
Information retrieval
Probabilistic IR

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Derived from slides originally produced by C. Manning and by H. Schütze

Probabilistic Approach to Retrieval

⊚ Given a user information need (represented as a query) and a collection of documents
(transformed into document representations), a system must determine how well the
documents satisfy the query

• An IR system has an uncertain understanding of the user query, and makes an uncertain
guess of whether a document satisfies the query

⊚ Probability theory provides a principled foundation for such reasoning under
uncertainty

• Probabilistic models exploit this foundation to estimate how likely it is that a document
is relevant to a query

a.a. 2021-2022 3 / 80

Why probabilistic?

At first glance, a document 𝑑 is either relevant or not relevant wrt to a query 𝑞

Indeed there are several sources of uncertainty:

⊚ wrt different users: different users may have different opinions regarding the
relevance of 𝑑 wrt 𝑞

⊚ wrt the same user in different contexts: a user may judge 𝑑 relevant or not in
dependence of many factors, in different contexts

⊚ wrt the document representation: 𝑑 is usually represented in some way in the IR
system; hence relevance is estimated on limited information

⊚ wrt the IR system: the system itself may induce approximations/errors in estimating
the relevance of 𝑑

a.a. 2021-2022 4 / 80

Probabilistic IR Models at a Glance

In a probabilistic model, document are retrieved/ranked by their (estimated) probability of
being relevant, given the query

𝑝(𝑑 is relevant|𝑞)

a.a. 2021-2022 5 / 80

Probabilistic IR Models at a Glance

⊚ Classical probabilistic retrieval model
• Probability ranking principle

• Binary Independence Model, BestMatch25 (Okapi)

⊚ Language model approach to IR

⊚ ⋯
Probabilistic methods are one of the oldest but also one of the hottest topics in IR

a.a. 2021-2022 6 / 80

Probabilistic vs. vector space model

⊚ Vector space model: rank documents according to similarity to query.
⊚ The notion of similarity does not translate directly into an assessment of “is the

document a good document to give to the user or not?”
• The most similar document can be highly relevant or completely nonrelevant.

⊚ Probability theory is arguably a cleaner formalization of what we really want an IR
system to do: give relevant documents to the user.

a.a. 2021-2022 7 / 80

Basic Probability Theory

⊚ For events 𝐴 and 𝐵
• Joint probability 𝑝(𝐴 ∩ 𝐵) of both events occurring
• Conditional probability 𝑝(𝐴|𝐵) of event 𝐴 occurring given that event 𝐵 has occurred

⊚ Chain rule gives fundamental relationship between joint and conditional probabilities:

𝑝(𝐴, 𝐵) = 𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴|𝐵) ⋅ 𝑝(𝐵) = 𝑝(𝐵|𝐴) ⋅ 𝑝(𝐴)
⊚ Similarly for the complement of an event 𝑝(𝐴):

𝑝(𝐴𝐵) = 𝑝(𝐵|𝐴) ⋅ 𝑝(𝐴)
⊚ Partition rule: if 𝐵 can be divided into an exhaustive set of disjoint subcases, then 𝑝(𝐵)

is the sum of the probabilities of the subcases. A special case of this rule gives:

𝑝(𝐵) = 𝑝(𝐴, 𝐵) + 𝑝(𝐴, 𝐵)

a.a. 2021-2022 9 / 80

Basic Probability Theory

Bayes’ Rule for inverting conditional probabilities:

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴) ⋅ 𝑝(𝐴)
𝑝(𝐵) = [𝑝(𝐵|𝐴)

∑𝑋∈{𝐴,𝐴} 𝑝(𝐵|𝑋) ⋅ 𝑝(𝑋)] 𝑝(𝐴)

Can be thought of as a way of updating probabilities:

⊚ Start off with prior probability 𝑝(𝐴) (initial estimate of how likely event 𝐴 is in the
absence of any other information)

⊚ Derive a posterior probability 𝑝(𝐴|𝐵) after having seen the evidence 𝐵, based on the
likelihood of 𝐵 occurring in the two cases that 𝐴 does or does not hold

Odds of an event provide a kind of multiplier for how probabilities change:

Odds: 𝑂(𝐴) = 𝑝(𝐴)
𝑝(𝐴)

= 𝑝(𝐴)
1 − 𝑝(𝐴)

a.a. 2021-2022 10 / 80

Probabilistic relevance

⊚ Assume binary notion of relevance: 𝑅𝑑,𝑞 is a random binary variable, such that
• 𝑅𝑑,𝑞 = 1 if document 𝑑 is relevant w.r.t query 𝑞
• 𝑅𝑑,𝑞 = 0 otherwise

⊚ We may interpretate 𝑝(𝑅𝑑,𝑞) = 𝑝(𝑅|𝑑, 𝑞) as the probability that a random user judges 𝑑
relevant for query 𝑞. In other words, assuming an event space defined on a set 𝑈 of
users (or user types), it is

