A KERNEL-BASED APPROACH FOR IRONY AND SARCASM DETECTION IN ITALIAN

UNITOR @ evalita2018

Andrea Santilli, Danilo Croce, Roberto Basili

Università di Roma Tor Vergata

Turin 13 December 2018

INTRODUCTION

UNITOR approach for Irony and Sarcasm detection

Task is modeled as a cascade of kernel-based SVM classifier

AIM: derive an effective task modeling

 Each kernel function is based on a specific set of irony/ sarcasm specific features

The adopted modeling allows to rank **first** in the sarcasm detection task

SOME ISSUES IS IRONY/SARCASM DETECTION AND (POSSIBLE) SOLUTIONS

- Lexical Sparseness (especially in short messages and reduced datasets)
- Negative evaluation towards a target
- Frony is often not explicit in (short) messages

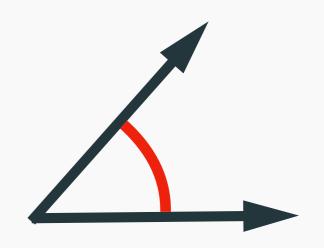
IRONY/SARCASM FEATURES

IRONY SPECIFIC FEATURES

Goal: define capture irony features

Irony Specific BOW (ISBOW)

Cosine similarity between the word embedding vector of the considered word and mean topic centroid



"La mia macchina è veloce e scattante come un bradipo"

POLARITY BASED FEATURES

Goal: exploit negative evaluation towards a target

DPL: large scale Polarity Lexicon (~150K)

Buono: 0.7 0.3 0.0

• Distributional Polarity Lexicon Sum (DSUM)

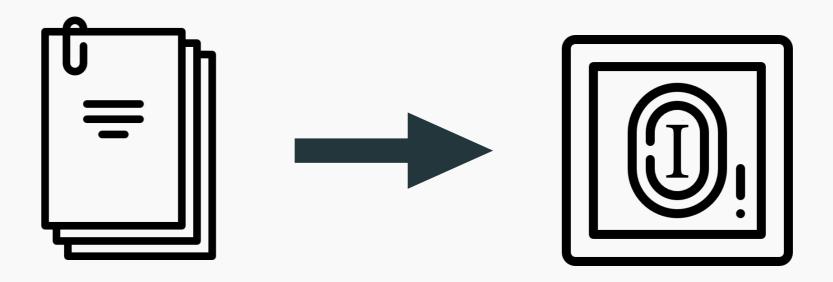
$$\sum_{w \in Noun} \frac{w^p}{|Noun|} \oplus \sum_{w \in Verb} \frac{w^p}{|Verb|} \oplus \sum_{w \in Adj} \frac{w^p}{|Adj|} \oplus \sum_{w \in Adv} \frac{w^p}{|Adv|} \oplus \sum_{w \in \tau} \frac{w^p}{|\tau|}$$

• Distributional Polarity Lexicon BoW (DBOW)

buono_pos: 0.7 buono_neu: 0.3 buono_neg: 0.0

IRONY CORPUS FEATURES

Goal: define an Irony specific Lexicon and Irony patterns



- Irony Corpus BOW (ICBOW)
- Irony Corpus weighted BOW (ICwBOW)
- Irony Corpus weighted Mean (ICM)

EXPERIMENTS AND RESULTS

TRAINING

Training Set					
Ironic	Not-Ironic	Total			
2023	1954	3977			

10-fold cross validationTrain effettuato sullo split di:

- Irony: All dataset (3977)
- Sarcasm: Ironic tweets (2023)

