
KeLP: Kernel-based Learning Platform
Official Guide of the version 2.0.2

Draft version

Contents

1 KeLP: a Kernel-based Learning Platform 3

2 An overview of the library 5
2.1 Importing KeLP via Maven . 6

3 Data Structures 9
3.1 Existing Representations . 9
3.2 Input Format . 11
3.3 Advanced Topics on Data . 14

3.3.1 Defining new Representations 14
3.3.2 Manipulating Data . 14

4 Kernels 17
4.1 Kernel Organization . 17
4.2 Available Kernels and their JSON Definition 19

4.2.1 Direct Kernels . 20
4.3 Kernel Compositions . 24

4.3.1 Kernel Combinations . 26
4.3.2 Kernel On Pairs . 27

4.4 Advanced Topics on Kernels . 29
4.4.1 Defining new Kernels . 29
4.4.2 Speeding up Kernel Machines through Caching Mechanisms . 31

5 Learning Algorithms 35
5.1 Learning Algorithms Organization 35
5.2 Available Learning Algorithms and their JSON Definition 38

5.2.1 Batch Learning Algorithms 39
5.2.2 Online Learning Algorithms 43
5.2.3 Clustering Algorithms . 47
5.2.4 Linearization Functions . 47
5.2.5 Meta-learning Algorithims 48

5.3 Evaluators . 51
5.4 Advanced Topics on Learning Algorithms 53

5.4.1 Defining new Learning Algorithms 53

i

CONTENTS

6 Sample Code 59
6.1 Classification example . 59
6.2 Usage of ExperimentUtils facilities 60
6.3 Instantiation from JSON . 61

1

1
KeLP: a Kernel-based Learning Platform

Most of the existing Machine Learning (ML) platforms assume that instances are repre-
sented as vectors in a feature space, e.g., [Joachims(1999),Hall et al.(2009),Chang and
Lin(2011)], that must be defined beforehand. For example, in Natural Language Pro-
cessing (NLP) the definition of a feature space often requires a complex feature engi-
neering phase. Let us consider any NLP task in which syntactic information is crucial,
e.g., Boundary Detection in Semantic Role Labeling [Carreras and Màrquez(2005)].
Understanding which syntactic patterns should be captured is non-trivial and usually
the resulting feature vector model is a poor approximation. Instead, a more natural ap-
proach is operating directly with the parse tree of sentences. Kernel methods [Shawe-
Taylor and Cristianini(2004)] provide an efficient and effective solution, allowing to
represent data at a more abstract level, while their computation still looks at the infor-
mative properties of them. For instance, Tree Kernels take in input two syntactic parse
trees, and compute a similarity measure by looking at the shared sub-structures.

In this guide, KeLP , a Java kernel based learning platform is presented. It sup-
ports the implementation of Kernel-based learning algorithms, as well as kernel func-
tions over generic data representations, e.g., vectorial data or discrete structures, such
as graphs, trees, and sequences. The framework has been designed to decouple data
structures, kernel functions and learning algorithms in order to maximize the re-use of
existing functionalities: as an example, a new kernel can be included inheriting exist-
ing algorithms, and vice versa. KeLP supports XML and JSON serialization of kernel
functions and algorithms, enabling the agile definition of kernel-based learning systems
without writing additional lines of code. KeLP can effectively tackle a wide variety of
learning problems, including classification, regression and clustering.

3

2
An overview of the library

KeLP is a machine learning library completely written in Java. The Java language
has been chosen in order to be compatible with the Java world, as it is the most used
language in production environments1. Moreover, in NLP/IR many tools are based
on the Java language, such as Stanford CoreNLP2, OpenNLP3 or Lucene4. KeLP is
released as open source software under the Apache 2.0 license and the source code
is available on the github platform5. Furthermore, it is released in packages through
Maven. A detailed documentation of KeLP with helpful examples and use cases is
available on the website of the Semantic Analytics Group6 of the University of Roma,
Tor Vergata.

KeLP has been developed in different Maven packages according to a modulariza-
tion aimed at logically separating the different components of the library. This allows
users to include only the needed modules. KeLP is currently composed of the following
4 packages:

• kelp-core: it contains the infrastructure of abstract classes and interfaces to
work with KeLP. Furthermore, some implementations of algorithms, kernels and
representations are included, to provide a base operative environment.

• kelp-additional-kernels: it contains several kernel functions that ex-
tend the set of kernels made available in the kelp-core project. Moreover, this
project implements the specific representations required to enable the applica-

1http://www.tiobe.com/tiobe index
2http://nlp.stanford.edu/software/corenlp.shtml
3https://opennlp.apache.org/
4http://lucene.apache.org/
5https://github.com/SAG-KeLP
6http://sag.art.uniroma2.it/demo-software/kelp/

5

Chapter 2. An overview of the library

tion of such kernels. In this project the following kernel functions are considered:
Sequence kernels, Tree kernels and Graphs kernels.

• kelp-additional-algorithms: it contains several learning algorithms
extending the set of algorithms provided in the kelp-core project, e.g., the C-
Support Vector Machine or ν-Support Vector Machine learning algorithms. In
particular, advanced learning algorithms for classification and regression can be
found in this package. The algorithms are grouped in: (i) Batch Learning, where
the complete training dataset is supposed to be entirely available during the learn-
ing phase; (ii) Online Learning, where individual examples are exploited one at
a time to incrementally acquire the model.

• kelp-full: this is the complete package of KeLP. It aggregates the previous
modules in one jar. It contains also a set of fully functioning examples showing
how to implement a learning system with KeLP. Batch learning algorithm as well
as Online Learning algorithms usage is shown here. Different examples cover
the usage of standard kernel, Tree Kernels and Sequence Kernel, with caching
mechanisms.

2.1 Importing KeLP via Maven
All the KeLP packages are released under Maven in our repositories.

Apache Maven is a software project management and comprehension tool. Based
on the concept of a project object model (POM), Maven can manage a projects build,
reporting and documentation from a central piece of information.

For now, a custom repository is used to distribute the maven packages for the whole
platform. To use KeLP it is necessary to specify the repository where the platform is
located. In the pom.xml of a Maven project, KeLP repositories can be specified with
the following piece of code:

<repositories>
<repository>

<id>kelp_repo_snap</id>
<name>KeLP Snapshots Repository</name>
<releases>

<enabled>false</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>

</releases>
<snapshots>

<enabled>true</enabled>

6

2.1. Importing KeLP via Maven

<updatePolicy>always</updatePolicy>
<checksumPolicy>fail</checksumPolicy>

</snapshots>
<url>

http://sag.art.uniroma2.it:8081/artifactory/kelp-snapshot/
</url>

</repository>
<repository>

<id>kelp_repo_release</id>
<name>KeLP Stable Repository</name>
<releases>

<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>

</releases>
<snapshots>

<enabled>false</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>fail</checksumPolicy>

</snapshots>
<url>

http://sag.art.uniroma2.it:8081/artifactory/kelp-release/
</url>

</repository>
</repositories>

A full version of KeLP is available on maven in the package kelp-full. It includes
all the modules that compose the library. To import the 2.0.2 version of kelp-full, you
can use the following Maven dependency.

<dependencies>
<dependency>

<groupId>it.uniroma2.sag.kelp</groupId>
<artifactId>kelp-full</artifactId>
<version>2.0.2</version>

</dependency>
</dependencies>

Maven allows also to import a subset of the packages. For example, if you need
only to work with tree kernel functions, you can import only the kelp-additional-kernels
package in your project. For example, to import the 2.0.2 version of this package, the
dependency specification to be added in your pom.xml is:

<dependencies>
<dependency>

<groupId>it.uniroma2.sag.kelp</groupId>

7

Chapter 2. An overview of the library

<artifactId>kelp-additional-kernels</artifactId>
<version>2.0.2</version>

</dependency>
</dependencies>

For a complete example on how to import KeLP packages via Maven, please refer
to the pom.xml that is contained in the kelp-full project, that can be found on GitHub7.

7https://github.com/SAG-KeLP/kelp-full

8

https://github.com/SAG-KeLP/kelp-full

3
Data Structures

In KeLP a machine learning instance is modeled by the class Example. As illustrated
in Figure 3.1 there are two implementations of such class:

• SimpleExample: it models an individual machine learning instance. It is
suitable for most of the scenarios.

• ExamplePair: it models machine learning instance naturally structured into
pairs, such as question-answer in Question Answering or text-hypothesis in Tex-
tual Entailment.

Every example has a set of StringLabels for classification tasks and a set of
NumericLabels for regression problems. Multiple labels associated to a single ex-
ample allow for tackling multi-label classification or multi-variate regression tasks. An
example can have no label, as in the case of clustering problems.

Furthermore, an example is composed by a set of representations. This allows to
model data instances from different viewpoints, and to perform a joint learning model,
where multiple representations are exploited at the same time (i.e., using kernel com-
binations).

3.1 Existing Representations
KeLP supports both vectorial and structured data to model learning instances. For ex-
ample, SparseVector can host a Bag-of-Words model, while DenseVector can
represent data derived from low dimensional embeddings. They are both available into
kelp-core, allowing to have the standard environment provided by most of the ex-
isting machine learning platforms.

kelp-additional-kernels provides structure representations:

9

Chapter 3. Data Structures

Example
<<interface>>

Label

classification labels
0..*

0..*

NumericLabel StringLabel

regressionLabels

0..*

0..*

SimpleExample
1..*

0..*

DenseVector SparseVector

<<interface>>
Vector

TreeRepresentation

<<interface>>
Representation

+ setDataFromText(description:String):void
+ getTextFromData():String

<<interface>>
Normalizable

+ normalize():void
+ getNorm():float
+ scale(factor:float):void

SequenceRepresentation

DirectedGraphRepresentation

ExamplePair

+ getLeftExample():Example
+ getRightExample():Example

includes
2

Figure 3.1: KeLP data class diagram

• TreeRepresentation: it models a tree structure that can be employed for
representing syntactic trees.

• SequenceRepresentation: it models a sequence that can be employed for
representing, for example, sequences of words;

• DirectedGraphRepresentation: it models a directed unweighted graph
structure, i.e, any set of nodes and directed edges connecting them. Edges do not
have any weight or label.

The nodes in these three structured representations are associated with a generic
structure (StructureElement) containing the node label and possible additional
information. For example, in a TreeRepresentation of a sentence leaves can represent
lexical items. Nodes can thus model lexical items, where the node label represent the
word, and the additional information can be constituted by a vector representation of a
word, as the ones produced by Word Embedding methods.

Finally a StringRepresentation is included to store a plain text, useful for
associating a comment to an example.

10

3.2. Input Format

3.2 Input Format
The dataset input format for KeLP takes inspiration from the SvmLight/LibSVM for-
malism, extending it in order to deal with multiple labels and multiple representations.
We did not exploit JSON cause it would have implied a lot of overhead.

A dataset is generally represented in a text file, where each row represents an ex-
ample, that has one of the following two forms:

label1 ... labelN |Btype1:name1| description |Etype1| |Btype2:name2| description |Etype2| ...

label1 ... labelN |ă| rightExample |, | leftExample|ą|

The former row refers to a SimpleExample while the latter describes an Exam-
plePair, where leftExample and rightExample recursively have the form of one of
these two formalisms.

Each example starts with a list of labels (highlighted in red) separated by a white
space. A label can be a simple string in the case of a classification label, or can have
the form propertyName:value (for instance height:10) in the case of regression values.
Note that an isolated number will be considered a classification label.

In the SimpleExample case, after the labels parts, a list of representations be-
gins. In the previous example there are two representations, highlighted in blue and
green. Each representation must be included between a begin of representation se-
quence of the form |Btype:name| and an end of representation sequence of the form
|Etype| where type is an identifier of the representation class (e.g., V for Sparse-
Vector) and name is an identifier for that specific representation (e.g., BoW for a
bag-of-words representation). If no name is specified for a representation, it will be
identified by its position within the sequence (i.e., the third representation will be auto-
matically named 3). The name identifies uniquely a representation for an example and
it is necessary to support examples having multiple representations of the same class.

