INFORMATION RETRIEVAL

Link analysis & pagerank

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Link analysis

- The existence of hyperlinks between documents adds information to the collection
- The relevance (absolute or related to a query) of a document can be estimated by considering its relation with other documents
- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.

a.a. 2021-2022 3/9

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature

a.a. 2021-2022 5/93

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: article gets one vote for each citation (not very accurate)
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - · ...mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
- Technique introduced by Pinsker and Narin in the 1960's.
 - An article's vote is weighted according to its citation impact.
 - · Circular? No: can be formalized in a well-defined way.

a.a. 2021-2022 6/93

- Ocitation system = weighted directed graph
- Nodes = papers
- \odot Edges = there is an edge from paper i to paper j if i cites j
- Let $c_{i,j} = 1$ if there exists and edge from i to j
- \odot Let $c_i = \sum_j c_{i,j}$ (total number of references from i)

a.a. 2021-2022 7/9

- ⊙ Citation matrix H such that $h_{i,j} = \frac{c_{i,j}}{c_i}$ (fraction of references to j among all the ones declared in i)
 - h_{i,j} = 1/c_i if *i* cites *j* h_{i,j} = 0 otherwise
- \odot Influence score measures the relevance π_i of i in terms of the number of papers citing it, the number of their references, and their relevance

$$\pi_j = \sum_i \pi_i h_{i,j} = \sum_i \pi_i \frac{c_{i,j}}{c_i}$$

- $\pi_i \frac{c_{i,j}}{c_i}$ is the amount of influence score received by paper j from paper i• $\sum_i \pi_i \frac{c_{i,j}}{c_i}$ is the overall amount of influence score received by j
- \odot in matrix notation: $\pi = \pi H$

a.a. 2021-2022

The influence of all papers is given by the vector π solution of the matrix equation

$$\pi = \pi H$$

that is, π is the left eigenvector of H associated to eigenvalue $\lambda=1$

Problem: does such a vector exist for all *H*?

Does it exist for some special H?

a.a. 2021-2022 9/9

The same holds for journals:

- \odot Let T_1, T_2 time intervals
- \odot $c_{i,i}$ number of references from papers edited by journal i in T_1 to papers edited by iournal i in T_2
- \odot c_i total number of references from papers edited by i in T_1
- again, $\pi = \pi H$

Origins of PageRank: Sociometry

Measuring people prestige through endorsements.

Hubble (1965):

- set of members of a social context
- o matrix W, where $w_{i,j}$ is the strength at which i endorses j ($w_{i,j}$ possibly negative)
- \odot prestige π_i of member i defined in terms of the prestige of the endorsers and of their endorsement strengths
- \odot some prestige v_i can be pre-assigned
- in matrix form:

$$\pi = \pi W + \nu$$

a.a. 2021-2022 11/9

Origins of PageRank: Sociometry

Ranking football teams

Keener (1993):

- set of football teams
- ⊚ $a_{ij} \ge 0$ score depending on the result of match i vs. j (for example, 1 i won, 1/2 tie, 0 i lost)
- o matrix A, where $a_{i,j}$ is the score of i vs. j
- \odot rank ho_i of team i defined in terms of the rank of the opponents and of the match result
- \circ $\rho_i = \sum_{j=1}^n a_{i,j} \rho_j$ (assume $a_{i,i} = 0$
- in matrix form:

$$\rho = \rho A$$

a.a. 2021-2022 12/5

Origins of PageRank: Econometrics

- o economy divided in a number of sectors (industries) producing different goods
- o an industry requires a certain amount of inputs to produce a unit of goods
- an industry sells the produced goods to other industries at a certain prize
- equilibrium: each industry balances the costs of production (buying goods) to its revenues (selling products)
- which product prizes guarantee equilibrium (if any)?

a.a. 2021-2022 13/93

Origins of PageRank: Econometrics

- \bigcirc $q_{i,i}$: quantity produced by industry i and used by industry j
- $oldsymbol{0} q_i = \sum_{i=1}^n q_{i,i}$: total quantity produced by industry i
- \odot matrix A, where $a_{i,j} = \frac{q_{i,j}}{q_i}$: amount of i's product necessary for a unit of j's product
- \odot π_i : price per unit of the product produced by j
- \circ $c_i = \sum_{i=1}^n \pi_i q_{i,i}$ total cost for j
- \circ $r_i = \sum_{i=1}^n \pi_i q_{i,i} = \pi_i \sum_{i=1}^n q_{i,i} = \pi_i q_i$ total revenue for j

Origins of PageRank: Econometrics

o equilibrium: costs=revenues

$$c_j = \sum_{i=1}^n \pi_i q_{i,j} = \pi_j q_j = r_j$$

 \odot divide both sides by q_j

$$\pi_j = \sum_{i=1}^n \pi_i \frac{q_{i,j}}{q_j} = \sum_{i=1}^n \pi_j a_{i,j}$$

 \odot in matrix notation: $\pi = \pi A$

Idea of Pagerank

- Set of hyperlinked documents
- $a_{i,j} = 1$ if there exists a hyperlink from document i to document j (seen as declaration of interest of j)
- o $a_{i,j} = 0$ otherwise
- o matrix A: incidence matrix of the web graph
- \odot $\frac{a_{i,j}}{a_i}$ fraction of *i* expressed judgement of relevant documents assigned to *j*
- \odot π_i : relevance of document i (assumed also as relevance judge)
- $\odot \pi_i \frac{a_{i,j}}{a_i}$ fraction of *i* authority assigned to *j*
- \odot $\pi_j = \sum_{i=1}^n \pi_i \frac{a_{i,j}}{a_i}$ total relevance obtained by j from other documents hyperlinking it