𝑝(𝑅|𝑑, 𝑞) = ∑
𝑢∈𝑈

𝑝(𝑅|𝑑, 𝑞, 𝑢)𝑝(𝑢)

where 𝑝(𝑅|𝑑, 𝑞, 𝑢) is the probability that user 𝑢 judges 𝑑 relevant for query 𝑞, and 𝑝(𝑢)
is the probability that 𝑢 is the user asked to judge relevance

a.a. 2021-2022 12 / 80

Probabilistic relevance

⊚ documents could be retrieved by applying the Bayes decision rule, that is if
𝑝(𝑅|𝑑, 𝑞) > 𝑝(𝑅|𝑑, 𝑞) hence if, using odds,

𝑂(𝑅|𝑑, 𝑞) = 𝑝(𝑅|𝑑, 𝑞)
𝑝(𝑅|𝑑, 𝑞)

> 1

⊚ we assume no relevance judgement from users is available

a.a. 2021-2022 13 / 80

Probabilistic relevance

𝑝(𝑅|𝑑, 𝑞) (and 𝑝(𝑅|𝑑, 𝑞) can be decomposed in two ways

⊚
𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)

𝑝(𝑑|𝑞) 𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)
𝑝(𝑑|𝑞)

that is, we look at the probability of relevant and not relevant documents when the
query is fixed. This is the approach of BIM, 2-Poisson and BM25 models

⊚
𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑞|𝑅, 𝑑)𝑝(𝑅|𝑑)

𝑝(𝑞|𝑑) 𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑞|𝑅, 𝑑)𝑝(𝑅|𝑑)
𝑝(𝑞|𝑑)

that is, we consider the probability of the query wrt to relevant and not relevant
documents. This is the approach of language models

a.a. 2021-2022 14 / 80

Probabilistic Ranking

⊚ Ranked retrieval setup: given a collection of documents, the user issues a query, and
an ordered list of documents is returned

⊚ Probabilistic ranking orders documents decreasingly by their estimated probability of
relevance w.r.t. query: 𝑝(𝑅𝑑,𝑞) = 𝑝(𝑅|𝑑, 𝑞)

⊚ in order to estimate and compare 𝑝(𝑅|𝑑, 𝑞) and 𝑝(𝑅|𝑑′, 𝑞) several simplifying
assumptions are done

• Independence assumption: the relevance of each document is independent of the
relevance of other documents

a.a. 2021-2022 15 / 80

Probabilistic Ranking

Let us consider the approach of considering

𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)
𝑝(𝑑|𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)

𝑝(𝑑)
where:

⊚ 𝑝(𝑑|𝑅, 𝑞) is the probability that document 𝑑 is randomly sampled from the
subcollection of documents relevant for query 𝑞

⊚ 𝑝(𝑅|𝑞) is the probability that a random document from the collection is relevant for 𝑞
⊚ 𝑝(𝑑|𝑞) = 𝑝(𝑑) (we assume 𝑑 and 𝑞 independent) is the probability that document 𝑑 is

sampled from the collection.

a.a. 2021-2022 16 / 80

Probabilistic Ranking

The same clearly holds for non relevant documents

𝑝(𝑅|𝑑, 𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)
𝑝(𝑑|𝑞) = 𝑝(𝑑|𝑅, 𝑞)𝑝(𝑅|𝑞)

𝑝(𝑑)

moreover, either a document is relevant or it is non relevant, that is 𝑝(𝑅|𝑑, 𝑞) + 𝑝(𝑅|𝑑, 𝑞) = 1
⊚ Assumptions:

• uniform document probability: 𝑝(𝑑) = 𝑝(𝑑′) for all 𝑑, 𝑑′ (this could not be true if we
consider document representations, but assume it holds, for the sake of simplicity)

• 𝑝(𝑅|𝑞) can be ignored: if we are interested in ranking documents, the probabilities 𝑝(𝑅|𝑞)
and 𝑝(𝑅|𝑞) are constant on all documents, and can be ignored

a.a. 2021-2022 17 / 80

Probability Ranking Principle (Robertson, 1977)

⊚ PRP in brief
• If the retrieved documents (w.r.t a query) are ranked decreasingly on their probability of

relevance, then the effectiveness of the system will be the best that is obtainable

⊚ PRP in full
• If [the IR] system’s response to each [query] is a ranking of the documents [...] in order

of decreasing probability of relevance to the [query], where the probabilities are
estimated as accurately as possible on the basis of whatever data have been made
available to the system for this purpose, the overall effectiveness of the system to its user
will be the best that is obtainable on the basis of those data

a.a. 2021-2022 18 / 80

Error cost of retrieval

⊚ The overall goal of the IR system is to return the best possible results, in terms of
relevance, as the top 𝑘 documents, for any value of 𝑘 the user chooses to examine.
How to formalize “best”?