Each representation has its own formalism:

• DenseVector. Its type identifier is DV and its textual description is a se-
quence of numbers separated by a white space (or a comma, or a semicolon).
For instance:

|BDV:lsa|10;89;0.4;-43;19;-9.3 |EDV|

• SparseVector. Its type identifier is V and its textual description is a sequence
of featureName:featureValue pairs separated by a white space (i.e., the same
formalism of SVMlight and LibSVM, but featureName is not forced to be a
number, i.e., it can be a generic string). For instance:

11

Chapter 3. Data Structures

|BV:bow| KeLP:0.33 is:0.33 amazing:0.33 |EV|

• StringRepresentation. Its type identifier is S and its textual description
is a simple text. For instance:

|BS:comment| KeLP is amazing |ES|

The structured representations have nodes whose content is a StructureEle-
ment. Its textual format is a pair type##content, where type identifies a the specific
implementation of the class StructureElement, while content is a text defining
the parameters of the structure element. Every implementation of StructureEle-
ment has its own content formalism. For instance:

• LexicalStructureElement: Its type identifier is LEX and its content has
the form word::part-of-speech, as in LEX##KeLP::n;

• PosStructureElement: Its type identifier is POS and its is a simple part-
of-speech symbol, as in POS##NN;

• SyntacticStructureElement: Its type identifier is SYNT and its is a sim-
ple syntactic symbol (e.g., a constituent, a chunk, or a syntactic dependency), as
in SYNT##VP;

• CompositionalStructureElement: Its type identifier is COMP and its
content has the form ăhead,modifierą, as in COMP##ătool,usefulą;

• UntypedStructureElement: Its type identifier is NOTYPE and its content
is a generic text, as in NOTYPE##KeLP.

This is the default StructureElement that is instantiated when the type in-
formation is missing (and the separator ## is missing too); for instance the text
KeLP is automatically instantiated as an UntypedStructureElement.

The StructureElement formalism is employed in the formats of the three
structured representations:

• SequenceRepresentation. Its type identifier is SQ and its textual descrip-
tion is a sequence of structured elements in round brackets, as in:

|BSQ:sequence| (LEX##KeLP::n) (LEX##is::v) (LEX##amazing::j) |ESQ|

12

3.2. Input Format

• TreeRepresentation. Its type identifier is T and its textual description
must be in the Penn Treebank1 notation, where each node label must respect the
StructureElement formalism. For instance2:

|BT:constTree| (S (NP (NNP KeLP)) (VP (VBZ is) (ADJP (JJ amazing)))) |ET|

• DirectedGraphRepresentation. Its type identifier is G and its textual
description ...

|BG:graph| |EG|

Given a file written in the KeLP format, it can be loaded by simply calling the
populate method:

SimpleDataset dataset = new SimpleDataset();
dataset.populate("datasetPath.klp");

Alternatively, it is possible to pass to the populate function an instance of Datase-
tReader, allowing to read different data formats. Currently, KeLP supports the CSV
data format and the LibSVM/SvmLight formats.

/*
* Loading data in CSV format

*/
SimpleDataset dataset = new SimpleDataset();
String path = "datasetPath.csv";
String representationName = "featureVector";
boolean skipFirstLine = true; //in case of header
LabelPosition position = LabelPosition.LAST_COLUMN;
CsvDatasetReader csvReader = new CsvDatasetReader(path,

representationName, skipFirstLine, position);
dataset.populate(csvReader);

/*
* Loading data in LibSVM/SVMLight format

*/
SimpleDataset dataset = new SimpleDataset();
String path = "datasetPath.libSvm";
String representationName = "featureVector";
LibsvmDatasetReader libSvmReader = new LibsvmDatasetReader(path,

representationName);
dataset.populate(libSvmReader);

1http://www.cis.upenn.edu/˜treebank/
2in the example the compact format of the UntypedStructureElement is adopted

13

http://www.cis.upenn.edu/~treebank/

Chapter 3. Data Structures

3.3 Advanced Topics on Data

3.3.1 Defining new Representations
A new representation can be added by creating a class that implements the interface
Representation. The programmer has to implement two specific methods, get-
TextFromData and setDataFromText, which are necessary for serializing the
Representation in a string format and deserializing it. The decision on which textual
format using for describing the representation to be added is left to the programmer,
i.e., a JSON/XML format is not imposed. An empty constructor must be included.
Optionally, the class can be annotated with @JsonTypeName in order to specify an
alternative type name to be used during the serialization/deserialization mechanism,
otherwise the class name will be automatically used. These simple passages auto-
matically enrich the KeLP data format allowing to load datasets containing the added
representation.

If a norm can be defined on the representation to be added (i.e., the representation is
a vector, a matrix or a higher order tensor), then the Normalizable interface can be
implemented, enabling some useful preprocessing operations on datasets like feature
scaling or data normalization (see section 3.3.2). In this case the following methods
must be implemented:

• getSquaredNorm: returns the squared norm of this vector;

• normalize: scales the representation in order to have a unit norm in the ex-
plicit feature space;

• scale: multiplies each element of the representation by a given coefficient.

3.3.2 Manipulating Data
KeLP is a general-purpose machine learning platform and does not cover any feature
extraction aspect. However it provides some simple data preprocessing features to
manipulate the input data. Specific operations on data can be defined by implementing
the Manipulator interface. Instances of such class can be then passed to the method
manipulate of the class Dataset in order to perform the manipulation operations
to the whole dataset.

Currently, the following implementations of the class Manipulator are avail-
able:

• NormalizationManipolator: it scales the selected representations in or-
der to be a unit vector in its explicit feature space. This can be useful when

14

3.3. Advanced Topics on Data

the orientation of the feature vectors is meaningful, while their magnitude is not
relevant;

• StandardizationManipulator: It standardizes the feature values of a
vectorial representation. Let xi be the value of the i-th feature whose mean and
standard deviation are µi and σi respectively. Then the standardized value is
x̂i “ pxi ´ µiq{σi. This operation is useful in order to map all the feature to a
similar range.

• VectorConcatenationManipulator: it allows to concatenate vectors
into a new SparseVector representation. It is useful when a linear approach
must be applied to multiple vectorial representations;

• PairSimilarityExtractor: it analyzes an ExamplePair extracting
some similarity scores between the left and the right examples of the pair. The
extracted similarity scores are stored in a DenseVector that is added to the
representations set of the ExamplePair to be manipulated.

• TreePairRelTagger: given an ExamplePair whose left and right exam-
ples contain TreeRepresentations, it performs the REL tagging described
in [Filice et al.(2015)].

15

4
Kernels

Kernel methods are a powerful class of algorithms for pattern analysis that, exploit-
ing the so called kernel functions, can operate in an implicit high-dimensional feature
space without explicitly computing the coordinates of the data in that space. Most
of the existing machine learning platforms provide kernel methods that operate only
on vectorial data. On the contrary, KeLP has the fundamental advantage that there is
no restriction on a specific data structure, and kernels directly operating on vectors,
sequences, trees, graphs, or other structured data can be defined.

Furthermore, another appealing characteristic of KeLP is that kernels can be com-
posed and combined in order to create richer similarity metrics in which different in-
formation from different Representations can be simultaneously exploited.

4.1 Kernel Organization
As shown in figure 4.1, KeLP completely supports the composition and combination
mechanisms providing three abstractions of the Kernel class:

• DirectKernel: in computing the kernel similarity it operates directly on a
specific Representation. For instance LinearKernel works over Vec-
tor representations, or tree kernels operate on TreeRepresentations;

• KernelComposition: it enriches the kernel similarity provided by any an-
other Kernel. Some KeLP implementations are PolynomialKernel, or
RBFKernel;

• KernelCombination: it combines different Kernels in a specific function.
Some KeLP implementations are LinearKernelCombination, or Ker-
nelMultiplication;

17

Chapter 4. Kernels

Kernel

+ innerProduct(ex1:Example, ex2:Example):float
+ squaredNorm(ex:Example):float
+ squaredNormOfTheDifference(ex1:Example, ex2:Example):float
+ kernelComputation(ex1:Example, ex2:Example):float

DirectKernel<T extends Representation>

+ kernelComputation(rep1:T, rep2:T):float

KernelCombination

KernelComposition

enriches

0..*

1

combines

0..*2..*

LinearKernel
<Vector> NormalizationKernel

PolynomialKernel

RbfKernel

LinearKernelCombination

PartialTreeKernel
<TreeRepresentation>

SequenceKernel
<SequenceRepresentation>

KernelOverPairs

+kernelComputationOverPairs(
exA1:Example, exA2:Example,
exB1:Example, exB2:Example):float

PreferenceKernel

KernelMultiplication

Figure 4.1: KeLP kernel class diagram

18

4.2. Available Kernels and their JSON Definition

Moreover, the class KernelOnPairs models kernels operating on Example-
Pairs: all kernels discussed in [Filice et al.(2015)] implement this class.

4.2 Available Kernels and their JSON Definition
One of the most useful features of KeLP is the possibility to serialize/deserialize kernels
and learning algorithms in a readable JSON/XML format. This is useful for instantiat-
ing an algorithm or a kernel without writing a single line of Java code, i.e., the algorithm
description can be provided in JSON to an interpreter that will instantiate it. Listing
4.1 reports a JSON example of a kernel-based Support Vector Machine operating in
a one-vs-all schema, where a kernel linear combination between a normalized Partial
Tree Kernel and a linear kernel is adopted. As the listing shows kernels and algorithms
can be easily composed and combined in order to create new training models.

Listing 4.1: A JSON example.

{"algorithm" : "oneVsAll",
"baseAlgorithm" : {

"algorithm" : "binaryCSvmClassification",
"c" : 10,
"kernel" : {
"kernelType" : "linearComb",
"weights" : [1,1],
"toCombine" : [
{
"kernelType" : "norm",
"baseKernel" : {

"kernelType" : "ptk",
"mu" : 0.4,
"lambda" : 0.4,
"representation" : "parseTree"

}
},
{
"kernelType" : "linear",
"representation" : "Bag-of-Words"

}
]

}
}

}

Every kernel implementation has a specific JSON name, which is usually an abbre-
viation of the Java class name, such as linearComb for the LinearKernelCom-
bination. The parameter kernelType in the JSON listing specifies the type of
the kernel to be instantiated; for example, "kernelType" : "ptk" states that the
kernel is an instance of PartialTreeKernel.

19

Chapter 4. Kernels

4.2.1 Direct Kernels
The implementations of the class DirectKernel directly compute the kernel sim-
ilarity between two representations of a specific type, such as Vector in the case of
LinearKernel. An example can have multiple representations of the same type,
and the parameter representation univocally identifies the one on which the di-
rect kernel has to operate. Referring to the listing 4.1, "representation" :"Bag-
of-Words" states that the linear kernel will operate on the Vector named Bag-of-
Words1. KeLP currently implements the following DirectKernels:

Linear Kernel

It executes the dot product between two Vector representations.

JAVA CLASS: LinearKernel
MAVEN PROJECT: kelp-core
JSON TYPE: linear

Sequence Kernel

It is a convolution kernel between sequences. The algorithm corresponds to the recur-
sive computation presented in [Bunescu and Mooney(2005)]

JAVA CLASS: SequenceKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: seqk
PARAMETERS:

• maxSubseqLeng: it is the maximum length of common subsequences consid-
ered by the kernel

• lambda: the gap penalty

SubTree Kernel

A SubTree Kernel is a convolution kernel that evaluates the tree fragments shared be-
tween two trees. The considered fragments are subtrees, i.e., a node and its complete
descendancy. For more details see [Vishwanathan and Smola(2002)].

1obviously it is expected that the input examples have a vector associated to such name, as in -1
|BV:Bag-of-Words||EV| |BT:parseTree| ... |ET|.

20

4.2. Available Kernels and their JSON Definition

JAVA CLASS: SubTreeKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: stk
PARAMETERS:

• includeLeaves: whether the leaves must be involved in the kernel compu-
tation. Regardless its value, two subtrees are matched even if their leaves differ
(but the other nodes must match). When it is true, matching leaves contribute to
the kernel function; this corresponds to adding a bag-of-words similarity to the
kernel function.

