEX}(n_1, n_2) \\ &\textbf{end if} \\ &\textbf{if } leaf(n_1) \wedge leaf(n_2) \textbf{ then} \\ &\sigma_{\tau} \leftarrow \sigma_{\tau} \times lw \\ &\textbf{end if} \\ &\textbf{return } \sigma_{\tau} \end{split}
```

From sentences to trees

- The SPTK is applied to trees derived from the dependency parse tree
 - The structure encodes syntactic and semantic information
 - No task specific feature engineering

Results

- The dataset was syntactically parsed with SpaCy
- We used the Kernel-based SVM-HMM implemented in KeLP
- Parameters has been tuned according to a n-fold cross validation schema
 - \blacksquare An history of m = 1 is adopted

Run	Micro			Macro		
	P	R	F1	P	R	F1
UNITOR	.733	.733	.733	.681	.628	.653
System2	.685	.685	.685	.608	.584	.596
Baseline	.340	.340	.340	.037	.111	.056

Conclusions

- The proposed classification strategy shows the beneficial impact of
 - a structured kernel-based method
 - with a Markovian classifier,
- It seems capitalizing the contribution of the dialogue modeling in deciding the speech act of individual sentences.
 - No requirement in term of task-specific feature and system engineering
 - Results are appealing mostly considering the reduced size of the dataset
- Further work: combination of the adopted strategy with recurrent neural approaches.