 \odot in matrix form: $\pi = \pi A$

a.a. 2021-2022 16/9

Idea of Pagerank

So, a document is relevant if:

- it is linked (voted) by many documents
- these documents cast few votes
- these documents are relevant

A bit of history

- Introduced by S. Brin, L. Page (Ph.D. students), R. Motwani and T. Winograd (professors), at Stanford University
 - S. Brin, L. Page "The Anatomy of a Large-Scale Hypertextual Web Search Engine." Proceedings of the 7th international conference on World Wide Web (1998)
 - S. Brin, L. Page, R. Motwani and T. Winograd "The PageRank Citation Ranking: Bringing Order to the Web." Technical Report. Stanford InfoLab
 (1999)
- made it possible to automatically rank web pages
- previously, human-based cathegorization (Yahoo!, Altavista)
- IR techniques alone were not satisfactory
- other papers considering citation analysis techniques as a reference for web ranking appeared in the same period
 - M. Marchiori "The Quest for Correct Information on the Web: Hyper Search Engines." Proceedings of the 6th international conference on World Wide Web (1997)
 - J. Kleinberg "Authoritative sources in a hyperlinked environment" Journal of the ACM 46 (5). (1999)
- Pagerank was the basis for the development of Google

a.a. 2021-2022 18/93

Pagerank

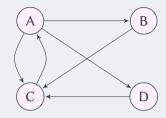
Basic Pagerank formula

$$\pi(v) = (1 - \delta) + \delta \sum_{i=1}^{n} \frac{\pi(v_i)}{o(v_i)}$$

- o v is the page of interest
- v_1, v_2, \dots, v_n pages with a hyperlink to v
- $\odot \pi(v_i)$ Pagerank value of page v_i
- $o(v_i)$ overall number of hyperlinks from v_i
- δ , the damping factor, controls the amount of Pagerank deriving from hyperlinks (usually $\delta = 0.85$)

Pagerank

- © Each page v_i distributes only a fraction δ of its Pagerank, divided by the number of exit hyperlinks.
- ⊚ The term (1δ) can be seen as the Pagerank assigned to a page even if it is not referenced by any other page.
- Recursive formula: iterative update
 - convergence?
 - initial values?



Assuming $\delta = 0.85$, the following holds for all pageranks:

$$\begin{split} \pi_A &= 0.15 + 0.85\pi_C \\ \pi_B &= 0.15 + 0.85\frac{\pi_A}{3} \\ \pi_C &= 0.15 + 0.85\left(\frac{\pi_A}{3} + \pi_B + \pi_D\right) \\ \pi_D &= 0.15 + 0.85\frac{\pi_A}{3} \end{split}$$

a.a. 2021-2022 21/9

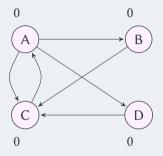
In matrix form: $\pi = d + 0.85 * \pi A$, where

$$\pi = [\pi_A, \pi_B, \pi_C, \pi_D]$$

$$d = [0.15, 0.15, 0.15, 0.15]$$

$$A = \begin{bmatrix} 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Assume an initial pagerank $\pi = 0$ for all nodes.

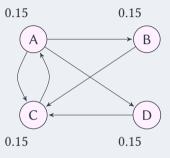


$$\pi_A = 0.15 + 0.85 * 0 = 0.15$$

$$\pi_B = 0.15 + 0.85 \frac{0}{3} = 0.15$$

$$\pi_C = 0.15 + 0.85 \left(\frac{0}{3} + 0 + 0\right) = 0.15$$

After 1 step.



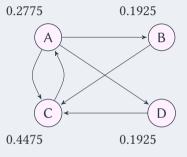
$$\pi_A = 0.15 + 0.85 * 0.15 = 0.2775$$

$$\pi_B = 0.15 + 0.85 \frac{0.15}{3} = 0.1925$$

$$\pi_C = 0.15 + 0.85 \left(\frac{0.15}{3} + 0.15 + 0.15\right) = 0.4475$$

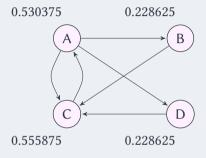
a.a. 2021-2022

After 2 steps.



$$\begin{split} \pi_A &= 0.15 + 0.85 * 0.4475 = 0.530375 \\ \pi_B &= 0.15 + 0.85 \frac{0.2775}{3} = 0.228625 \\ \pi_C &= 0.15 + 0.85 \left(\frac{0.2775}{3} + 0.1925 + 0.1925 \right) = 0.555875 \end{split}$$

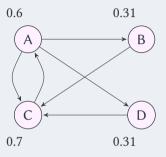
After 3 steps.



$$\begin{split} \pi_A &= 0.15 + 0.85 * 0.555875 \simeq 0.6 \\ \pi_B &= 0.15 + 0.85 \frac{0.530375}{3} \simeq 0,31 \\ \pi_C &= 0.15 + 0.85 \left(\frac{0.530375}{3} + 0,228625 + 0,228625 \right) \simeq 0.7 \end{split}$$

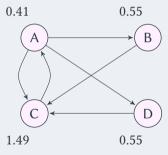
a a 2021-2022

After 4 steps.