• lambda: the decay factor (associated to the height of a subtree)

• deltaMatrix: it is the data structure, where the kernel stores the results of the
delta operations, i.e., the results of the intermediate operations in the recursive
process of the convolution kernel. By default it is a 400x400 StaticDelta-
Matrix, i.e., it is possible to calculate the kernel operation for input trees having
up to 400 nodes.

SubSet Tree Kernel

A SubSetTree Kernel, a.k.a. Syntactic Tree Kernel, is a convolution kernel that evalu-
ates the tree fragments shared between two trees. The considered fragments are subset-
trees, i.e., a node and its partial descendancy (the descendancy can be incomplete in
depth, but no partial productions are allowed; in other words, given a node either all
its children or none of them must be considered). For further details see [Collins and
Duffy(2001)].
JAVA CLASS: SubSetTreeKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: sstk
PARAMETERS:

• includeLeaves: whether the leaves must be involved in the kernel computa-
tion. Regardless its value, two sub-set trees are matched even if their leaves differ
(but the other nodes must match). When it is true, matching leaves contribute to
the kernel function; this corresponds to adding a bag-of-words similarity to the
kernel function.

• lambda: the decay factor (associated to the height of a sub-set tree)

• deltaMatrix: it is the data structure, where the kernel stores the results of the
delta operations, i.e., the results of the intermediate operations in the recursive

21

Chapter 4. Kernels

process of the convolution kernel. By default it is a 400x400 StaticDelta-
Matrix, i.e., it is possible to calculate the kernel operation for input trees having
up to 400 nodes.

Partial Tree Kernel

A Partial Tree Kernel is a convolution kernel that evaluates the tree fragments shared
between two trees. The considered fragments are partial trees, i.e., a node and its partial
descendancy (the descendancy can be incomplete, i.e., a partial production is allowed).
For further details see [Moschitti(2006)].
JAVA CLASS: PartialTreeKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: ptk
PARAMETERS:

• includeLeaves: whether the leaves must be involved in the kernel computa-
tion. Regardless its value, two sub-set trees are matched even if their leaves differ
(but the other nodes must match). When it is true, matching leaves contribute to
the kernel function; this corresponds to adding a bag-of-words similarity to the
kernel function.

• lambda: the decay factor (associated to the length of a production, including
gaps)

• mu: the decay factor (associated to the height of a partial tree)

• terminalFactor: multiplicative factor to scale up/down the leaves contribu-
tion

• maxSubseqLeng: Maximum length of common subsequences considered in
the recursion. It reflects the maximum branching factor allowed to the tree frag-
ments.

• deltaMatrix: it is the data structure, where the kernel stores the results of the
delta operations, i.e., the results of the intermediate operations in the recursive
process of the convolution kernel. By default it is a 400x400 StaticDelta-
Matrix, i.e., it is possible to calculate the kernel operation for input trees having
up to 400 nodes.

Smoothed Partial Tree Kernel

22

4.2. Available Kernels and their JSON Definition

A Smoothed Partial Tree Kernel (SPTK) is a convolution kernel that evaluates the tree
fragments shared between two trees, [Croce et al.(2011)]. The considered fragments
are partial trees (as for the Partial Tree Kernel) whose nodes are identical or similar
according to a node similarity function: the contribution of the fragment pairs in the
overall kernel thus depends on the number of shared substructures, whose nodes con-
tribute according to such a metrics. This kernel is very flexible as the adoption of node
similarity functions allows the definition of more expressive kernels, such as the Com-
positionally Smoothed Partial Tree Kernel [Annesi et al.(2014)]. Some examples of
the usage of SPTK and node similarity function is reported in Section 6.
JAVA CLASS: SmoothedPartialTreeKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: sptk
PARAMETERS:

• lambda: the decay factor (associated to the length of a production, including
gaps)

• mu: the decay factor (associated to the height of a partial tree)

• terminalFactor: multiplicative factor to scale up/down the leaves contribu-
tion

• maxSubseqLeng: Maximum length of common subsequences considered in
the recursion. It reflects the maximum branching factor allowed to the tree frag-
ments.

• deltaMatrix: it is the data structure, where the kernel stores the results of the
delta operations, i.e., the results of the intermediate operations in the recursive
process of the convolution kernel. By default it is a 400x400 StaticDelta-
Matrix, i.e., it is possible to calculate the kernel operation for input trees having
up to 400 nodes.

• StructureElementSimilarityI: this interface allows the implementa-
tion of similarity functions between tree nodes. Each node contains a Struc-
tureElement reflecting the node information: a similarity function should
return a similarity score that is a kernel itself, otherwise it is not guaranteed the
convergence of several learning algorithms, such as Support Vector Machine. At
the moment of writing two similarity function can be used within a SPTK.

– The ExactMatchingStructureElementSimilarity is a simi-
larity function returning 1 when the nodes are the same and 0 otherwise;
by using this function, similar results w.r.t. the PTK should be obtained.

23

Chapter 4. Kernels

– The LexicalStructureElementSimilarity is a similarity func-
tion used within syntactic trees derived from dependency/constituency pars-
ing [Croce et al.(2012)]: according to this function, nodes reflecting syn-
tactic or grammatical (i.e., pos-tag) information must be the same to con-
tribute, while the similarity between lexical nodes is measured within a
Word Space (e.g., [Croce and Previtali(2010)]) where words are repre-
sented as vectors and where the cosine distance reflects the semantic re-
latedness.

• similarityThreshold is a threshold applied to the similarity function, also
used to speed up the kernel computation: node pairs whose score is below this
threshold are ignored in the evaluation. We recommend to set this threshold to
0.001 in combination with the LexicalStructureElementSimilarity
and the ExactMatchingStructureElementSimilarity functions.

Shortest Path Kernel

The Shortest Path Kernel associates a feature to each pair of nodes of one graph. The
feature name corresponds to pair of node labels while the value is the length of the
shortest path between the nodes in the graph. The complexity of the kernel is Opn4q,
where n is the number of nodes in a graph. Further details can be found in [Borgwardt
and Kriegel(2005)].
JAVA CLASS: ShortestPathKernel
MAVEN PROJECT: kelp-additional-kernels
JSON TYPE: shortestPath

4.3 Kernel Compositions

As mentioned in the beginning of this Section, kernels can be composed resulting in a
new, valid kernel function. The composition of kernels is supported in KeLP through a
specific abstract class called KernelComposition, that can be extended by a new
kernel to realize the composition operation. Such operation is based on the compu-
tation provided by any other Kernel function, i.e., it enriches the kernel similarity
computed by any other kernel. KeLP is designed to allow the composition of multi-
ple levels of kernels. The KernelComposition abstract class contains two imple-
mented methods, that are getBaseKernel and setBaseKernel, respectively the
accessor methods for the base kernel that is composed by the current kernel.

24

4.3. Kernel Compositions

In KeLP some available implementations of KernelComposition functions
are:

Polynomial Kernel

The Polynomial Kernel is a kernel that implicitly works in a features space where
all the polynomials of the original features are available. As an example, a 2nd degree
polynomial kernel applied over a linear kernel over a vector representation will also
consider in the computation the pairs of features. This can be easy demonstrated by
expanding the following formula polyKpx, yq “

`

aKpx, yq ` b
˘d

, for d “ 2.
JAVA CLASS: PolynomialKernel
MAVEN PROJECT: kelp-core
JSON TYPE: poly
PARAMETERS:

• degree: the degree of the polynomial;

• a: the a parameter in polyKpx, yq “
`

aKpx, yq ` b
˘d

;

• b: the b parameter in polyKpx, yq “
`

aKpx, yq ` b
˘d

.

RBF Kernel

The Radial Basis Function (RBF) Kernel computes the kernel function in an in-
finite dimensional implicit feature space. It enriches another kernel according to the
following formula RBFKpx, yq “ e

´γ‖x´y‖2
HK , where: ‖a‖HK

is the norm of a in
the kernel space HK generated by a base kernel K. ‖x´ y‖2HK

can be computed as
‖x´ y‖2HK

“ ‖x‖2HK
` ‖y‖2HK

´ 2Kpx, yq “ Kpx, xq `Kpy, yq ´ 2Kpx, yq.
JAVA CLASS: RbfKernel
MAVEN PROJECT: kelp-core
JSON TYPE: rbf PARAMETERS:

• gamma: the gamma parameter of the Gaussian kernel, according toRBFKpx, yq “
e
´γ‖x´y‖2

HK .

Normalization Kernel

The Normalization Kernel allows to normalize a generic kernel, according to the for-
mula normKpx, yq “

Kpx,yq?
pKpx,xq¨Kpy,yqq

25

Chapter 4. Kernels

JAVA CLASS: NormalizationKernel
MAVEN PROJECT: kelp-core
JSON TYPE: norm

4.3.1 Kernel Combinations
Kernel functions can be combined obtaining new valid kernel functions. The combi-
nation of kernel functions is supported in KeLP through a specific abstract class called
KernelCombination, that can be extended by a new kernel to realize the desired
combination operation. The combination operation is based on the computation pro-
vided by other base Kernel functions that are combined according to the specific func-
tion. The KernelCombination class contains two implemented methods, getTo-
Combine and setToCombine, i.e., the accessor methods for the lists of the kernel
to be combined. In KeLP some available implementations of the KernelCombina-
tion class are:

Linear Kernel Combination

The Linear Combination of Kernel function is computed as the weighted sum of
kernel values, that are made available by the list of base kernels of the combination. The
weights can be optionally normalized (by calling the method normalizeWeights,
such that their sum is 1. The final kernel is then computed as the weighted linear
combination of kernels Ki with i “ 1, . . . , n:

ř

iďn ciKi.
JAVA CLASS: LinearKernelCombination
MAVEN PROJECT: kelp-core
JSON TYPE: linearComb
PARAMETERS:

• weights: the weights associated to the linear combination.

Kernel Multiplication

The multiplication of Kernel functions is computed as the multiplication of ker-
nel values that are computed starting from the base kernels. The KernelMulti-
plication executes the combination of kernels Ki with i “ 1, . . . , n according to:
ś

iďnKi.
JAVA CLASS: KernelMultiplication
MAVEN PROJECT: kelp-core
JSON TYPE: multiplication

26

4.3. Kernel Compositions

4.3.2 Kernel On Pairs
Kernel on Pairs is an abstract class that serves as a generic interface for kernels operat-
ing on ExamplePairs, applying a simpler kernel BK to the elements within the pairs.
As in KernelComputation, the simpler kernel corresponds to the class parameter
baseKernel, that can be accessed using the methods getBaseKernel and set-
BaseKernel.

Preference Kernel

In the learning to rank scenario, the preference kernel [Shen and Joshi(2003)] com-
pares two pairs of ordered objects pa “ xa1, a2y and pb “ xb1, b2y:

PKppa, pbq “ BKpa1, b1q `BKpa2, b2q ´BKpa1, b2q ´BKpa2, b1q (4.1)

where BK is a generic kernel operating on the elements of the pairs. The underlying
idea is to evaluate whether the first pair xa1, a2y aligns better to the second pair in its
regular order xb1, b2y rather than to its inverted order xb2, b1y.
JAVA CLASS: PreferenceKernel
MAVEN PROJECT: kelp-core
JSON TYPE: preference

Uncrossed Pairwise Sum Kernel

This kernel compares two pairs of ordered objects pa “ xa1, a2y and pb “ xb1, b2y,
summing the contributions of the single element similarities:

PKppa, pbq “ BKpa1, b1q `BKpa2, b2q (4.2)

where BK is a generic kernel operating on the elements of the pairs. It has been used
in learning scenarios where the elements within a pair have different roles, such as text
and hypothesis in Recognizing Textual Entailment [Filice et al.(2015)], or question and
answer in Question Answering [Severyn et al.(2013)].
JAVA CLASS: UncrossedPairwiseSumKernel
MAVEN PROJECT: kelp-core
JSON TYPE: uncrossedPairwiseSum

Uncrossed Pairwise Product Kernel

27

Chapter 4. Kernels

This kernel compares two pairs of ordered objects pa “ xa1, a2y and pb “ xb1, b2y,
multiplying the contributions of the single element similarities:

PKppa, pbq “ BKpa1, b1q ¨BKpa2, b2q (4.3)

where BK is a generic kernel operating on the elements of the pairs. It has been used
in learning scenarios where the elements within a pair have different roles, such as text
and hypothesis in Recognizing Textual Entailment [Filice et al.(2015)], or question and
answer in Question Answering [Severyn et al.(2013)].
JAVA CLASS: UncrossedPairwiseProductKernel
MAVEN PROJECT: kelp-core
JSON TYPE: uncrossedPairwiseProduct

Pairwise Sum Kernel

This kernel compares two pairs of objects pa “ xa1, a2y and pb “ xb1, b2y, sum-
ming the contributions of all pairwise similarities between the single elements:

PKppa, pbq “ BKpa1, b1q `BKpa2, b2q `BKpa1, b2q `BKpa2, b1q (4.4)

where BK is a generic kernel operating on the elements of the pairs. It has been used
in symmetric tasks, such as Paraphrase Identification [Filice et al.(2015)], where the
elements within a pair are interchangeable.
JAVA CLASS: PairwiseSumKernel
MAVEN PROJECT: kelp-core
JSON TYPE: pairwiseSum

Pairwise Product Kernel

This kernel compares two pairs of objects pa “ xa1, a2y and pb “ xb1, b2y, sum-
ming the contributions of the two possible pairwise alignments:

PKppa, pbq “ BKpa1, b1q ¨BKpa2, b2q `BKpa1, b2q ¨BKpa2, b1q (4.5)

where BK is a generic kernel operating on the elements of the pairs. It has been used
in symmetric tasks, such as Paraphrase Identification [Filice et al.(2015)], where the
elements within a pair are interchangeable.