⊚ We may associate an error cost for each document wrongly returned (if not relevant)
or not returned (if relevant)

⊚ The best result is then the one which minimizes the overall error cost

⊚ In a probabilistic framework the relevance of a document wrt a query 𝑞 is a random
variable with an associated probability 𝑝(𝑅|𝑑, 𝑞): the error cost can only be defined in
terms of expectation

a.a. 2021-2022 19 / 80

Error cost of retrieval

⊚ Assume that the following costs are defined:
• 𝐶(𝑑, 𝑞): the cost when 𝑑 is a relevant document and it is not returned
• 𝐶′(𝑑, 𝑞): the cost when 𝑑 is a non relevant document and it is returned

⊚ If a set 𝐷(𝑞) of documents is returned by the system, the expected cost (risk) is given
by

𝑅(𝐷(𝑞)) = ∑
𝑑∈𝐷(𝑞)

𝐶′(𝑑, 𝑞)𝑝(𝑅|𝑑, 𝑞) + ∑
𝑑∉𝐷(𝑞)

𝐶(𝑑, 𝑞)𝑝(𝑅|𝑑, 𝑞)

= ∑
𝑑∈𝐷(𝑞)

𝐶′(𝑑, 𝑞)(1 − 𝑝(𝑅|𝑑, 𝑞)) + ∑
𝑑∉𝐷(𝑞)

𝐶(𝑑, 𝑞)𝑝(𝑅|𝑑, 𝑞)

⊚ We may use the risk associated to a specific result as an inverse measure of the quality
of the result

a.a. 2021-2022 20 / 80

Probability Ranking Principle

Assume a simple binary error cost function is used, where 𝐶(𝑑, 𝑞) = 𝐶′(𝑑, 𝑞) = 1: that is,
any case where a relevant document is not returned or a non relevant document is
returned has a constant cost (say 1)

Then

𝑅(𝐷(𝑞)) = ∑
𝑑∈𝐷(𝑞)

(1 − 𝑝(𝑅|𝑑, 𝑞)) + ∑
𝑑∉𝐷(𝑞)

𝑝(𝑅|𝑑, 𝑞) = |𝐷(𝑞)| + ∑
𝑑∉𝐷(𝑞)

𝑝(𝑅|𝑑, 𝑞) − ∑
𝑑∈𝐷(𝑞)

𝑝(𝑅|𝑑, 𝑞)

a.a. 2021-2022 21 / 80

Probability Ranking Principle

If we assume a fixed |𝐷(𝑞)| = 𝑘, that is the user is interested to the best 𝑘 documents, then
𝑅(𝐷(𝑞)) is minimized if the set 𝐷(𝑞) is such that

∑
𝑑∈𝐷(𝑞)

𝑝(𝑅|𝑑, 𝑞) − ∑
𝑑∉𝐷(𝑞)

𝑝(𝑅|𝑑, 𝑞)

is maximized: this corresponds to 𝐷(𝑞) containing the 𝑘 documents with highest
probability of relevance 𝑝(𝑅|𝑑, 𝑞).

a.a. 2021-2022 22 / 80

Probability Ranking Principle

As a consequence of the above observations, the best retrieval policy is the one that, for any
𝑘, returns the 𝑘 topmost documents in a ranking by non-increasing probability of relevance.

Theorem

When 0/1 loss is assumed, the PRP is optimal, in that it minimizes the (expected) loss

This clearly holds if all probabilities are correct

a.a. 2021-2022 23 / 80

Probability Ranking Principle (PRP)

How do we compute all those probabilities?

⊚ We do not know the exact probabilities, need of estimates
• Binary Independence Model (BIM) is the simplest approach

⊚ Assumptions:
• Relevance of each document is independent of relevance of other documents (Risk of

returning lot of duplicates)
• Boolean model of relevance

a.a. 2021-2022 24 / 80

Documents as set of features

Documents are represented for retrieval and ranking with regards to a specified set of
features, that is a representation.

⊚ 𝑑 is represented as a vector (𝑓1, … , 𝑓𝑛) of feature values

⊚ this turns out to considering

𝑝(𝑅|𝑓1, … , 𝑓𝑛, 𝑞) =
𝑝(𝑓1, … , 𝑓𝑛 |𝑅, 𝑞)𝑝(𝑅|𝑞)

𝑝(𝑓1, … , 𝑓𝑛)
rank= 𝑝(𝑓1, … , 𝑓𝑛 |𝑅, 𝑞)

⊚ Assumption:
• feature (conditional) independence 𝑝(𝑓1, … , 𝑓𝑛 |𝑅, 𝑞) = ∏𝑖 𝑝(𝑓𝑖|𝑅, 𝑞): this is the naive

assumption of Naive Bayes models

a.a. 2021-2022 25 / 80

Binary Independence Model (BIM)

In BIM, each feature:

1. is associated to a term

2. is binary: 1 if the term occurs, 0 if it does not occur

3. document 𝑑 represented by vector 𝑣𝑑 = (𝑥1, … , 𝑥𝑚), where 𝑥𝑖 = 1 iff term 𝑡𝑖 occurs in 𝑑
4. query 𝑞 represented by vector 𝑣𝑞 = (𝑦1, … , 𝑦𝑚), where 𝑦𝑖 = 1 iff term 𝑡𝑖 occurs in 𝑞
5. different documents/queries may have the same vector representation

The feature conditional assumption turn out to be a no association between terms
assumption, conditioned on the query and the document relevance with respect to the
query itself.

a.a. 2021-2022 26 / 80

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
…

Each document is represented as a binary vector ∈ {0, 1}|𝑉 |.

a.a. 2021-2022 27 / 80

Binary Independence Model

To make a probabilistic retrieval strategy precise, need to estimate how terms in
documents contribute to relevance

⊚ Find measurable statistics (term frequency, document frequency, document length)
that affect judgments about document relevance

⊚ Combine these statistics to estimate the probability 𝑝(𝑅|𝑑, 𝑞) of document relevance

a.a. 2021-2022 28 / 80

Binary Independence Model

𝑝(𝑅|𝑑, 𝑞) is modeled using term incidence vectors as 𝑝(𝑅|𝑣𝑑 , 𝑣𝑞)

𝑝(𝑅|𝑣𝑑 , 𝑣𝑞) = 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)𝑝(𝑅|𝑣𝑞)
𝑝(𝑣𝑑 |𝑣𝑞)

rank= 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)

𝑝(𝑅|𝑣𝑑 , 𝑣𝑞) = 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)𝑝(𝑅|𝑣𝑞)
𝑝(𝑣𝑑 |𝑣𝑞)

rank= 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞) (1)

⊚ 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞) and 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞): probability that if a relevant or nonrelevant document is
retrieved, then that document’s representation is 𝑣𝑑

⊚ Use statistics about the document collection to estimate these probabilities

a.a. 2021-2022 29 / 80

Deriving a Ranking Function for Query Terms (1)

⊚ Given a query 𝑞, ranking documents by 𝑝(𝑅|𝑑, 𝑞) is modeled under BIM as ranking
them by 𝑝(𝑅|𝑣𝑑 , 𝑣𝑞)

⊚ Easier: rank documents by their odds of relevance (gives same ranking)

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) =
𝑝(𝑅|𝑣𝑑 , 𝑣𝑞)
𝑝(𝑅|𝑣𝑑 , 𝑣𝑞)

rank= 𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)
𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)

a.a. 2021-2022 30 / 80

Deriving a Ranking Function for Query Terms (2)

By the Naive Bayes conditional independence assumption stated above, the presence or
absence of a word in a document is independent of the presence or absence of any other
word (given the query and the relevance of the document wrt the query):

𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)
𝑝(𝑣𝑑 |𝑅, 𝑣𝑞)

=
𝑀
∏
𝑖=1

𝑝(𝑥𝑖|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖|𝑅, 𝑣𝑞)

So:

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank=
𝑀
∏
𝑖=1

𝑝(𝑥𝑖|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖|𝑅, 𝑣𝑞)

a.a. 2021-2022 31 / 80

Deriving a Ranking Function for Query Terms (3)

Since each 𝑥𝑖 is either 0 or 1, we can separate the terms (term split):

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank= ∏
𝑡𝑖∶𝑥𝑖=1

𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)

⋅ ∏
𝑡𝑖∶𝑥𝑖=0

𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)

a.a. 2021-2022 32 / 80

Deriving a Ranking Function for Query Terms

Additional simplifying assumption: terms not occurring in the query are equally likely to
occur in relevant and nonrelevant documents (non query term assumption)

⊚ If 𝑦𝑖 = 0, then 𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞) = 𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)
Hence, we obtain

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank= ∏
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)

⋅ ∏
𝑡𝑖∶𝑥𝑖=0,𝑦𝑖=1

𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)

⊚ The left product is over query terms found in the document and the right product is
over query terms not found in the document

a.a. 2021-2022 33 / 80

Deriving a Ranking Function for Query Terms

⊚ Let 𝑝𝑡 = 𝑝(𝑥𝑡 = 1|𝑅, 𝑣𝑞) be the probability of a term appearing in a document relevant
for 𝑞

⊚ Let 𝑢𝑡 = 𝑝(𝑥𝑡 = 1|𝑅, 𝑣𝑞) be the probability of a term appearing in a document
nonrelevant for 𝑞

⊚ This can be displayed as a contingency table:

relevant document (𝑅) nonrelevant document (𝑅)
Term present (𝑥𝑡 = 1) 𝑝𝑡 𝑢𝑡
Term absent (𝑥𝑡 = 0) 1 − 𝑝𝑡 1 − 𝑢𝑡

a.a. 2021-2022 34 / 80

Deriving a Ranking Function for Query Terms

All this results into
𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank= ∏

𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

𝑝𝑖
𝑢𝑖

⋅ ∏
𝑡𝑖∶𝑥𝑖=0,𝑦𝑖=1

1 − 𝑝𝑖
1 − 𝑢𝑖

By including the query terms found in the document into the second product, but
simultaneously dividing by them in the first product, it results:

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank= ∏
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

⋅ ∏
𝑡𝑖∶𝑦𝑖=1

1 − 𝑝𝑖
1 − 𝑢𝑖

a.a. 2021-2022 35 / 80

Deriving a Ranking Function for Query Terms

⊚ The first product is still over query terms found in the document, but the right product
is now over all query terms, hence constant for a particular query and can be ignored.