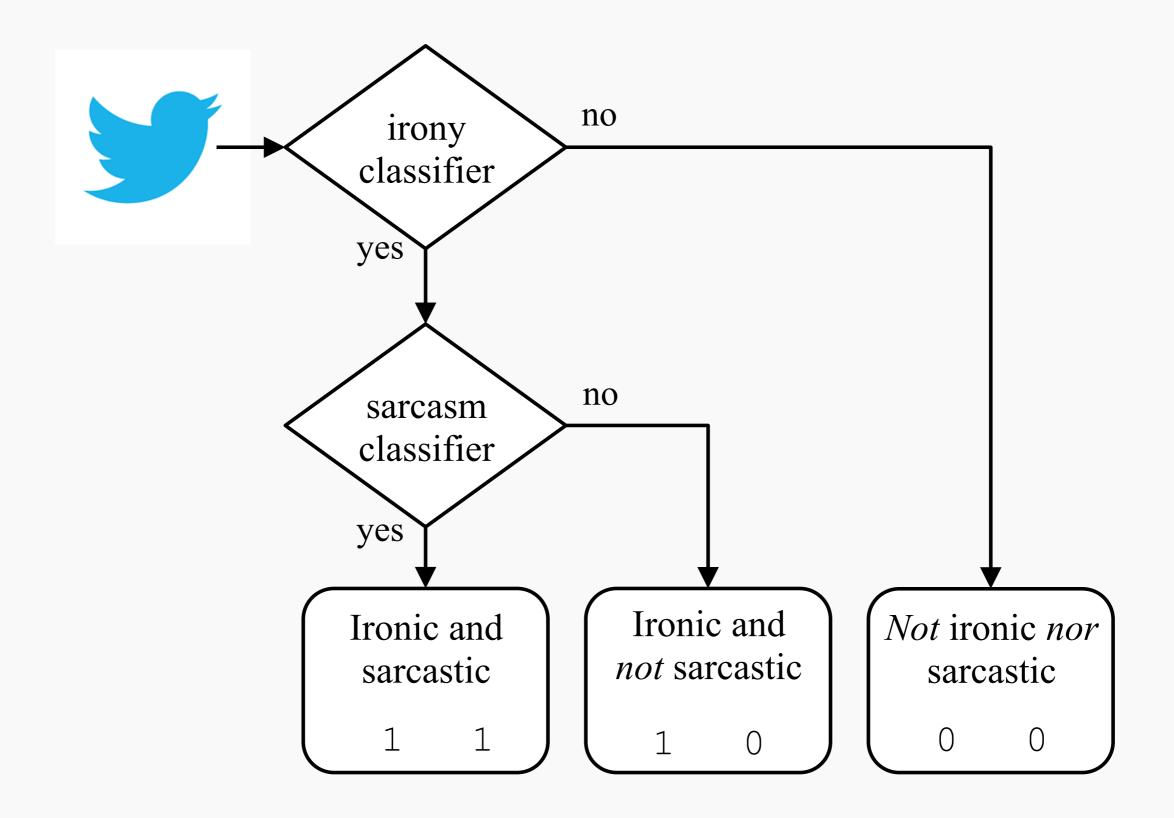
TRAINING

Each feature modeling generate a separate feature space

We also added some "standard" feature modeling

- Bag-of-Words
- Bag-of-Word Ngrams
- Bag-of-Character Ngrams
- Some syntethic feature (capitalized letters, elongations, ...)

The resulting system is implemented as two binary classifiers in cascade



Irony Detection

	Not Ironic			Ironic			Mean
	P	R	F1	P	R	F1	F1
1st	.785	.643	.707	.696	.823	.754	.731
2nd*	.771	.617	.686	.680	.816	.741	.714
6th(u)	.778	.577	.662	.662	.834	.739	.700
7th(<i>c</i>)	.764	.593	.668	.666	.816	.733	.700
BL	.501	1.00	.668	1.00	.000	.000	.334

Sarcasm Detection

	Not Sarcastic			Sarcastic			Mean
	P	R	F1	P	R	F1	F1
1st(c)	.362	.584	.447	.492	.407	.446	.520
2nd(u)	.355	.553	.432	.469	.449	.459	.518
4th*	.344	.566	.428	.344	.566	.428	.508
BL	.296	.132	.183	1.00	.000	.000	.199

CONCLUSION

- UNITOR ranked **first** in the sarcasm detection task
- The proposed irony and sarcasm specific features, especially **Polarity Based Features**, were beneficial to detect irony and sarcasm
- Non trivial for human reader, lot of information out of context

Thanks for your attention

Code available: https://github.com/andry9454/ironySarcasmDetection