28

4.4. Advanced Topics on Kernels

JAVA CLASS: PairwiseProductKernel
MAVEN PROJECT: kelp-core
JSON TYPE: pairwiseProduct

Best Pairwise Alignment Kernel

This kernel compares two pairs of objects pa “ xa1, a2y and pb “ xb1, b2y, evalu-
ating the best pairwise alignment:

SMppa, pbq “ softmax
´

BKpa1, b1q¨BKpa2, b2q, BKpa1, b2q¨BKpa2, b1q
¯

(4.6)

where BK is a generic kernel operating on the elements of the pairs, and softmax
is a function put in place of the max operation, which would cause SM not to be a
valid kernel function (i.e., the resulting Gram matrix can violate the Mercer’s condi-
tions). In particular, softmaxpx1, x2q “ 1

c logpexppcx1q` exppcx2q (c=100 is accurate
enough). The Best Pairwise Alignment Kernel has been used in symmetric tasks, such
as Paraphrase Identification [Filice et al.(2015)], where the elements within a pair are
interchangeable.
JAVA CLASS: BestPairwiseAlignmentKernel
MAVEN PROJECT: kelp-core
JSON TYPE: bestPairwiseAlignment

4.4 Advanced Topics on Kernels

4.4.1 Defining new Kernels
As discussed in Section 4, kernels are organized into four main abstractions, i.e., Di-
rectKernel, KernelComposition, KernelCombination, and KernelOn-
Pairs. Therefore, when implementing a new kernel, the first step is understanding
which abstract class we must extends. In this guide, we will describe how to imple-
ment a new DirectKernel and a new KernelComposition; the extensions to
the other kernel types is straightforward.

Implementing a Direct Kernel: the Linear Kernel Example We are now assuming
that the Linear Kernel LK is not available in KeLP , and that we need to implement
it from scratch. The linear kernel is simply the dot product between two vectors ~xi

29

Chapter 4. Kernels

and ~xj , i.e., LKp~xi, ~xiq “ ~xi ¨ ~xj . Then, in implementing LinearKernel, we need to
extend a DirectKernel over Vector. Optionally the class can be annotated with
@JsonTypeName in order to specify an alternative type name to be used during the
serialization/deserialization mechanism.

@JsonTypeName("linear")
public class LinearKernel extends DirectKernel {

To make the JSON serialization/deserialization mechanism work, an empty con-
structor must be defined:

public LinearKernel() {
}

Finally the kernelComputation method must be implemented:

@Override
protected float kernelComputation(Vector repA, Vector repB) {

return repA.innerProduct(repB);
}

Implementing a Kernel Composition: the RBF Kernel Example We are now as-
suming that the RBF Kernel RBF is not available in KeLP , and that we need to im-
plement it from scratch. As described in Section 4.3, the RBF Kernel be generalized to
any so that its computation depends on the result provided by a base kernel K:

RBFKpx, yq “ e
´γ‖x´y‖2

HK

where: ‖a‖HK
is the norm of a in the kernel space HK generated by a base kernel

K. Therefore, the RbfKernel must extend KernelComposition. Optionally the
class can be annotated with @JsonTypeName in order to specify an alternative type
name to be used during the serialization/deserialization mechanism.

@JsonTypeName("rbf")
public class RbfKernel extends KernelComposition {

To make the JSON serialization/deserialization mechanism work, an empty con-
structor must be defined and all the kernel parameters must be associated to the corre-
sponding getter and setter methods. In this case, gamma is the only parameter and the
corresponding getGamma and setGamma methods must be implemented.

private float gamma;

public RbfKernel() {

30

4.4. Advanced Topics on Kernels

}

/**
* @return the gamma

*/
public float getGamma() {

return gamma;
}

/**
* @param gamma the gamma to set

*/
public void setGamma(float gamma) {

this.gamma = gamma;
}

Finally the kernelComputation method must be implemented containing the
specific kernel similarity logic.

@Override
protected float kernelComputation(Example exA, Example exB) {

float innerProductOfTheDiff = this.baseKernel
.squaredNormOfTheDifference(exA, exB);

return (float) Math.exp(-gamma *
innerProductOfTheDiff);

}

4.4.2 Speeding up Kernel Machines through Caching Mechanisms
When adopting advanced kernel functions, such as convolution kernels, the kernel com-
putation is the most computationally expensive part of both training and test phases.
Usually the same kernel operation is required multiple times, therefore, a caching
mechanism is required to dramatically speed up the algorithm. KeLP provides two
kinds of cache:

• SquaredNormCache stores the squared norms of the instances in the RKHS,
i.e., Kpx, xq.

• KernelCache stores the kernel computations between instances, i.e., Kpx, yq

A large cache allows to save many computations, however it may use a lot of memory:
given a dataset of n instances, it can be useful to store in cache all the possible pairwise
kernel computations, i.e., a total of npn`1q

2 values. Both cache types are available

31

Chapter 4. Kernels

in KeLP with different implementations, which are optimized for different learning
scenarios. All the caches are addressed using the ExampleId, which is a unique
identifier that is associated to each Example during its instantiation (each example
receives an ExampleId corresponding to the number of examples created so far).

SquaredNormCache: Several learning algorithms, such as the Passive Aggres-
sive [Crammer et al.(2006)] during its updating procedure, explicitly require the com-
putation of the squared norm of the training examples in the RKHS, i.e., Kpx, xq.
Furthermore, the squared norm in the RKHS of a base kernel appears in the formula of
many kernel compositions, such as the Kernel Normalization described in section 4.3.
Thus, caching these values is beneficial. The SquaredNormCache is the interface
for a cache of the squared norms in the RKHS and its usage is shown in below:

PartialTreeKernel ptk = new PartialTreeKernel(0.4f, 0.4f, 1,
"constTree");

NormalizationKernel normK = new NormalizationKernel(ptk);
int instances = 1000;
SquaredNormCache normCache = new FixIndexSquaredNormCache(instances);
ptk.setSquaredNormCache(SquaredNormCache);

The SquaredNormCache is implemented in two variants:

• FixIndexSquaredNormCache: It has a fix dimension that must be speci-
fied during the instantiation phase. Every example is statically assigned to a fix
position in the cache that depends on its ExampleId. Collisions (i.e., multiple
examples pointing at the same cache position) can occur: if two or more exam-
ples are assigned to the same position, only one can be stored in the cache. It
is an optimal solution for storing norms when the cache size is large enough to
contain all the examples in the dataset, or, more in general, when the examples
to be stored have consecutive exampleIds.

• DynamicIndexSquaredNormCache: It has a fix dimension that must be
specified during the instantiation phase. When the cache is full a last recently
used strategy is applied for eliminating some entries. It is slightly slower and
heavier than a FixIndexSquaredNormCache with the same size, however
it is a better choice when only a subset of the examples should be stored.

In general, if the purpose is to cache all the possible squared norm values, then the best
choice is FixIndexSquaredNormCache. In the next section it will be shown a
particular situation where the DynamicIndexSquaredNormCache is more con-
venient.

32

4.4. Advanced Topics on Kernels

KernelCache: There are several situations where the same kernel operations are
required multiple times. Some examples are:

• during the training process of several algorithms, including SVM, or multi-epoch
online learning algorithms;

• when binary classifiers are combined for solving a multi-class problems;

• when a n-fold cross validation is performed;

• during a tuning stage, when the same kernel is employed in different learning
algorithms.

Therefore using a proper caching mechanism is crucial, especially when the adopted
kernel is computationally expensive, as in the case of convolution kernels. The listing
below illustrates how to equip a kernel with a KernelCache:

UncrossedPairwiseProductKernel pairwiseK = new
UncrossedPairwiseProductKernel(normK, false);

int examplePairs = 1000;
KernelCache kernelCache = new DynamicIndexKernelCache(examplePairs);
pairwiseK.setKernelCache(kernelCache);

The SquaredNormCache is implemented in three variants:

• FixIndexKernelCache: it stores all the pairwise kernel computations of a
set of n examples, where n is a fix dimension that must be specified during the
instantiation phase. Basically it stores a symmetric matrix where every example
is statically assigned to a fix row/column that depends on its ExampleId. Colli-
sions (i.e., multiple examples pointing at the same row/column) can occur: if two
or more examples are assigned to the same index, only one can be stored in the
cache. It is an optimal solution for storing kernel computations when the cache
size is large enough to avoid collisions, or, more in general, when the examples
to be stored have consecutive exampleIds.

• DynamicIndexKernelCache: it stores all the pairwise kernel computations
of a set of n examples, where n is a fix dimension that must be specified during
the instantiation phase. When the cache is full a last recently used strategy is
applied for eliminating some entries. It is slightly slower and heavier than a
FixIndexKernelCache with the same size, however it is a better choice
when only the pairwise kernel computations of a subset of the examples should
be stored.

33

Chapter 4. Kernels

• StripeKernelCache: Given a dataset, this cache stores kernel computations
in “stripes”, i.e., whole rows of the complete Gram Matrix. In other words given
a subset S of the examples in the dataset D, the cache is able to store all the ker-
nel computations between any example in S and any example in D. This kind
of cache is efficient when there is a fix split between the training set and test set,
therefore no kernel operations are required between the instances in the testset.
Another efficient usage is in the training phase of particular binary learning al-
gorithms, such as the SVM implementation proposed in [Chang and Lin(2011)],
that are optimized for reducing the required number of kernel operations to few
“stripes” of the kernel gram matrix. When the number of stripes is exceeded,
they are removed according to a FIFO policy.

To clarify the differences between the FixIndex versions and the DynamicIndex
counterparts of the SquaredNormCache and KernelCache, an example is here-
after proposed. Assume instances have the form of an ExamplePair where the left
and right parts are SimpleExamples having a TreeRepresentation. In this
case, for each example, three exampleIds will be assigned: one to the left part, one to
the right part, and finally one to the overall ExamplePair. The listings above define
the following kernel over pairs: N`PTKppa, pbq “ NPTKpa1, b1q ` NPTKpa2, b2q “

PTKpa1,b1q?
PTKpa1,a1qPTKpb1,b1q

`
PTKpa2,b2q?

PTKpa2,a2qPTKpb2,b2q
, where each kernel is the sum of

the normalized PTK between the left trees and the normalized PTK between the right
trees. In this case, for each overall kernel computation, four squared norms in the
RKHS of the PTK are required (i.e., PTKpx, xq), and caching them can significantly
reduce the computational time. Given a dataset of n example pairs, a total of 2n trees
occur. A 2n size DynamicIndexSquaredNormCache can store all the resulting
2n squared norms. Instead, the FixIndexSquaredNormCache requires a 3n size
to avoid collisions, as the total number of exampleIds is 3n, considering the overall
ExamplePairs.