⊚ The only value that needs to be estimated to rank documents w.r.t a query is the first
productory

𝑂(𝑅|𝑣𝑑 , 𝑣𝑞) rank= ∏
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

⊚ We can equally rank documents by the logarithm of this term, since log is a
monotonic function. This is named Retrieval Status Value (RSV):

𝑅𝑆𝑉𝑑 = log ∏
𝑡∶𝑖𝑥𝑖=𝑦𝑖=1

𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

= ∑
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

log
𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

a.a. 2021-2022 36 / 80

Deriving a Ranking Function for Query Terms

Equivalent: rank documents using the log odds ratios for the terms 𝑡𝑖 in the query:

𝑐𝑖 = log
𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

= log
𝑝𝑖

1 − 𝑝𝑖
− log

𝑢𝑖
1 − 𝑢𝑖

⊚ The odds ratio is the ratio of two odds:
1. the odds

𝑝𝑖
1 − 𝑝𝑖

of term 𝑡𝑖 appearing in a document if the document is relevant

2. the odds
𝑢𝑖

1 − 𝑢𝑖
of term 𝑡𝑖 appearing in a document if the document is nonrelevant

a.a. 2021-2022 37 / 80

Term weight 𝑐𝑖 in BIM

𝑐𝑖 = log
𝑝𝑖

1 − 𝑝𝑖
− log

𝑢𝑖
1 − 𝑢𝑖

can be seen as a term weight.

⊚ 𝑐𝑖 = 0: term 𝑡𝑖 has equal odds of appearing in relevant and nonrelevant documents

⊚ 𝑐𝑖 > 0: term 𝑡𝑖 has higher odds to appear in relevant documents

⊚ 𝑐𝑖 < 0: term 𝑡𝑖 has higher odds to appear in nonrelevant documents

a.a. 2021-2022 38 / 80

Term weight 𝑐𝑖 in BIM

Retrieval status value for document 𝑑 :

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

𝑐𝑖

⊚ So BIM and vector space model are identical on an operational level, except that the
term weights are different.

⊚ In particular: we can use the same data structures (such as an inverted index) for the
two models.

a.a. 2021-2022 39 / 80

How to compute probability estimates

Which information can be used to compute the probabilities of a term 𝑡 appearing in a
relevant or non relevant document?

⊚ 𝑝𝑖 = 𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞) probability that term 𝑥𝑖 appears in a document relevant for 𝑞
⊚ 𝑢𝑖 = 𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞) probability that term 𝑥𝑖 appears in a document nonrelevant for 𝑞

There are two possible scenarios:

⊚ There are some documents which we consider relevant and/or not relevant
• A training set of relevance judgements given by users is available
• Relevance judgements may derive by a pseudo-relevance feedback method

⊚ No information (relevance judgements) is available

a.a. 2021-2022 40 / 80

How to compute probability estimates

First case: relevance judgement are available (fraction 𝑅 is the number of relevant
documents in the collection).

For each term 𝑡𝑖 in a query, estimate 𝑐𝑖 in the whole collection using a contingency table of
counts of documents in the collection, where:

⊚ 𝑁 is the total numebr of documents

⊚ 𝑅 is the number of relevant documents as derived from relevance judgement

⊚ 𝑟𝑖 is the number of relevant documents in which term 𝑡𝑖 occurs
⊚ df𝑡𝑖 is the number of documents that contain term 𝑡𝑖

a.a. 2021-2022 41 / 80

How to compute probability estimates

Relevant Non relevant
documents documents Total

Term present 𝑥𝑖 = 1 𝑟𝑖 df𝑡𝑖 − 𝑟𝑖 df𝑡𝑖
Term absent 𝑥𝑖 = 0 𝑅 − 𝑟𝑖 (𝑁 − df𝑡𝑖) − (𝑅 − 𝑟𝑖) 𝑁 − df𝑡𝑖

Total 𝑅 𝑁 − 𝑅 𝑁

The resulting probability estimates (by maximum likelihood) are then:

𝑝𝑖 =
𝑟𝑖
𝑅

𝑢𝑖 =
df𝑡𝑖 − 𝑟𝑖
𝑁 − 𝑅

𝑐𝑖 = log

𝑟𝑖
𝑅−𝑟𝑖
df𝑡𝑖−𝑟𝑖

(𝑁−df𝑡𝑖)−(𝑅−𝑟𝑖)

a.a. 2021-2022 42 / 80

Avoiding zeros: smoothing

⊚ If any of the counts is zero, then the term weight is not well-defined.