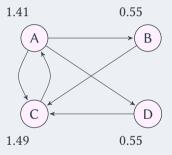
$$\begin{split} \pi_A &= 0.15 + 0.85 * 0.7 \simeq 0.75 \\ \pi_B &= 0.15 + 0.85 \frac{0.6}{3} \simeq 0,32 \\ \pi_C &= 0.15 + 0.85 \left(\frac{0.6}{3} + 0,31 + 0,31\right) \simeq 0.85 \end{split}$$

After 100 steps.



a.a. 2021-2022 28/93

After 200 steps.



It converged. Does it always happen?

a.a. 2021-2022 29/9.

Different initialization

# iterations	π_A	π_B	π_C	π_D
0	1	0.4	0.8	1.5
1	0.83	0.43	2.05	0.43
2	1.89	0.39	1.12	0.39
3	1.1	0.69	1.34	0.69
4	1.29	0.46	1.63	0.46
:	:	÷	÷	÷
100	1.41	0.55	1.49	0.55
:	:	÷	÷	÷
200	1.41	0.55	1.49	0.55

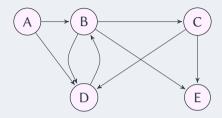
.a. 2021-2022 30/9

One more initialization

# iterations	π_A	π_B	π_C	π_D
0	0.1	4	0	30
1	0.15	0.18	29.08	0.18
2	24.87	0.19	0.5	0.19
3	0.57	7.2	7.52	7.2
4	6.54	0.31	12.54	0.31
:	:	÷	:	÷
100	1.41	0.55	1.49	0.55
:	:	÷	:	÷
200	1.41	0.55	1.49	0.55

.a. 2021-2022 31/9

A different example



Assuming $\delta = 0.85$, the following holds for all pageranks:

$$\begin{split} \pi_A &= 0.15 \\ \pi_B &= 0.15 + 0.85 \left(\frac{\pi_A}{2} + \pi_D\right) \\ \pi_C &= 0.15 + 0.85 \frac{\pi_B}{3} \\ \pi_D &= 0.15 + 0.85 \left(\frac{\pi_A}{2} + \frac{\pi_B}{3} + \frac{\pi_C}{2}\right) \\ \pi_E &= 0.15 + 0.85 \left(\frac{\pi_B}{3} + \frac{\pi_C}{2}\right) \end{split}$$

. 2021-2022 32/93

New pagerank computing example

# iterations	π_A	π_B	π_C	π_D	π_E
0	0	0.4	0.2	1.6	2.1
1	0.15	1.51	0.26	0.35	0.35
2	0.15	0.51	0.58	0.75	0.69
3	0.15	0.85	0.29	0.6	0.54
4	0.15	0.73	0.39	0.58	0.52
:	:	:	÷	÷	:
100	0.15	0.68	0.34	0.55	0.49
:	:	:	÷	÷	:
200	0.15	0.68	0.34	0.55	0.49

a.a. 2021-2022 33/93

The importance of δ

Let $\delta = 0.2$

# iterations	π_A	π_B	π_C	π_D	π_E
0	0	0.4	0.2	1.6	2.1
1	0.8	1.12	0.83	0.85	0.85
2	0.8	1.05	0.87	1.04	0.96
3	0.8	1.09	0.87	1.04	0.96
4	0.8	1.09	0.87	1.04	0.96
:	:	÷	÷	÷	:
100	0.8	1.09	0.87	1.04	0.96
:	:	:	:	:	:
200	0.8	1.09	0.87	1.04	0.96

Different score, same ranking

a.a. 2021-2022 34/9

The importance of δ

Let $\delta = 1$

# iterations	π_A	π_B	π_C	π_D	π_E
0	0	0.4	0.2	1.6	2.1
1	0	1.6	0.13	0.23	0.23
2	0	0.23	0.53	0.6	0.6
3	0	0.6	0.08	0.34	0.34
4	0	0.34	0.2	0.24	0.24
5	0	0.24	0.11	0.21	0.21
6	0	0.21	0.08	0.14	0.14
7	0	0.14	0.07	0.11	0.11
8	0	0.11	0.05	0.08	0.08
9	0	0.08	0.04	0.06	0.06
10	0	0.06	0.03	0.05	0.05
11	0	0.05	0.02	0.03	0.03
12	0	0.03	0.02	0.03	0.03
13	0	0.03	0.01	0.02	0.02
14	0	0.02	0.01	0.01	0.01
15	0	0.01	0.01	0.01	0.01
16	0	0.01	0	0.01	0.01
17	0	0.01	0	0.01	0.01
18	0	0.01	0	0	0
19	0	0	0	0	0
20	0	0	0	0	0

a.a. 2021-2022 35/93

Model behind PageRank: Random walk

- Imagine a web surfer moving randomly through pages
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability

a.a. 2021-2022 37/93

Markov chains, more formally

- A stochastic process is a set X of random variables defined on the same domain S (state space)
- Can be interpreted as a single r.v. evolving on time
- We are interested in the case $X = \{X_0, X_1, X_2, ...\}$ (discrete stochastic process) and $S = \{s_1, s_2, ..., s_n\}$ (finite state space)
- \odot A Markov chain is a discrete stochastic process on a finite space such that for all n = 0, 1, 2, ...