For the same reason, if a KernelCache is needed for the overall kernel, it is
better to use a DynamicIndexKernelCache than a FixIndexKernelCache,
as the former requires only a size n, i.e., the total number of ExamplePairs, while
the latter needs 3n to avoid collisions2.

2in this case the size of a kernel cache expresses the total number of examples whose pairwise com-
putations can be simultaneously stored, and not the actual memory occupation, which is quadratic of such
number.

34

5
Learning Algorithms

In Machine Learning, a wide plethora of learning algorithms have been defined for
different purposes, and many variations of the existing ones as well as completely
new learning methods are often proposed. KeLP provides a large number of learning
algorithms1 that can be used to tackle a variety of learning scenarios, including (multi-
class, multi-label) classification, regression and clustering.

Many algorithms are implemented as a linear version to favor efficiency and al-
low to explore very large datasets; other algorithms have a kernel-based implemen-
tation that exploits the expressiveness and efficacy of kernel-methods. Furthermore
KeLP provides both Online Learning (e.g., Perceptron-like learners) and Batch Learn-
ing models (e.g., Support Vector Machines). In Batch Learning, the complete training
dataset is supposed to be entirely available during the learning phase, and all the ex-
amples are exploited at the same time (usually optimizing a global objective function).
In Online Learning individual examples are exploited one at a time to incrementally
acquire the model.

5.1 Learning Algorithms Organization
KeLP proposes a comprehensive set of interfaces to support the implementation of new
algorithms. Figure 5.1 illustrates a simplified class diagram of the algorithms in KeLP .
Three main objects can be identified:

• LearningAlgorithm: It contains the learning procedure that is applied on
training data to generate a PredictionFunction; for instance LibLinear-
LearningAlgorithm is a binary classification learning algorithm which imple-

1All the algorithms are completely re-implemented in Java and they do not wrap any external library

35

Chapter 5. Learning Algorithms

<
<

in
terface>

>
C

lassificatio
n

O
u

tp
u

t

+
 getS

core(label:Label):F
loat

+
 isC

lassP
redicted(label:Label):booean

+
 getP

redictedC
lasses():List<

Label>

<
<

in
terface>

>
C

lassificatio
n

L
earn

in
g

A
lg

o
rith

m

+
getP

redictionF
unction():C

lassifier

produces

<
<

in
terface>

>
R

eg
ressio

n
L

earn
in

g
A

lg
o

rith
m

+
getP

redictionF
unction():R

egressor

<
<

in
terface>

>
L

earn
in

g
A

lg
o

rith
m

+
learn(dataset:D

ataset):void
+

setLabels(labels:Labels[]):void
+

getLabels():Label[]
+

duplicate():LearningA
lgorithm

+
reset():void

+
getP

redictionF
unction():P

redictionF
unction

<
<

in
terface>

>
M

etaL
earn

in
g

A
lg

o
rith

m

+
setB

aseLearningA
lgorithm

(algo:LearningA
lgorithm

):void
+

getB
aseLearningA

lgorithm
():LearningA

lgorithm

com
bines

<
<

in
terface>

>
E

n
sem

b
leL

earn
in

g
A

lg
o

rith
m

+
setToC

om
bine(algos:LearningA

lgorithm
[]):void

+
getToC

om
bine():LearningA

lgorithm
[]

is based on

<
<

in
terface>

>
L

in
earM

eth
o

d

+
getR

epresentation():R
epresentation

+
setR

epresentation(rep:R
epresentation):void

<
<

in
terface>

>
K

ern
elM

eth
o

d

+
getK

ernel():K
ernel

+
setK

ernel(kernel:K
ernel):void

<
<

in
terface>

>
P

red
ictio

n
F

u
n

ctio
n

+
predict(ex:E

xam
ple):P

rediction
+

setLabels(labels:Labels[]):void
+

getLabels():Label[]
+

reset():void

learn

<
<

in
terface>

>
P

red
ictio

n

+
getS

core(label:Label):F
loat

<
<

in
terface>

>
C

lassifier

+
predict(ex:E

xam
ple):C

lassificationO
utput

<
<

in
terface>

>
R

eg
resso

r

+
predict(ex:E

xam
ple):R

egressionO
utput

<
<

in
terface>

>
R

eg
ressio

n
O

u
tp

u
t

+
 getS

core(label:Label):F
loat

<
<

in
terface>

>
O

n
lin

eL
earn

in
g

A
lg

o
rith

m

+
learn(exam

ple:E
xam

ple):P
rediction

<
<

in
terface>

>
B

in
aryL

earn
in

g
A

lg
o

rith
m

Figure
5.1:K

eL
P

algorithm
class

diagram

36

5.1. Learning Algorithms Organization

ments the linear SVM algorithm described in [Fan et al.(2008)]: given a training
dataset it finds the best separating hyperplane between the two classes.

• PredictionFunction: It contains the logic to produce a Prediction on
a new data instance. For example, BinaryLinearClassifier classifies a
new instance performing a dot product with the classification hyperplane.

• Prediction: it is the output associated to a test data. For instance, Binary-
MarginClassifierOutput is the predicted label and score associated to a test data
on a binary classification task.

Among the LearningAlgorithm interfaces, the most relevant are:

• ClassificationLearningAlgorithm: for algorithms that learn from
labelled data how to classify new instances. Some of the current implementa-
tions are C-SVM, ν-SVM [Chang and Lin(2011)] and Pegasos [Shalev-Shwartz
et al.(2007)].

• OnlineLearningAlgorithm: it support the definition of online learning
algorithms, like the Perceptron [Rosenblat(1958)] or the Passive Aggressive al-
gorithms, [Crammer et al.(2006)].

• RegressionLearningAlgorithm: for algorithms that learn from labelled
data a regression function. For instance, ε-SVR [Chang and Lin(2011)], Linear
and Kernelized Passive Aggressive Regression [Crammer et al.(2006)].

• MetaLearningAlgorithm: for learning approaches that rely on another
algorithm. We implemented Multi-classification schemas, e.g., One-VS-One,
One-VS-All and Multi-label classification, as well as budgeted policies of on-
line learning algorithms like Randomized Budget Perceptron [Cesa-Bianchi and
Gentile(2006)] and Stoptron [Orabona et al.(2008)].

• EnsembleLearningAlgorithm: for algorithms that combine other algo-
rithms in order to provide a more robust solution.

Algorithms exploiting kernel functions must implement KernelMethod, while algo-
rithms operating directly in an explicit feature space must implement LinearMethod.

In addition, the ClusteringAlgorithm interface models algorithms that are
able to organize a dataset into clusters. Currently KeLP implements kernel-based clus-
tering from [Kulis et al.(2005)].

37

Chapter 5. Learning Algorithms

5.2 Available Learning Algorithms and their JSON Def-
inition

This sections provides a description of the learning algorithms implemented within
KeLP , grouped according to the following criteria:

• in Section 5.2.1 batch learning algorithms for classification and regression tasks
are reported;

• in Section 5.2.2 online learning algorithms for classification and regression tasks
are reported;

• in Section 5.2.3 algorithms for clustering are reported;

• in Section 5.2.4 algorithms for linearizing a complex RKHS, such as the Nystrom
method, are reported;

• in Section 5.2.5 meta learning algorithms are reported to implement complex
schemas, such as One-Vs-All and One-Vs-One multi-class classifiers; moreover,
several extensions to online algorithms are reported (e.g., the MultiEpoch on-
line learning algorithm); some budgeted methods are included to scale up online
kernel-based learning over large datasets.

For each learning algorithm the corresponding Java class, KeLP project, JSON Type
and main parameters are reported.

Learning algorithms and representations. Each learning algorithm in KeLP oper-
ates on specific representations reflecting the examples. In kernel-based method the
targeted representations are specified directly into the adopted kernel functions. In
learning methods operating directly on the explicit spaces the name of the representa-
tions must be expressed within the parameters of the algorithm implementations.

Fairness and learning algorithms. In many real-world classification domains, the
examples are not equally distributed among the classes, and dealing with very imbal-
anced datasets can make Machine Learning algorithms produce a weak classification
hypothesis that largely penalizes the less frequent classes. In KeLP most of learning
algorithms implement a strategy called fairness that consists of directly modifying the
learning algorithm in order to emphasize the contribution of the less frequent examples.
In [Morik et al.(1999)] the original SVM formulation is slightly modified splitting the
empirical risk term into a positive part and a negative one. Each example is associated

38

5.2. Available Learning Algorithms and their JSON Definition

to parameters C` and C´ that substitute the original regularization parameter C. We
adopted in KeLP the strategy proposed in [Filice et al.(2014)] to guarantee the fairness
among positive and negative examples both in batch and online learning algorithms for
classification tasks: the parameters C` and C´ are chosen so that the potential total
cost of the false positive equals the potential total cost of the false negative, i.e., the
ratio C`{C´ is equal to the ratio between the number of negative and positive training
examples.

5.2.1 Batch Learning Algorithms
The following batch learning algorithms are implemented.

Binary C-SVM Classification

It is the KeLP implementation ofC-Support Vector Machine learning algorithm [Cortes
and Vapnik(1995)]. It is a learning algorithm for binary classification and it relies
on kernel functions. It is a Java porting of the library LIBSVM v3.17, written in
C++ [Chang and Lin(2011)]
JAVA CLASS: BinaryCSvmClassification
MAVEN PROJECT: kelp-core
JSON TYPE: binaryCSvmClassification
PARAMETERS:

• kernel: The kernel function

• label: The label to be learned

• cp: The regularization parameter for positive examples

• cn: The regularization parameter for negative examples

• useFairness: A boolean parameter to force the fairness policy

Binary ν-SVM Classification

It is the KeLP implementation of the ν-Support Vector Machine learning algorithm
[Schölkopf et al.(2000)]. It is a learning algorithm for binary classification and it relies
on kernel functions. It is a Java porting of the library LIBSVM v3.17, written in C++
[Chang and Lin(2011)].
JAVA CLASS: BinaryNuSvmClassification
MAVEN PROJECT: kelp-core
JSON TYPE: binaryNuSvmClassification
PARAMETERS:

39

Chapter 5. Learning Algorithms

• kernel: The kernel function

• label: The label to be learned

• nu: The ν parameter, i.e., the percentage of training example to be used as Sup-
port Vectors

• useFairness: A boolean parameter to force the fairness policy

One Class Svm Classification

It is KeLP implementation of One-Class Support Vector Machine learning algorithm
[Schölkopf et al.(2001)]. It is a learning algorithm for estimating the Support of a High-
Dimensional Distribution and it relies on kernel functions. The model is acquired only
by considering positive examples. It is useful in anomaly detection (a.k.a. novelty
detection). It is a Java porting of the library LIBSVM v3.17, written in C++ [Chang
and Lin(2011)]
JAVA CLASS: OneClassSvmClassification
MAVEN PROJECT: kelp-core
JSON TYPE: oneClassSvmClassification
PARAMETERS:

• kernel: The kernel function

• label: The label to be learned

• nu: The ν parameter, i.e., the percentage of training example to be used as Sup-
port Vectors

LibLinear SVM Classification

This class implements linear SVMs models trained using a coordinate descent algo-
rithm [Fan et al.(2008)]. It operates in an explicit feature space (i.e., it does not rely on
any kernel). This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
JAVA CLASS: LibLinearLearningAlgorithm
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: liblinear

PARAMETERS:

• label: The label to be learned

40

5.2. Available Learning Algorithms and their JSON Definition

• cp: The regularization parameter for positive examples

• cn: The regularization parameter for negative examples

• representation: The identifier of the representation to be considered for
the training step

Pegasos Classification

It implements the Primal Estimated sub-GrAdient SOlver (PEGASOS) for SVM. It is a
learning algorithm for binary linear classification Support Vector Machines. It operates
in an explicit feature space (i.e., it does not rely on any kernel). Further details can be
found in [Shalev-Shwartz et al.(2007)].
JAVA CLASS: PegasosLearningAlgorithm
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: pegasos

PARAMETERS:

• label: The label to be learned

• lambda: The regularization coefficient

• iterations: The number of iterations required from the learning algorithm

• k: The number of examples k that PEGASOS exploits in its mini-batch learning
approach

• representation: The identifier of the representation to be considered for
the training step

A Dual Coordinate Descent Learning Algorithm

the KeLP implementation of Dual Coordinate Descent (DCD) training algorithm for a
Linear L1 or L2 Support Vector Machine for binary classification [Hsieh et al.(2008)].
JAVA CLASS: DCDLearningAlgorithm
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: dcd

PARAMETERS:

• label: The label to be learned

41

Chapter 5. Learning Algorithms

• dcdLoss: The considered Loss function (L1 or L2)

• useBias: This boolean parameter determines the use of bias b in the classi-
fication function fpxq “ wx ` b. If usebias is set to false the bias is set to
0.