⊚ Maximum likelihood estimates do not work for rare events.

⊚ To avoid zeros: add a constant 𝛼 to each count, for example, 𝛼 = 0.5
⊚ For example, use 𝑅 − 𝑟𝑖 + 0.5 in formula for 𝑅 − 𝑟𝑖

a.a. 2021-2022 43 / 80

Exercise

⊚ Query: Obama health plan

⊚ Doc1: Obama rejects allegations about his own bad health

⊚ Doc2: The plan is to visit Obama

⊚ Doc3: Obama raises concerns with US health plan reforms

Estimate the probability that the above documents are relevant to the query. Use a
contingency table. These are the only three documents in the collection

a.a. 2021-2022 44 / 80

Simplifying assumption

⊚ Assumption: relevant documents are a very small percentage of the collection.
Consequence: statistics for nonrelevant documents can be approximated by statistics
from the whole collection

⊚ Hence, the probability of term occurrence in nonrelevant documents for a query is

𝑢𝑖 ≈ df𝑡𝑖
𝑁 and

log
1 − 𝑢𝑖
𝑢𝑖

= log
𝑁 − df𝑡𝑖
df𝑡𝑖

≈ log 𝑁
df𝑡𝑖

⊚ This results into

𝑐𝑖 = log
𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

≈ log
𝑝𝑖

(1 − 𝑝𝑖)
+ log 𝑁

df𝑡𝑖

a.a. 2021-2022 45 / 80

Probability estimates in adhoc retrieval

No relevance judgement available (ad-hoc retrieval)

⊚ Assume that 𝑝𝑖 is constant over all terms 𝑥𝑖 in the query and that 𝑝𝑖 = 0.5
⊚ Each term is equally likely to occur in a relevant document, and so the 𝑝𝑖 and (1 − 𝑝𝑖)

factors cancel out in the expression for 𝑅𝑆𝑉

a.a. 2021-2022 46 / 80

Probability estimates in adhoc retrieval

⊚ Combining this method with the earlier approximation for 𝑢𝑖, the document ranking is
determined simply by which query terms occur in documents scaled by their idf
weighting

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

log
𝑝𝑖(1 − 𝑢𝑖)
𝑢𝑖(1 − 𝑝𝑖)

≈ ∑
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

log 𝑁
df𝑡𝑖

⊚ For short documents (titles or abstracts) in one-pass (no relevance feedback) retrieval
situations, this estimate can be quite satisfactory

a.a. 2021-2022 47 / 80

How different are vector space and BIM?

⊚ They are not that different.

⊚ In either case you build an information retrieval scheme in the exact same way.

⊚ For probabilistic IR, at the end, you score queries not by cosine similarity and tf-idf in
a vector space, but by a slightly different formula motivated by probability theory.

Open issue: how to add term frequency and length normalization to the probabilistic
model.

a.a. 2021-2022 49 / 80

Key limitations of BIM

⊚ BIM, like much of original IR, was designed for titles or abstracts, and not for modern
full text search

⊚ We want to pay attention to term frequency and document lengths

⊚ Want some model of how often terms occur in docs

a.a. 2021-2022 50 / 80

Introducing term frequency

Let us first remind the definition of the Retrieval Status Value:

𝑅𝑆𝑉𝑑 = log ∏
𝑡∶𝑖𝑥𝑖=𝑦𝑖=1

𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)
𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)

By still applying the simplifying assumption introduced for BIM, we approximate
𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞) by 𝑝(𝑥𝑖 = 1) and 𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞) by 𝑝(𝑥𝑖 = 0)

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑥𝑖=𝑦𝑖=1

log
𝑝(𝑥𝑖 = 1|𝑅, 𝑣𝑞)𝑝(𝑥𝑖 = 0)
𝑝(𝑥𝑖 = 1)𝑝(𝑥𝑖 = 0|𝑅, 𝑣𝑞)

a.a. 2021-2022 51 / 80

Introducing term frequency

Assume that we are representing documents in terms of count matrix (number of term
occurrences). Then, document 𝑑 has a representation as a vector of integers (𝑑𝑡1 , … , 𝑑𝑡𝑛).