$$p(X_n = s_n | X_{n-1} = s_{n-1}, \dots, X_0 = s_0) = p(X_n = s_n | X_{n-1} = s_{n-1})$$

 \odot In a Markov chain X_n depends only on X_{n-1} (memoryless)

a.a. 2021-2022 38/93

Stationary markov chains

- \odot If $p(X_n|X_{n-1})$ does not depend on n (the probability distribution of states is the same for each transition), the chain is stationary
- \odot transition matrix M, with $M_{i,j} = p(X_n = s_i | X_{n-1} = s_j)$
- o equivalent, weighted directed graph

$$N = S$$

$$E = \{ \langle s_i, s_j | p(X_n = s_i | X_{n-1} = s_j) > 0 \}$$

$$w(\langle s_i, s_j \rangle) = p(X_n = s_i | X_{n-1} = s_j)$$

MC example: weather in Oz

- In the Land of Oz day can be nice (n), rainy (r), snowy (s)
- Tuesday's weather depends (in probability) only on Monday's one according to the following transition matrix

$$M = \begin{pmatrix} r & r & r & s \\ r & .5 & .25 & .25 \\ .5 & 0 & .5 \\ s & .25 & .25 & .5 \end{pmatrix}$$

That is, for example,

$$p(T = r|M = n) = .5$$

MC example: marginal probabilities

Clearly,

$$p(T = r) = p(T = r|M = r)p(M = r) +$$

$$p(T = r|M = n)p(M = n) +$$

$$p(T = r|M = s)p(M = s)$$

That is, if
$$\pi^{(0)} = [p(M=r), p(M=n), p(M=s)]$$
 and $\pi^{(1)} = \pi^{(0)}M$, then we have
$$p(T=r|M=n) = \pi_1^{(1)}$$

Note that Wednesday's weather indirectly depends on Monday's one. In fact,

$$p(W = r|M = n) = p(W = r|T = r)p(T = r|M = n) +$$

$$p(W = r|T = n)p(T = n|M = n) +$$

$$p(W = r|T = s)p(T = s|M = n)$$

$$= M_{11}M_{12} + M_{12}M_{22} + M_{13}M_{32}$$

$$= M_{12}^{2}$$

In general, $p(X_n = s_i | X_{n-2} = s_j) = M_{ij}^2$

The same holds for any probability $p(X_n|X_{n-k})$

$$p(X_n = s_i | X_{n-k} = s_j) = M_{ij}^k$$

Given an initial probability distribution $\pi^{(0)}$, it results that the probability distribution after k transitions is

$$\pi^{(k)} = \pi^{(0)} M^k$$

For example, if $\pi^{(0)} = [.5, .25, .25]$

$$\pi^{(1)} = \pi^{(0)}M = [.5, .25, .25] \begin{bmatrix} .5 & .25 & .25 \\ .5 & 0 & .5 \\ .25 & .25 & .5 \end{bmatrix} = [.4375, .1875, .375]$$

$$\pi^{(2)} = \pi^{(0)}M^2 = [.5, .25, .25] \begin{bmatrix} .4375 & .1875 & .375 \\ .375 & .25 & .375 \\ .375 & .1875 & .4375 \end{bmatrix} = [.40, .21, .39]$$

$$\pi^{(3)} = \pi^{(0)}M^3 = [.5, .25, .25] \begin{bmatrix} .4 & .2 & .4 \\ .4 & .2 & .4 \\ .4 & .2 & .4 \end{bmatrix} = [.4, .2, .4]$$

.a. 2021-2022 44/93

Since

$$\begin{bmatrix} .4 & .2 & .4 \\ .4 & .2 & .4 \\ .4 & .2 & .4 \end{bmatrix} \begin{bmatrix} .5 & .25 & .25 \\ .5 & 0 & .5 \\ .25 & .25 & .5 \end{bmatrix} = \begin{bmatrix} .4 & .2 & .4 \\ .4 & .2 & .4 \\ .4 & .2 & .4 \end{bmatrix}$$

we have that

$$\begin{bmatrix} .5, .25, .25 \end{bmatrix} \begin{bmatrix} .4 & .2 & .4 \\ .4 & .2 & .4 \\ .4 & .2 & .4 \end{bmatrix} = \begin{bmatrix} .4, .2, .4 \end{bmatrix} = \begin{bmatrix} .4, .2, .4 \end{bmatrix} \begin{bmatrix} .5 & .25 & .25 \\ .5 & 0 & .5 \\ .25 & .25 & .5 \end{bmatrix}$$

that is, after a certain number of transition, the resulting probability distribution [.4, .2, .4] is stationary (remains unchanged). This is the long term probability of all states.