• cp: The regularization parameter for positive examples

• cn: The regularization parameter for negative examples

• maxIterations: The number of iterations required from the learning algo-
rithm

• representation: The identifier of the representation to be considered for
the training step

ε-Support Vector Regression

It implements the ε-Support Vector Regression learning algorithm. It is a learning
algorithm for linear regression based on Support Vector Machines [Vapnik(1998)]. It
relies on kernel functions. It is a Java porting of the library LIBSVM v3.17, written in
C++ [Chang and Lin(2011)].
JAVA CLASS: EpsilonSvmRegression
MAVEN PROJECT: kelp-core
JSON TYPE: epsilonSvmRegression
PARAMETERS:

• kernel: The kernel function

• pReg: The regularization parameter for positive examples

• c: The regularization parameter

LibLinear Regression

This class implements linear SVM regression trained using a coordinate descent algo-
rithm [Fan et al.(2008)]. It operates in an explicit feature space (i.e., it does not rely on
any kernel). This code has been adapted from the Java port of the original LIBLINEAR
C++ sources.
JAVA CLASS: LibLinearRegression
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: liblinearregression
PARAMETERS:

42

5.2. Available Learning Algorithms and their JSON Definition

• p: The ε in the loss function of SVR (default 0.1)

• c: The regularization parameter

• representation: The identifier of the representation to be considered for
the training step

5.2.2 Online Learning Algorithms
Linear Passive Aggressive (PA) Classification

Online Passive-Aggressive Learning Algorithm for classification tasks (linear version,
presented in [Crammer et al.(2006)] and extended in [Filice et al.(2014)]). Every time
an example is misclassified it is added the current hyperplane, with the weight that
solves the passive aggressive minimization problem.
JAVA CLASS: LinearPassiveAggressiveClassification
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: linearPA
PARAMETERS:

• label: The label to be learned

• loss: The loss function to weight each misclassification

• policy: The updating policy applied by the Passive Aggressive Algorithm
when a miss-prediction occurs

• cp: The aggressiveness parameter for positive examples

• cn: The aggressiveness parameter for negative examples

• useFairness: A boolean parameter to force the fairness policy

• representation: The identifier of the representation to be considered for
the training step

Kernel-based Passive Aggressive (PA) Classification

Online Passive-Aggressive Learning Algorithm for classification tasks with Kernels
(presented in [Crammer et al.(2006)] and extended in [Filice et al.(2014)])). Every
time an example is misclassified it is added as support vector, with the weight that
solves the passive aggressive minimization problem.

43

Chapter 5. Learning Algorithms

JAVA CLASS: KernelizedPassiveAggressiveClassification
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: kernelizedPA
PARAMETERS:

• label: The label to be learned

• kernel: The kernel function

• loss: The loss function to weight each misclassification

• policy: The updating policy applied by the Passive Aggressive Algorithm
when a miss-prediction occurs

• cp: The aggressiveness parameter for positive examples

• cn: The aggressiveness parameter for negative examples

• useFairness: A boolean parameter to force the fairness policy

Linear Perceptron

The perceptron learning algorithm for classification tasks (linear version, presented
in [Rosenblat(1958)]).
JAVA CLASS: LinearPerceptron
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: linearPerceptron
PARAMETERS:

• label: The label to be learned

• alpha: The learning rate, i.e., the weight associated to misclassified examples
during the learning process

• margin: The minimum distance from the hyperplane that an example must
have in order to be not considered misclassified

• unbiased: This boolean parameter determines the use of bias b in the classi-
fication function fpxq “ wx ` b. If usebias is set to true the bias is set to
0.

• representation: The identifier of the representation to be considered for
the training step

44

5.2. Available Learning Algorithms and their JSON Definition

Kernel-based Perceptron

The perceptron learning algorithm for classification tasks (Kernel machine version,
presented in [Rosenblat(1958)]).
JAVA CLASS: KernelizedPerceptron
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: kernelizedPerceptron
PARAMETERS:

• kernel: The kernel function

• label: The label to be learned

• alpha: The learning rate, i.e., the weight associated to misclassified examples
during the learning process

• margin: The minimum distance from the hyperplane that an example must
have in order to be not considered misclassified

• unbiased: This boolean parameter determines the use of bias b in the classi-
fication function fpxq “ wx ` b. If usebias is set to true the bias is set to
0.

Soft Confidence Weighted Classification

Implements Exact Soft Confidence-Weighted (SCW) algorithms, an on-line learning
algorithm for binary classification [Wang et al.(2012)]. This class implements both the
SCW-I and SCW-II variants.
JAVA CLASS: SoftConfidenceWeightedClassification
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: scw
PARAMETERS:

• label: The label to be learned

• scwType: The type of SCW learning algorithm (SCW-I or SCW-II)

• eta: The probability of correct classification required for the updated distribu-
tion on the current instance

• cp: The regularization parameter for positive examples

• cn: The regularization parameter for negative examples

45

Chapter 5. Learning Algorithms

• useFairness: A boolean parameter to force the fairness policy

• representation: The identifier of the representation to be considered for
the training step

Linear Passive Aggressive (PA) Regression

Online Passive-Aggressive Learning Algorithm for regression tasks (linear version,
proposed in [Crammer et al.(2006)]).
JAVA CLASS: LinearPassiveAggressiveRegression
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: linearPA-R
PARAMETERS:

• policy: The updating policy applied by the Passive Aggressive Algorithm
when a miss-prediction occurs

• c: The aggressiveness parameter

• eps: The accepted distance between the predicted and the real regression values

• representation: The identifier of the representation to be considered for
the training step

Kernel-based Passive Aggressive (PA) Regression

Online Passive-Aggressive Learning Algorithm for regression tasks (kernel-based ver-
sion, proposed in [Crammer et al.(2006)]).
JAVA CLASS: KernelizedPassiveAggressiveRegression
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: kernelizedPA-R
PARAMETERS:

• kernel: The kernel function

• policy: The updating policy applied by the Passive Aggressive Algorithm
when a miss-prediction occurs

• c: The aggressiveness parameter

• eps: The accepted distance between the predicted and the real regression values

46

5.2. Available Learning Algorithms and their JSON Definition

5.2.3 Clustering Algorithms
The following algorithms for Clustering have been implemented:

K-means

Implements the K-means Clustering Algorithm, that works on an Explicit feature Space
JAVA CLASS: LinearKMeansEngine
MAVEN PROJECT: kelp-core
JSON TYPE: kmeans
PARAMETERS:

• k: The number of expected clusters

• maxIterations: The maximum number of iterations

• representation: The identifier of the representation to be considered

Kernel-based K-means

Implements the Kernel Based K-means described in [Kulis et al.(2005)]
JAVA CLASS: KernelBasedKMeansEngine
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: kernelbased kmeans
PARAMETERS:

• kernel: The kernel function

• k: The number of expected clusters

• maxIterations: The maximum number of iterations

5.2.4 Linearization Functions
The following linearization functions have been implemented to linearized examples
through linear representations, i.e., vectors:

Nystrom Method

This class implements the Nystrom Method to approximate the implicit space under-
lying a Kernel Function, thus producing a low-dimensional dense representation as
discussed in [Williams and Seeger(2001)] and applied to some of the kernels presented

47

Chapter 5. Learning Algorithms

here in [Croce and Basili(2016)]. As an example, given a Dataset of examples rep-
resented through tree structures and a tree kernel function, this class allows deriving a
linearized dataset at a given dimensionality.
JAVA CLASS: NystromMethod
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: nystrom
PARAMETERS:

• kernel: The kernel function

• landmarks: The examples used as landmarks

• rank: The expected rank of the space representing the linearized examples

5.2.5 Meta-learning Algorithims
In this Section, meta learning algorithms are reported to implement complex schemas,
such as One-Vs-All and One-Vs-One multi-class classifiers; moreover several exten-
sions to online algorithms are reported (e.g., the MultiEpoch online learning algo-
rithm); some budgeted methods are included to scale up online kernel-based learning
over large datasets.

One-Vs-All strategy from multi-class classification

It is a meta algorithm that operates applying a One-Vs-All strategy over the base learn-
ing algorithm which is intended to be a binary learner. The One-Vs-All strategy will
learn N different classifiers, where N is the number of classes involved in the dataset.
In this strategy each classifier is learned by considering in turn the examples of a single
class as positives, while all the other examples are considered as negative.
NOTE: the base learning algorithm must provide a duplicate method which properly
works
JAVA CLASS: OneVsAllLearning
MAVEN PROJECT: kelp-core
JSON TYPE: oneVsAll
PARAMETERS:

• baseAlgorithm: The base learning algorithm which is intended to be a bi-
nary learner

• labels: The list of targeted classes

48

5.2. Available Learning Algorithms and their JSON Definition

One-Vs-One strategy from multi-class classification

It is a meta algorithm that operates by applying a One-Vs-One strategy over the base
learning algorithm which is intended to be a binary learner. This meta-algorithms will
learn NpN ´ 1q{2 classifiers, by comparing each class with all the others separately.
The resulting classifier applies a voting strategy to perform the final decision. (N is the
number of classes in the dataset)
NOTE: the base learning algorithm must provide a duplicate method which properly
works
JAVA CLASS: OneVsOneLearning
MAVEN PROJECT: kelp-core
JSON TYPE: oneVsOne
PARAMETERS:

• baseAlgorithm: The base learning algorithm which is intended to be a bi-
nary learner

• labels: The list of targeted classes

Multi Epoch Online Learning

It is a meta learning algorithms for online learning methods. It performs multiple
iterations (or epochs) on the training data.
JAVA CLASS: MultiEpochLearning
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: multiEpoch
PARAMETERS:

• baseAlgorithm: The base online learning algorithm which is intended to
apply for multiple iterations

• epochs: The number of iterations

Budgeted Online Learning: the Stoptron algorithm

It is a variation of the Stoptron proposed in [Orabona et al.(2008)]. Until the budget
is not reached the online learning updating policy is the one of the baseAlgorithm that
this meta-algorithm is exploiting. When the budget is full, the learning process ends.
JAVA CLASS: Stoptron
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: stoptron
PARAMETERS:

49

Chapter 5. Learning Algorithms

• label: The label to be learned

• baseAlgorithm: The base online learning algorithm which is intended to
apply in this budgeted approach

• budget: The maximum number of support vectors allowed in the budget

Budgeted Online Learning: the Randomized Budgeted Perceptron

A variant of the Randomized Budget Perceptron proposed in [Cavallanti et al.(2007)].
Until the budget is not reached the online learning updating policy is the one of the
baseAlgorithm that this meta-algorithm is exploiting. When the budget is full, a ran-
dom support vector is deleted and the perceptron updating policy is adopted.
JAVA CLASS: RandomizedBudgetPerceptron
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: randomizedPerceptron
PARAMETERS:

• label: The label to be learned

• baseAlgorithm: The base online learning algorithm which is intended to
apply in this budgeted approach

• budget: The maximum number of support vectors allowed in the budget

Budgeted Online Learning: Budgeted Passive Aggressive Classification

It is the implementation of the Budgeted Passive Aggressive Algorithm proposed in
[Wang and Vucetic(2010)]. When the budget is full, the schema proposed in [Wang
and Vucetic(2010)] to update examples (and weights) is adopted.
JAVA CLASS: BudgetedPassiveAggressiveClassification
MAVEN PROJECT: kelp-additional-algorithms
JSON TYPE: budgetedPA
PARAMETERS:

• label: The label to be learned

• label: The label to be learned

• kernel: The kernel function

• loss: The loss function to weight each misclassification

50

5.3. Evaluators

• policy: The updating policy applied by the Passive Aggressive Algorithm
when a miss-prediction occurs

• deletingPolicy: The policy for the removal of examples from the budget
before adding new examples. This can be

– BPA S: Budgeted Passive Aggressive Simple: when a new support vector
must be added, one is removed and the weight of the other support vectors
is kept unchanged

– BPA 1NN: Budgeted Passive Aggressive Nearest Neighbor: when a new
support vector must be added, one is removed and the weight of its nearest
neighbor is adjusted

• cp: The aggressiveness parameter for positive examples

• cn: The aggressiveness parameter for negative examples

• useFairness: A boolean parameter to force the fairness policy

• budget: The maximum number of support vectors allowed in the budget

5.3 Evaluators
In Machine Learning is often necessary to evaluate the performances of a classification
or regression function that is derived through a learning process. Generally, it means
measuring performance indicators over a test dataset. These performances can be then
used to decide whether the learning algorithm with its parameterization is good enough
for the task of interests. This is a pattern that is repeated every time a new experiment
is necessary.

Performance measures are the same for many different tasks, thus their computation
can be easily standardized in order to support many scenarios. In KeLP , we provided
the Evaluator abstract class, which serves as a base class for other performance
evaluations classes. The Evaluator class contains a public implemented method,
whose name is getPerformanceMeasure(String, Object...) that will
access the internal class methods by means of Java reflection to return a performance
measure. So for example, if a specific implementation of an evaluator offers the method
to compute the accuracy, whose name is getAccuracy(), then the getPerfor-
manceMeasure can be invoked as getPerformanceMeasure("Accuracy").
It serves as a general interface to retrieve the performance measures computed by a
specific evaluators. Notice that an evaluator must contain methods whose name is

51

Chapter 5. Learning Algorithms

“get{MeasureName}” to be compliant to the getPerformanceMeasuremech-
anism. This implementation pattern is necessary to support the generic instantiation of
an evaluator in the case automatic classes for experiments will be provided.

The Evaluator class contains 4 abstract methods that should be implemented by
its sub-classes in order to respect the Evaluator contract. The four abstract methods
of the Evaluator class are:

• addCount(Example, Prediction): it is the main interface with which
an external program will call the evaluator to add the Prediction of an Ex-
ample to the counts that will be adopted to compute the final performance mea-
sures. Notice that KeLP does not force to adopt any particular internal mecha-
nisms for computing the performances;

• compute(): this method is called internally by getPerformanceMea-
sures method to force the computation of all the performances;

• clear(): it serves, eventually, to reset the evaluator;

• duplicate(): it should implement a method to duplicate the evaluator.

In KeLP some implementation of Evaluators are available: BinaryClassi-
ficationEvaluator, MulticlassClassificationEvaluator and Re-
gressorEvaluator. They are intended to satisfy the major needs when dealing
with binary classification tasks, multi-class classification tasks and regression tasks.

Binary Evaluation

This is an instance of an Evaluator and it allows to compute some common per-
formance measures for binary classification tasks. In particular, this evaluator contains
methods to compute: Precision, Recall, F1 and Accuracy.
JAVA CLASS: BinaryClassificationEvaluator
MAVEN PROJECT: kelp-core

Multi-class Evaluation

This is an instance of an Evaluator and it is an extension of the BinaryClassi-
ficationEvaluator to the multi-class case. It computes Precision, Recall and F1

for each class, and a global Accuracy measure.
JAVA CLASS: MulticlassClassificationEvaluator
MAVEN PROJECT: kelp-core

Regressor Evaluation

52

5.4. Advanced Topics on Learning Algorithms

This is an instance of an Evaluator and it allows to compute some measure for
regression tasks. In particular, this evaluator computes the mean squared error.
JAVA CLASS: RegressorEvaluator
MAVEN PROJECT: kelp-core

5.4 Advanced Topics on Learning Algorithms

5.4.1 Defining new Learning Algorithms
As discussed in Section 5.1, in KeLP , there is a comprehensive taxonomy for learning
algorithms, that should be taken into account when implementing new algorithm. In
this guide, we will describe how to implement a new linear algorithm for binary classi-
fication tasks. The concepts highlighted can be easily extended to implement different
types of learning algorithms.

Implementing a new learning algorithm: the Pegasos Example We are now as-
suming that the Pegasos Learning Algorithm is not available in KeLP , and that we need
to implement it from scratch. Pegasos is an efficient solver for linear SVM for binary
classification tasks that uses a mini-batch approach; therefore, we need to implement
ClassificationLearningAlgorithm, BinaryLearningAlgorithm and
LinearMethod. Optionally, the class can be annotated with @JsonTypeName in
order to specify an alternative name to be used during the JSON/XML serialization/de-
serialization mechanism.

@JsonTypeName("pegasos")
public class PegasosLearningAlgorithm implements LinearMethod,

ClassificationLearningAlgorithm, BinaryLearningAlgorithm{

KeLP decouples learning algorithms from prediction functions, which are used
to provide predictions on new data. Regarding PegasosLearningAlgorithm,
the proper prediction function is BinaryLinearClassifier, that is already im-
plemented in the platform. Then, we have to add a new corresponding parameter,
i.e., classifier. An empty constructor must be defined and all the learning pa-
rameters must be associated to the corresponding getter and setter methods, in order to
make the JSON serialization/deserialization mechanism work. In this case, the learn-
ing parameters are the regularization coefficient lambda, the number of iterations T,
the number of examples k exploited during each mini-batch iteration.

private BinaryLinearClassifier classifier;

53

Chapter 5. Learning Algorithms

private int k = 1;
private int iterations = 1000;
private float lambda = 0.01f;

/**
* Returns the number of examples k that Pegasos exploits in

its

* mini-batch learning approach

*
* @return k

*/
public int getK() {

return k;
}

/**
* Sets the number of examples k that Pegasos exploits in its

* mini-batch learning approach

*
* @param k the k to set

*/
public void setK(int k) {

this.k = k;
}

/**
* Returns the number of iterations

*
* @return the number of iterations

*/
public int getIterations() {

return iterations;
}

/**
* Sets the number of iterations

*
* @param T the number of iterations to set

*/
public void setIterations(int T) {

this.iterations = T;
}

/**
* Returns the regularization coefficient

*
* @return the lambda

*/
public float getLambda() {

54

5.4. Advanced Topics on Learning Algorithms

return lambda;
}

/**
* Sets the regularization coefficient

*
* @param lambda the lambda to set

*/
public void setLambda(float lambda) {

this.lambda = lambda;
}

public PegasosLearningAlgorithm(){
this.classifier = new BinaryLinearClassifier();
this.classifier.setModel(new BinaryLinearModel());

}

According to the selected interfaces some specific methods have to be implemented.
As any LinearMethod we need to implement setRepresentation and ge-
tRepresentation, which refer to the String identifier for the specific Repre-
sentation the algorithm must exploit. Obviously, a corresponding parameter must
created, i.e., representation

private String representation;

@Override
public String getRepresentation() {

return representation;
}

@Override
public void setRepresentation(String representation) {

this.representation = representation;
BinaryLinearModel model = this.classifier.getModel();
model.setRepresentation(representation);

}

As any BinaryLearningAlgorithm we need to implement getLabel and
setLabel, which refer to the label that must be considered as positive class. Obvi-
ously, a corresponding parameter must created, i.e., label. Moreover, to be compliant
with the LearningAlgorithm interface, the methods getLabels and setLa-
bels must be implemented that, for the special case of BinaryLearningAlgo-
rithm must operated on a single entry List:

private Label label;

@Override

55

Chapter 5. Learning Algorithms

public void setLabels(List<label> labels){
if(labels.size()!=1){

throw new IllegalArgumentException("Pegasos
algorithm is a binary method which can
learn a single Label");

}
else{

this.label=labels.get(0);
this.classifier.setLabels(labels);

}
}

@Override
public List<label> getLabels() {

return Arrays.asList(label);
}

@Override
public Label getLabel(){

return this.label;
}

@Override
public void setLabel(Label label){

this.setLabels(Arrays.asList(label));
}

Finally, as any ClassificationLearningAlgorithm we need to imple-
ment the following methods:

• getPredictionFunction: the proper prediction function must be returned,
in this case the classifier object. It is a good practice to specialize the returning
type, i.e., the method must return a BinaryLinearClassifier instead of
a generic Classifier;

• duplicate: the instance of an algorithm must be created and returned, copy-
ing all the learning parameters (the state variables must not be copied, leaving
them to their default value). It is a good practice to specialize the returning type,
i.e., the method must return a PegasosLearningAlgorithm instead of a
generic LearningAlgorithm;

• reset: it must set the algorithm to its default state, forgetting the learning
process already conducted;

• learn: this method must implement the learning process of Pegasos.

56

5.4. Advanced Topics on Learning Algorithms

@Override
public BinaryLinearClassifier getPredictionFunction(){

return this.classifier;
}

@Override
public PegasosLearningAlgorithm duplicate() {

PegasosLearningAlgorithm copy = new
PegasosLearningAlgorithm();

copy.setK(k);
copy.setLambda(lambda);
copy.setIterations(iterations);
copy.setRepresentation(representation);
return copy;

}

@Override
public void reset() {

this.classifier.reset();
}

@Override
public void learn(Dataset dataset) {

if(this.getPredictionFunction().getModel()
.getHyperplane()==null){

this.getPredictionFunction().getModel()
.setHyperplane(

dataset.getZeroVector(representation)
);

}

for(int t=1;t<=iterations;t++){

List<Example> A_t = dataset.getRandExamples(k);
List<Example> A_tp = new ArrayList<Example>();
List<Float> signA_tp = new ArrayList<Float>();
float eta_t = ((float)1)/(lambda*t);
Vector w_t =

this.getPredictionFunction().getModel()
.getHyperplane();

//creating A_tp
for(Example example: A_t){

BinaryMarginClassifierOutput
prediction =
this.classifier.predict(example);

float y = -1;
if(example.isExampleOf(label)){

57

Chapter 5. Learning Algorithms

y=1;
}

if(prediction.getScore(label)*y<1){
A_tp.add(example);
signA_tp.add(y);

}
}
//creating w_(t+1/2)
w_t.scale(1-eta_t*lambda);
float miscassificationFactor = eta_t/k;
for(int i=0; i<A_tp.size(); i++){

Example example = A_tp.get(i);
float y = signA_tp.get(i);
this.getPredictionFunction().getModel()
.addExample(y*miscassificationFactor,

example);
}

//creating w_(t+1)
float factor = (float) (1.0/Math.sqrt(lambda)/

Math.sqrt(w_t.getSquaredNorm()));
if(factor < 1){

w_t.scale(factor);
}

}

}

58

6
Sample Code

In this Section, we are going to provide examples of usage of some of the KeLP functionalities.
The full code of these examples is available in the KeLP repositories, in particular in
the kelp-full package in GitHub. Other examples are available in the KeLP official
website.

6.1 Classification example
This example contains the starter code to learn a classifier and to use it. In the most
general case, three main steps are necessary to induce a classifier and to use it.

First of all, a training and a test datasets should be loaded in memory.

SimpleDataset tr = new SimpleDataset();
tr.populate("<path_to_the_train_dataset_in_kelp_format>");

SimpleDataset testSet = new SimpleDataset();
testSet.populate("<path_to_the_test_dataset_in_kelp_format>");

Then, the learning process of a classifier must be set up, and the learn method must
be invoked. Notice that the algorithm works on a specific representation, whose name
is REPR1.

StringLabel positiveLabel = new StringLabel("+1");
LinearPassiveAggressiveClassification pa=new

LinearPassiveAggressiveClassification();
// use the first representation
pa.setRepresentation("REPR1");
// indicate to the learner what is the positive class
pa.setLabel(positiveLabel);
// set an aggressiveness parameter for the PA
pa.setC(0.01f);

59

Chapter 6. Sample Code

// Learn the model
pa.learn(tr);

Finally, the classification function is used to classify a new instance, whose predic-
tion is added to the counts of a BinaryClassificationEvaluator.