a.a. 2021-2022 45/93

Stationary distribution

Given a Markov chain on n states, with transition matrix M, and given an initial distribution $\pi^{(0)}$, the stationary distribution (or steady state) π of the MC (if it exists) is given by

$$\lim_{k \to \infty} \pi^{(k)} = \pi^{(0)} \lim_{k \to \infty} M^k$$

equivalently,

$$\pi = \pi M$$

Open problems:

- does the stationary distribution always exist?
- o if not, when does it exist?
- o if it exists, how to compute it?
- \odot does it depends on $\pi^{(0)}$?

Usefulness of MC

Why are we interested in Markov chains?

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability

But we would like that

- o the steady state indeed exists
- it is independent from the initial page

a.a. 2021-2022 47/93

Perron Frobenius theory

Developed 1 century ago (1907, 1912) by Oskar Perron and Georg Frobenius

- o applied to positive and non negative square matrices
- spectral (eigenvalues, eigenvectors) characterization of the matrices

a.a. 2021-2022 49/93

Perron Frobenius theory

Reminder: for any square matrix $A^{n \times n}$

- \odot the corresponding (right) eigenvalues $\lambda_1, \dots, \lambda_m$ are the vectors such that $Aw_i = \lambda_i w_i$ for some right eigenvector w_i
- ⊚ the corresponding (left) eigenvalues $\lambda_1, ..., \lambda_m$ are the vectors such that $w_i A = \lambda_i w_i$, that is $A^T w_i^T = \lambda_i w_i^T$ for some left eigenvector w_i
- o the sets of left and right eigenvalues coincide
- \odot the spectral radius of A is defined as $\rho(A) = \max_i |\lambda_i|$

a.a. 2021-2022 50/93

Perron theorem

For any positive matrix $A^{n \times n} > 0$,

- 1. $r = \rho(A) > 0$
- 2. $r = \rho(A)$ is an eigenvalue of A, denoted as Perron root
- 3. r is the only eigenvalue on the spectral circle (such that $|r| = \rho(A)$)
- 4. r is a simple right eigenvalue, (hence, a simple root of the characteristic polynomial $|\lambda I - A|$
- 5. this implies that there exists only one (right) eigenvector p of size $n \times 1$, associated to r, denoted as right Perron vector; moreover, p > 0. That is,
 - Ap = rp
 - p > 0
 - $||p||_2 = \sum_{i=1}^n p_i^2 = 1$

Perron theorem: left eigenspace case

The same properties hold also for left eigenvectors, that is, for any $A^{n \times n} > 0$,

- 1. $\rho(A^T) = \rho(A) > 0$
- 2. $r = \rho(A^T)$, the Perron root, is an eigenvalue of A^T
- 3. r is a simple left eigenvalue, that is, it is a simple root of the characteristic polynomial $|\lambda I A^T|$
- 4. there is a unique (left) eigenvector q associated to r of size $1 \times n$ (denoted as left Perron vector) such that q > 0. That is,
 - qA = rq
 - *q* > 0
 - $|q|_1 = \sum_{i=1}^n q_i = 1$

a.a. 2021-2022 52/9

Why is Perron theorem interesting?

Let us return to Markov chains:

- ⊚ the *i*-th row of *M* lists the probabilities $p(X_{n+1} = s_i | X_n = s_i)$, then
 - $M_{ij} \geq 0$ for all i, j
 - $\sum_{j=1}^{n} M_{ij} = 1$ for all i
- the matrix is said stochastic
- \odot then, it is possible to prove that $\rho(M)=1$ and that $e=[1,\ldots,1]^T$ is a corresponding (right) eigenvector, that is Me=e

a.a. 2021-2022 53/9.

So what?

- Perron theorem is not applicable to M, since M is just non negative
- Even if we could apply it, it would result that $r = \rho(A) = 1$ is a simple (right) eigenvalue with Perron vector e/n: in fact, Me/n = e/n, with $|e/n|_1 = 1$
- But we are interested in finding π such that $\pi = \pi M$ (the steady state distribution)
- that is, we are interested in the left Perron vector

54 / 93

We need something more

Under some conditions (to be stated later) the following holds

$$\lim_{k \to \infty} \left(\frac{A}{r}\right)^k = \frac{pq}{qp}$$

where

- A is a square matrix
- \circ $r = \rho(A)$
- ⊚ *p* is the right Perron vector of *A*: $p \in \mathbb{R}^{n \times 1}$
- ⊚ q is the left Perron vector of A: $q \in \mathbb{R}^{1 \times n}$

Exploiting the new property

Since, for a stochastic matrix M, (1, e) is a right Perron pair and $(1, \pi)$ is a left Perron pair, it would result

$$\lim_{k \to \infty} \left(\frac{M}{1} \right)^k = \frac{e\pi}{\pi e} = e\pi = \begin{pmatrix} \pi_1 & \pi_2 & \cdots & \pi_n \\ \pi_1 & \pi_2 & \cdots & \pi_n \\ \vdots & \vdots & \ddots & \vdots \\ \pi_1 & \pi_2 & \cdots & \pi_n \end{pmatrix}$$

since $\pi e = \sum_{1}^{n} p_i = 1$.

For the steady state distribution we would get

$$\lim_{k\to\infty}\pi^{(k)}=\pi^{(0)}\lim_{k\to\infty}M^k=\pi^{(0)}e\pi=\pi$$

since $\pi^{(0)}e = \sum_{i=1}^{n} \pi_{i}^{(0)} = 1$.

That is, independent from the initial distribution $\pi^{(0)}$

a.a. 2021-2022 56/93

Exploiting the new property

We also obtain an indication on how to compute π

- \odot choose any initial distribution $\pi^{(0)}$ (for example [0, ..., 0])
- \odot set $M' \leftarrow M$
- o iterate
 - $M \leftarrow M'$
 - $M' \leftarrow M^2$
- \odot until dist $(M, M') < \epsilon$
- \odot π is any row of M

This is called power method

What conditions we need?

$$\lim_{k \to \infty} \left(\frac{A}{r}\right)^k = \frac{pq}{qp}$$

holds iff:

- 1. A is non negative: in this, case, this holds by hypothesis
- 2. A has exactly one eigenvalue λ on the spectral circle (that is s.t $|\lambda| = \rho(A)$)
- 3. *A* is irreducible

In this case the matrix is said primitive.

58 / 93

Reducible matrices

A square matrix A is reducible if there exists a permutation of its rows such that a new matrix A' is obtained with

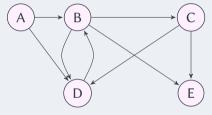
$$A' = \left(\begin{array}{cc} X & Y \\ 0 & Z \end{array}\right)$$

where

- ⊙ *X* and *Z* are m × m and (n m) × (n m) matrices, with 0 < m < n
- 0 is the null matrix

Reducible Markov chains

 \odot If A is the transition matrix of a Markov chain, reducibility means that there exists a subset of states (corresponding to the rows in Z) from which the chain cannot exit



 A markov chain is irreducible if it is always possible to go from each state to any other state

a.a. 2021-2022 60/93

Primitivity

A simple condition: a matrix A is primitive iff there exists m > 0 such that $A^m > 0$

Corollary: a positive matrix is primitive

Where are we now?

Everything ok if we had a positive stochastic matrix

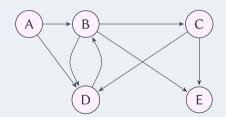
- Perron theorem: there exists a unique left Perron vector, corresponding to the greatest eigenvalue, equal to 1
- Convergence condition: the left Perron vector can be computed by the power method
- The left Perron is the steady state distribution of the corresponding Markov chain

a.a. 2021-2022 62/93

How do we get a positive stochastic matrix?

The matrix *A* of the web graph has some drawbacks:

- 1. *A* is not stochastic: there may exist dangling nodes, that is nodes with no outlink (they correspond to pages referencing no other page)
- 2. A has elements equal to 0



$$\left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

a.a. 2021-2022 63/93

How do we get there?

The matrix *A* of the web graph has some drawbacks:

- 1. *A* is not stochastic: there may exist dead ends, nodes with no outlink (they correspond to pages referencing no other page)
- 2. A has elements equal to 0

We modify A to obtain a new stochastic positive matrix.

Getting a stochastic matrix (1)

For any non-dangling node, a uniform transition probability to its neighbors.

In our example, this results into

$$P_0 = \left(\begin{array}{ccccc} 0 & .5 & 0 & .5 & 0 \\ 0 & 0 & .33 & .33 & .33 \\ 0 & 0 & 0 & .5 & .5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

Getting a stochastic matrix (2)

Null rows, corresponding to dangling nodes are modified from

$$[0, 0, \dots, 0]$$

to

$$\left[\frac{1}{n},\frac{1}{n},\ldots,\frac{1}{n}\right]$$

In our example, we obtain

$$P = \left(\begin{array}{ccccc} 0 & .5 & 0 & .5 & 0 \\ 0 & 0 & .33 & .33 & .33 \\ 0 & 0 & 0 & .5 & .5 \\ 0 & 1 & 0 & 0 & 0 \\ .2 & .2 & .2 & .2 & .2 \end{array}\right)$$

a.a. 2021-2022 66/93

Getting a positive matrix

A teleportation probability is introduced for all nodes.