BinaryClassificationEvaluator ev = new
BinaryClassificationEvaluator(positiveLabel);

Classifier f = pa.getPredictionFunction();
List<Prediction> testPredictions = new ArrayList<Prediction>();
for (int i=0; i<testSet.getNumberOfExamples(); ++i) {

ClassificationOutput p = f.predict(testSet.getNextExample());
testPredictions.add(p);
ev.addCount(test,p);

}

6.2 Usage of ExperimentUtils facilities
In ML it is often necessary to tune the classifier parameters or to make more re-
liable measures in an experiment via cross-validation. These activities are repeti-
tive, and it is easy to extract patterns in code that can be re-used. In KeLP we pro-
vide a class for automatizing some of these activities, the class ExperimentUtils.
First, this class contains a method test(PredictionFunction, Evaluator,
Dataset) the will produce in output a List<Prediction> and will update the
“counters” of the Evaluator. It serves to automatize the repetitive operations that
are executed for classifying a test set. For example, let us consider the last code snippet
of Section 6.1. It should be re-written by exploiting the test method in Experi-
mentUtils as:

BinaryClassificationEvaluator ev = new
BinaryClassificationEvaluator(positiveLabel);

Classifier f = pa.getPredictionFunction();
List<Prediction> testPredictions = ExperimentUtils.test(f, ev,

testSet);

Moreover, it contains methods that helps in making predictions with a n-fold cross
validation strategy.

Let us consider the code example in Section 6.1. If we would like to make 5-fold
cross measures it is possible to adopt the ExperimentUtils methods, such as:

nfold=5;
List<BinaryClassificationEvaluator> nfoldEv =

ExperimentUtils.nFoldCrossValidation(nfold, pa, tr, ev);

60

6.3. Instantiation from JSON

And then retrieve for example the accuracy measures for each fold and compute
mean and standard deviation:

import it.uniroma2.sag.kelp.utils.Math;

float[] values = new float[nfoldEv.size()];
for (int i = 0; i < ret.length; i++) {

values[i] = nfoldEv.get(i).getPerfomanceMeasure("Accuracy");
}
float mean = Math.getMean(values);
double standardDeviation = Math.getStandardDeviation(values);

6.3 Instantiation from JSON
JSON serialization/deserialization mechanism in KeLP is intended to support the def-
inition of learning architectures with textual configuration files. KeLP offers the pos-
sibility to specify in a JSON human-readable format all the kernels and algorithms
that are implemented. This formalism is intended to enable deploy of new algorithms
or kernels in production environments without the need of reloading the entire Java
Virtual Machine, but only changing a specification file.

For example, let us consider the example of Section 6.1. The
LinearPassiveAggressiveClassification algorithm can be described in
JSON with the following code:

{
"algorithm" : "linearPA",
"label" : {

"labelType" : "StringLabel",
"className" : "1"

},
"policy" : "PA_II",
"loss" : "RAMP",
"cp" : 2.0,
"fairness" : false,
"representation" : "REPR1",
"cn" : 2.0

}

and it can be loaded in memory with (assuming the JSON is saved in a file called
jsonSpecification.klp):

JacksonSerializerWrapper serializer = new JacksonSerializerWrapper();
LinearPassiveAggressiveClassification pa =

serializer.readValue(

61

Chapter 6. Sample Code

new File("jsonSpecification.klp"),
LinearPassiveAggressiveClassification.class);

The same applies with a kernel function. For example, let us consider the following
JSON code:

"kernel":{
"kernelType":"poly",
"degree":2,
"kernelCache":{

"cacheType":"fixIndex",
"examplesToStore":6000

},
"baseKernel":{

"kernelType":"linear",
"representation":"REPR1"

}
}

It is the JSON description of a composition kernel, i.e., 2-degree polynomial kernel,
applied on top of a linear kernel that is applied on a representation whose name is
REPR1.

Again, this JSON code can be loaded similarly to the previous example (assuming
the JSON code is saved on a file called ”kernelSpecification.klp”):

JacksonSerializerWrapper serializer = new JacksonSerializerWrapper();
Kernel kernel =

serializer.readValue(
new File("kernelSpecification.klp"),
PolynomialKernel.class);

62

Bibliography

[Annesi et al.(2014)] Annesi, P., Croce, D., and Basili, R. (2014). Semantic composi-
tionality in tree kernels. In Proc. of CIKM 2014, pages 1029–1038, New York, NY,
USA. ACM.

[Borgwardt and Kriegel(2005)] Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-
path kernels on graphs. In Proceedings of the Fifth IEEE International Conference
on Data Mining, ICDM ’05, pages 74–81, Washington, DC, USA. IEEE Computer
Society.

[Bunescu and Mooney(2005)] Bunescu, R. C. and Mooney, R. J. (2005). Subsequence
kernels for relation extraction. In Proceedings of NIPS, pages 171–178.

[Carreras and Màrquez(2005)] Carreras, X. and Màrquez, L. (2005). Introduction to
the CoNLL-2005 Shared Task: Semantic Role Labeling. In Proc. of CoNLL-2005,
pages 152–164, Ann Arbor, Michigan.

[Cavallanti et al.(2007)] Cavallanti, G., Cesa-Bianchi, N., and Gentile, C. (2007).
Tracking the best hyperplane with a simple budget perceptron. Mach. Learn., 69(2-
3), 143–167.

[Cesa-Bianchi and Gentile(2006)] Cesa-Bianchi, N. and Gentile, C. (2006). Tracking
the best hyperplane with a simple budget perceptron. In In Proc. of the 19th Annual
Conference on Computational Learning Theory, pages 483–498. Springer-Verlag.

[Chang and Lin(2011)] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent Systems and Technology,
2, 27:1–27:27.

[Collins and Duffy(2001)] Collins, M. and Duffy, N. (2001). Convolution kernels
for natural language. In Proceedings of Neural Information Processing Systems
(NIPS’2001), pages 625–632.

[Cortes and Vapnik(1995)] Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Mach. Learn., 20(3), 273–297.

[Crammer et al.(2006)] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and
Singer, Y. (2006). Online passive-aggressive algorithms. J. Mach. Learn. Res., 7,
551–585.

[Croce and Basili(2016)] Croce, D. and Basili, R. (2016). Large-scale kernel-based
language learning through the ensemble nystrom methods. In ECIR.

63

BIBLIOGRAPHY

[Croce and Previtali(2010)] Croce, D. and Previtali, D. (2010). Manifold Learning for
the Semi-Supervised Induction of FrameNet Predicates: An Empirical Investigation.
In Proceedings of the 2010 Workshop on GEometrical Models of Natural Language
Semantics, GEMS ’10, pages 7–16, Uppsala, Sweden.

[Croce et al.(2011)] Croce, D., Moschitti, A., and Basili, R. (2011). Structured lexical
similarity via convolution kernels on dependency trees. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
1034–1046, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Croce et al.(2012)] Croce, D., Basili, R., Moschitti, A., and Palmer, M. (2012). Verb
classification using distributional similarity in syntactic and semantic structures. In
Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Long Papers - Volume 1, ACL ’12, pages 263–272, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Fan et al.(2008)] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.
(2008). Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9,
1871–1874.

[Filice et al.(2014)] Filice, S., Castellucci, G., Croce, D., and Basili, R. (2014). Ef-
fective kernelized online learning in language processing tasks. In ECIR, pages
347–358.

[Filice et al.(2015)] Filice, S., Da San Martino, G., and Moschitti, A. (2015). Struc-
tural representations for learning relations between pairs of texts. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1003–1013, Beijing, China. Association for Computational
Linguistics.

[Hall et al.(2009)] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. (2009). The weka data mining software: An update. sigkdd explor.,
11(1).

[Hsieh et al.(2008)] Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sun-
dararajan, S. (2008). A dual coordinate descent method for large-scale linear svm.
In Proceedings of the ICML 2008, pages 408–415, New York, NY, USA. ACM.

[Joachims(1999)] Joachims, T. (1999). Making large-scale SVM learning practical.
In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning, pages 169–184. MIT Press.

64

BIBLIOGRAPHY

[Kulis et al.(2005)] Kulis, B., Basu, S., Dhillon, I., and Mooney, R. (2005). Semi-
supervised graph clustering: A kernel approach. In Proceedings of the ICML 2005,
pages 457–464, New York, NY, USA. ACM.

[Morik et al.(1999)] Morik, K., Brockhausen, P., and Joachims, T. (1999). Combining
statistical learning with a knowledge-based approach - a case study in intensive care
monitoring. In ICML, pages 268–277, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

[Moschitti(2006)] Moschitti, A. (2006). Efficient convolution kernels for dependency
and constituent syntactic trees. In ECML, pages 318–329, Berlin, Germany. Ma-
chine Learning: ECML 2006, 17th European Conference on Machine Learning,
Proceedings.

[Orabona et al.(2008)] Orabona, F., Keshet, J., and Caputo, B. (2008). The projectron:
a bounded kernel-based perceptron. In Int. Conf. on Machine Learning. IDIAP-RR
08-30.

[Rosenblat(1958)] Rosenblat, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psych. Review, 65, 386–408.

[Schölkopf et al.(2000)] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett,
P. L. (2000). New support vector algorithms. Neural Comput., 12(5), 1207–1245.

[Schölkopf et al.(2001)] Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the support of a high-dimensional distri-
bution. Neural Comput., 13(7), 1443–1471.

[Severyn et al.(2013)] Severyn, A., Nicosia, M., and Moschitti, A. (2013). Building
structures from classifiers for passage reranking. In Proceedings of the 22Nd ACM
International Conference on Conference on Information and Knowledge Manage-
ment, CIKM ’13, pages 969–978, New York, NY, USA. ACM.

[Shalev-Shwartz et al.(2007)] Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007).
Pegasos: Primal estimated sub–gradient solver for SVM. In Proc. of ICML.

[Shawe-Taylor and Cristianini(2004)] Shawe-Taylor, J. and Cristianini, N. (2004).
Kernel Methods for Pattern Analysis. Cambridge University Press.

[Shen and Joshi(2003)] Shen, L. and Joshi, A. K. (2003). An svm based voting algo-
rithm with application to parse reranking. In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages
9–16, Stroudsburg, PA, USA. Association for Computational Linguistics.

65

BIBLIOGRAPHY

[Vapnik(1998)] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-
Interscience.

[Vishwanathan and Smola(2002)] Vishwanathan, S. and Smola, A. J. (2002). Fast ker-
nels on strings and trees. In Proceedings of Neural Information Processing Systems,
pages 569–576.

[Wang et al.(2012)] Wang, J., Zhao, P., and Hoi, S. C. (2012). Exact soft confidence-
weighted learning. In J. Langford and J. Pineau, editors, Proceedings of the 29th
International Conference on Machine Learning (ICML-12), pages 121–128, New
York, NY, USA. ACM.

[Wang and Vucetic(2010)] Wang, Z. and Vucetic, S. (2010). Online passive-
aggressive algorithms on a budget. Journal of Machine Learning Research - Pro-
ceedings Track, 9, 908–915.

[Williams and Seeger(2001)] Williams, C. K. I. and Seeger, M. (2001). Using the
nyström method to speed up kernel machines. In T. Leen, T. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 682–688.
MIT Press.

66

	KeLP: a Kernel-based Learning Platform
	An overview of the library
	Importing KeLP via Maven

	Data Structures
	Existing Representations
	Input Format
	Advanced Topics on Data
	Defining new Representations
	Manipulating Data

	Kernels
	Kernel Organization
	Available Kernels and their JSON Definition
	Direct Kernels

	Kernel Compositions
	Kernel Combinations
	Kernel On Pairs

	Advanced Topics on Kernels
	Defining new Kernels
	Speeding up Kernel Machines through Caching Mechanisms

	Learning Algorithms
	Learning Algorithms Organization
	Available Learning Algorithms and their JSON Definition
	Batch Learning Algorithms
	Online Learning Algorithms
	Clustering Algorithms
	Linearization Functions
	Meta-learning Algorithims

	Evaluators
	Advanced Topics on Learning Algorithms
	Defining new Learning Algorithms

	Sample Code
	Classification example
	Usage of ExperimentUtils facilities
	Instantiation from JSON