This can be done introducing a teleportation matrix T

$$T = \frac{1}{n}ee^{T} = \begin{pmatrix} 1/n & 1/n & \cdots & 1/n \\ 1/n & 1/n & \cdots & 1/n \\ \vdots & \vdots & \ddots & \vdots \\ 1/n & 1/n & \cdots & 1/n \end{pmatrix}$$

with
$$e = [1, 1, ..., 1]^T$$

A linear combination of A and T is then performed

$$H = \alpha P + (1 - \alpha)T$$

 α is the damping factor

a.a. 2021-2022 67/9

Getting a positive matrix

Let $\alpha = .8$, then

a. 2021-2022 68/9

In terms of Markov chain

According to H the random surfer, at each node, chooses the next node as follows:

- \odot if the current node v_i is dangling, apply teleporting: the next node is chosen with uniform probability 1/n
- \odot otherwise, flip a α -biased coin.
 - with probability α , follow an outlink chosen with uniform probability $1/o_i$, where o_i is the number of outlinks of v_i
 - with probability $1-\alpha$, apply teleporting: the next node is chosen with uniform probability 1/n

a.a. 2021-2022 69/93

Computing Pagerank

$$H = \begin{pmatrix} .04 & .44 & .04 & .44 & .04 \\ .04 & .04 & .306 & .306 & .306 \\ .04 & .04 & .04 & .44 & .44 \\ .04 & .84 & .04 & .04 & .04 \\ .2 & .2 & .2 & .2 & .2 \end{pmatrix}$$

$$H^2 = \begin{pmatrix} .0464 & .4144 & .1634 & .1954 & .1794 \\ .0888 & .03496 & .0995 & .2379 & .2219 \\ .1104 & .4784 & .121 & .153 & .137 \\ .0464 & .0944 & .2698 & .3018 & .2858 \\ .072 & .312 & .1252 & .2852 & .2052 \end{pmatrix}$$

$$H^4 = \begin{pmatrix} .079 & .3167 & .1438 & .2428 & .2153 \\ .0732 & .2984 & .1533 & .2509 & .2207 \\ .0779 & .3281 & .1387 & .2391 & .2144 \\ .0749 & .299 & .1668 & .2454 & .2111 \\ .0729 & .2897 & .1606 & .252 & .2229 \end{pmatrix}$$

$$H^{256} = \begin{pmatrix} .0641 & .259 & .133 & .212 & .186 \\ .0641 & .259 & .133 & .212 & .186 \\ .0641 & .259 & .133 & .212 & .186 \\ .0641 & .259 & .133 & .212 & .186 \\ .0641 & .259 & .133 & .212 & .186 \end{pmatrix}$$

The resulting pagerank vector is then

a.a. 2021-2022 70/9

Efficiency and sparsity

- H is a dense matrix
- this is bad in terms of efficiency
- but observe that

$$H = \alpha P + (1 - \alpha) \frac{1}{n} e e^{T}$$

$$= \alpha (P_0 + \frac{1}{n} d e^{T}) + (1 - \alpha) \frac{1}{n} e e^{T}$$

$$= \alpha P_0 + (\alpha d + (1 - \alpha) e) \frac{1}{n} e^{T}$$

where $d \in \{0, 1\}^n$ has $d_i = 1$ if v_i is a dangling node and $v_i = 0$ otherwise.

Efficiency and sparsity

One step of the power method

$$\pi^{(k+1)} = \pi^{(k)}H$$

$$= \alpha \pi^{(k)}P + \frac{1-\alpha}{n}\pi^{(k)}ee^{T}$$

$$= \alpha \pi^{(k)}P_0 + (\alpha \pi^{(k)}d + 1 - \alpha)e^{T}$$

- \circ $\pi^{(k)}P_0$ is the product of an *n*-dimensional vector with a very sparse $n \times n$ matrix (this may require O(n) steps)
- $\odot \ \pi^{(k)}d = \sum_{v:\text{dangling}} \pi_i^{(k)} \text{ clearly requires } O(n) \text{ steps}$

Question: how fast (how may iterations) does the power method converge to the stationary distribution?

- \odot A matrix $A \in \mathbb{R}^{n \times n}$ has n independent unitary (left) eigenvectors u_1, \dots, u_n
- \odot u_1,\ldots,u_n form a basis of \mathbb{R}^n , then $\pi^{(0)}=\sum_{i=1}^n a_iu_i$ for suitable reals a_1,\ldots,a_n

a.a. 2021-2022 73/93

- \bigcirc let $\lambda_1, ... \lambda_n$ be the eigenvalues of A (assume $|\lambda_1| \ge ... \ge |\lambda_n|$)
- \odot then, since for any eigenvector u_i , $u_i A^k = u_i A A^{k-1} = \lambda_i u_i A^{k-1} = \lambda_i^k u_i$

$$\pi^{(0)} A^k = \left(\sum_{i=1}^n a_i u_i\right) A^k = \sum_{i=1}^n a_i u_i A^k$$
$$= \sum_{i=1}^n a_i u_i \lambda_i^k = a_1 \lambda_1^k \left(u_1 + \sum_{i=2}^n \frac{a_i}{a_1} \left(\frac{\lambda_i}{\lambda_1}\right)^k u_i\right)$$

Then,

- \circ $\pi^{(0)}A^k \rightarrow a_1\lambda_1^k u_1$
- the difference

$$|a_1 \lambda_1^k u_1 - \pi^{(0)} A^k| = \left| a_1 \lambda_1 \sum_{i=2}^n \frac{a_i}{a_1} \left(\frac{\lambda_i}{\lambda_1} \right)^k u_i \right|$$

goes to 0 as k increases

- the slowest decreasing term is the largest one λ_2/λ_1
- since in our case $\lambda_1 = 1$, the convergence rate is determined by λ_2
- smaller λ_2 : faster convergence

In the case of the Google matrix

$$H = \alpha P + (1 - \alpha)T$$

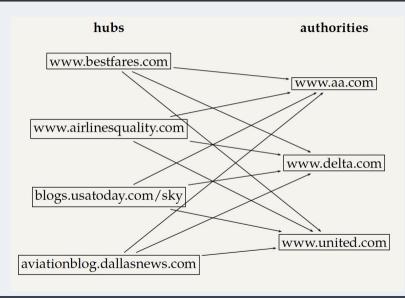
it is possible to prove that $\lambda_2 = \alpha$

Hubs and authorities: Definition

- A good hub page for a topic links to many authority pages for that topic.
- A good authority page for a topic is linked to by many hub pages for that topic.
- Circular definition we will turn this into an iterative computation.

a. 2021-2022 77/93

Example for hubs and authorities



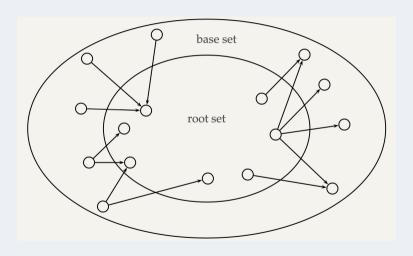
a. 2021-2022 78/93

How to compute hub and authority scores

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call this larger set the base set
- Finally, compute hubs and authorities for the base set (which we'll view as a small web graph)

. 2021-2022 79/93

Root set and base set (1)



a.a. 2021-2022 80/93

Root set and base set (2)

- Root set typically has 200–1000 nodes.
- Base set may have up to 5000 nodes.
- © Computation of base set, as shown on previous slide:
 - Follow outlinks by parsing the pages in the root set
 - Find d's inlinks by searching for all pages containing a link to d

a.a. 2021-2022 81/93

Hub and authority scores

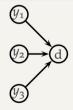
- \odot Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- ⊚ Initialization: for all d: h(d) = 1, a(d) = 1
- ⊚ Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authorities
 - So we output two ranked lists

a.a. 2021-2022 82/9

Iterative update

⊚ For all d: $h(d) = \sum_{d \mapsto y} a(y)$

⊚ For all d: $a(d) = \sum_{y \mapsto d} h(y)$



Iterate these two steps until convergence

a.a. 2021-2022 83/9

Details

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration
 - Scaling factor doesn't really matter.
 - We care about the relative (as opposed to absolute) values of the scores.
- In most cases, the algorithm converges after a few iterations.

a.a. 2021-2022 84/93

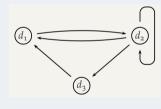
Hubs & Authorities: Comments

- HITS can pull together good pages regardless of page content.
- Once the base set is assembled, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.
- In theory, an English query can retrieve Japanese-language pages!
 - If supported by the link structure between English and Japanese pages
- Danger: topic drift the pages found by following links may not be related to the original query.

a.a. 2021-2022 85/93

Proof of convergence

- \odot We define an $N \times N$ adjacency matrix A. (We called this the link matrix earlier.
- ⊚ For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j ($A_{ij} = 1$) or not ($A_{ij} = 0$).
- © Example:



	d_1	d_2	$d_{\underline{c}}$
d_1	0	1	0
d_2	1	1	1
d_3	1	0	0

a.a. 2021-2022 86/9

Write update rules as matrix operations

- \odot Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a}$...
- ...and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
 - Iterate until convergence

HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- \odot By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
- So the HITS algorithm is actually a special case of the power method and hub and authority scores are eigenvector values.
- HITS and PageRank both formalize link analysis as eigenvector problems.

88 / 93

Raw matrix A for HITS

	a_0	a_1	a_2	a_3	a_4	a_5	a_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	2	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	2	1	0	1

-2022 89 / 93

Hub vectors h_0 , $\vec{h}_i = \frac{1}{d_i} A \cdot \vec{a}_i$, $i \ge 1$

	$ec{h}_0$	$ec{h}_1$	$ec{h}_2$	$ec{h}_3$	$ec{h}_4$	$ec{h}_5$
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
d_2	0.14	0.28	0.32	0.33	0.33	0.33
d_3	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority vectors $\vec{a}_i = \frac{1}{c_i} A^T \cdot \vec{h}_{i-1}, i \ge 1$

	\vec{a}_1	\vec{a}_2	\vec{a}_3	\vec{a}_4	\vec{a}_5	\vec{a}_6	\vec{a}_7
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_2	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d_3	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_6	0.19	0.14	0.13	0.13	0.13	0.13	0.13

a. 2021-2022 91/

Top-ranked pages

- \odot Pages with highest in-degree: d_2 , d_3 , d_6
- \odot Pages with highest out-degree: d_2 , d_6
- \odot Pages with highest PageRank: d_6
- \odot Pages with highest hub score: d_6 (close: d_2)
- \odot Pages with highest authority score: d_3

PageRank vs. HITS: Discussion

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- Claim: On the web, a good hub almost always is also a good authority.
- The actual difference between PageRank ranking and HITS ranking is therefore not as large as one might expect.

a.a. 2021-2022 93/93