The Retrieval Status Value can be defined as

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑦𝑖=1

log
𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞)𝑝(𝑑𝑡𝑖 = 0)
𝑝(𝑑𝑡𝑖 = 𝑛𝑖)𝑝(𝑑𝑡𝑖 = 0|𝑅, 𝑣𝑞)

How to estimate these probabilities?

a.a. 2021-2022 52 / 80

Introducing term frequency

⊚ We need an easy-to-compute discrete distribution to estimate 𝑝
⊚ Simple choices:

• Binomial distribution. Each document 𝑑 has 𝑙 word slots and each slot has a probability ̃𝑝
of having the term 𝑡𝑗 , and 1 − ̃𝑝 otherwise. The probability of a document having 𝑘
occurrences of 𝑡𝑗 is

𝑝(𝑑𝑡𝑗 = 𝑘) = (𝑘𝑙) ̃𝑝𝑘(1 − ̃𝑝)𝑙−𝑘

feasible scheme but the binomial coefficients can be messy
• Poisson distribution. Assume (for now) all documents have same length 𝑙: term 𝑡𝑗 occurs

at some steady rate on average. Similar to a binomial for 𝑙 >> ̃𝑝, but simpler to deal with:
Binomial(𝑙, ̃𝑝) modeled as Poisson(𝑙 ̃𝑝)

a.a. 2021-2022 53 / 80

Term occurrences as Poisson distribution

General form of Poisson with mean 𝜆:

Poisson(𝑥|𝜆) = 𝑒−𝜆𝜆𝑥
𝑥!

a.a. 2021-2022 54 / 80

Term occurrences as Poisson distribution

How to estimate 𝜆?

The ratio between the collection frequency of 𝑡𝑗 and the number of documents is often a
good estimate

a.a. 2021-2022 55 / 80

Term occurrences as Poisson distribution

This results in the following estimates:

⊚ Let 𝜌𝑗 the expected number of occurrences of 𝑡𝑗 in documents relevant for 𝑞, then:

𝑝(𝑑𝑡𝑗 = 𝑛𝑗 |𝑅, 𝑣𝑞) =
𝑒−𝜌𝑗𝜌𝑛𝑗𝑗
𝑛𝑗 !

𝑝(𝑑𝑡𝑗 = 0|𝑅, 𝑣𝑞) = 𝑒−𝜌𝑗

⊚ Let 𝛾𝑗 the expected number of occurrences of 𝑡𝑗 in documents in the collection, then:

𝑝(𝑑𝑡𝑗 = 𝑛𝑗) =
𝑒−𝛾𝑗 𝛾 𝑛𝑗𝑗
𝑛𝑗 !

𝑝(𝑑𝑡𝑗 = 0) = 𝑒−𝛾𝑗

a.a. 2021-2022 56 / 80

Term occurrences as Poisson distribution

As a consequence:

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑦𝑖=1

log
𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞)𝑝(𝑑𝑡𝑖 = 0)
𝑝(𝑑𝑡𝑖 = 𝑛𝑖)𝑝(𝑑𝑡𝑖 = 0|𝑅, 𝑣𝑞)

= ∑
𝑡𝑖∶𝑦𝑖=1

log

𝑒−𝜌𝑗 𝜌𝑛𝑗𝑗
𝑛𝑗 ! 𝑒−𝛾𝑗

𝑒−𝜌𝑗 𝑒
−𝛾𝑗 𝛾 𝑛𝑗𝑗
𝑛𝑗 !

= ∑
𝑡𝑖∶𝑦𝑖=1

log
𝜌𝑛𝑗𝑗
𝛾 𝑛𝑗𝑗

= ∑
𝑡𝑗∶𝑦𝑗=1

𝑛𝑗 log
𝜌𝑗
𝛾𝑗

Each occurrence of 𝑡𝑗 contributes to the score by a factor equal to the log of the ratio
between its expected occurrences in relevant documents and its expected occurrences in
general documents

a.a. 2021-2022 57 / 80

Term occurrences as Poisson distribution

⊚ The above assumptions fit rather well in the case of contentless terms, that is words
which do not bear much meaning about a document topic

⊚ In the case of contentful terms, which may characterize with their occurrence the
topic of a document, the situation may be different

a.a. 2021-2022 58 / 80

Term occurrences as Poisson distribution

Contentful words may have higher values of 𝑑𝑓𝑡 : this happens for documents whose topic
is described by the term

a.a. 2021-2022 59 / 80

Two different Poisson distributions

Assume two types of terms occur in a document:

⊚ Terms which do not characterize the topic of the document

⊚ Terms which describe the topic of the document

Each class of terms is distributed according to a different Poisson: lower parameter for the
first class, higher for the second class

a.a. 2021-2022 60 / 80

Term occurrences as 2-Poisson distribution

The type of term in a document is modeled in terms of eliteness:

⊚ What is eliteness?
• Hidden binary variable for each document-term pair
• Given a document, a term is elite if, in some sense, the document is about the concept

denoted by the term: this implies that such term will tend to appear more often in the
document

• Term occurrences depend only on eliteness (not on relevance, at least directly)
• But eliteness is related to relevance

a.a. 2021-2022 61 / 80

Term occurrences as 2-Poisson distribution

Let 𝐸𝑖 denote the elite random variable for term 𝑡𝑖 in the document considered. We assume
that the distribution 𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞) can be expressed as the mixture of two Poisson
distributions, for the elite and the not elite case.

𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞) = 𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝐸𝑖)𝑝(𝐸𝑖|𝑅, 𝑣𝑞) + 𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝐸𝑖)𝑝(𝐸𝑖|𝑅, 𝑣𝑞)
𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞) = 𝑝𝑖 ⋅ Poisson(𝑛𝑖|𝜇𝑖) + (1 − 𝑝𝑖) ⋅ Poisson(𝑛𝑖|𝜇𝑖)

𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞) = 𝑝𝑖
𝑒−𝜇𝑖𝜇𝑛𝑖𝑖
𝑛𝑖!

+ (1 − 𝑝𝑖)
𝑒−𝜇𝑖𝜇𝑛𝑖𝑖
𝑛𝑖!

where 𝑝𝑖 = 𝑝(𝐸𝑖|𝑅, 𝑣𝑞) is the probability that the document is elite for the term 𝑡𝑖

a.a. 2021-2022 62 / 80

Term occurrences as 2-Poisson distribution

a.a. 2021-2022 63 / 80

Term occurrences as 2-Poisson distribution

The probabilities in RSV can be decomposed as

𝑝(𝑑𝑡𝑖 = 𝑛𝑖|𝑅, 𝑣𝑞) = 𝐶(𝑛𝑖)𝑝𝑖 + 𝐶(𝑛𝑖)(1 − 𝑝𝑖)
𝑝(𝑑𝑡𝑖 = 0|𝑅, 𝑣𝑞) = 𝐶(0)𝑝𝑖 + 𝐶(0)(1 − 𝑝𝑖)

𝑝(𝑑𝑡𝑖 = 𝑛𝑖) = 𝐶(𝑛𝑖)𝑝 + 𝐶(𝑛𝑖)(1 − 𝑝)
𝑝(𝑑𝑡𝑖 = 0) = 𝐶(0)𝑝 + 𝐶(0)(1 − 𝑝)

where:

⊚ 𝐶(𝑛𝑖) = Poisson(𝑛𝑖|𝜇𝑖) is the probability of observing 𝑛𝑖 occurrences of the term if the document is elite for
it

⊚ 𝐶(𝑛𝑖) = Poisson(𝑛𝑖|𝜇𝑖) is the probability of observing 𝑛𝑖 occurrences of the term if the document is not
elite for it

⊚ 𝑝𝑖 = 𝑝(𝐸𝑖|𝑅, 𝑣𝑞) is the probability that the document is elite for 𝑡𝑖 assuming it is relevant

⊚ 𝑝 = 𝑝(𝐸𝑖) is the probability that the document is elite for 𝑡𝑖 assuming it is not relevant, estimated by
considering the whole collection

a.a. 2021-2022 64 / 80

Term occurrences as 2-Poisson distribution

The resulting RSV is then

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑦𝑖=1

log
(𝐶(𝑛𝑖)𝑝𝑖 + 𝐶(𝑛𝑖)(1 − 𝑝𝑖))(𝐶(0)𝑝 + 𝐶(0)(1 − 𝑝))
(𝐶(0)𝑝𝑖 + 𝐶(0)(1 − 𝑝𝑖))(𝐶(𝑛𝑖)𝑝 + 𝐶(𝑛𝑖)(1 − 𝑝))

The estimation of this expression requires, for each term 𝑡𝑖, the estimation of:

⊚ the expectation 𝜇𝑖, the average number of occurrences in an elite document

⊚ the expectation 𝜇𝑖, the average number of occurrences in a nonelite document

⊚ the probability 𝑝𝑖 = 𝑝(𝐸𝑖|𝑅, 𝑣𝑞) that a document relevant for the query is elite for 𝑡𝑖
⊚ the probability 𝑝 = 𝑝(𝐸𝑖) that any document in the collection is elite for 𝑡𝑖

This is way too difficult and expensive

a.a. 2021-2022 65 / 80

Term occurrences as 2-Poisson distribution

The single contribution, for term 𝑡𝑖

log
(𝐶(𝑛𝑖)𝑝𝑖 + 𝐶(𝑛𝑖)(1 − 𝑝𝑖))(𝐶(0)𝑝 + 𝐶(0)(1 − 𝑝))
(𝐶(0)𝑝𝑖 + 𝐶(0)(1 − 𝑝𝑖))(𝐶(𝑛𝑖)𝑝 + 𝐶(𝑛𝑖)(1 − 𝑝))

is approximated by a simpler function behaving as expected:

⊚ for 𝑛𝑖 = 0 it should be 0
⊚ it should monotonically increase for 𝑛𝑖 > 0
⊚ for 𝑛𝑖 → ∞ it should asymptotically approach the value for the binary case

log
𝑝𝑖(1 − 𝑝)
(1 − 𝑝𝑖)𝑝

⊚ a simple function with these characteristics is the following parametric curve

(𝑘 + 1)𝑛𝑖
𝑘 + 𝑛𝑖

log
𝑝𝑖(1 − 𝑝)
(1 − 𝑝𝑖)𝑝

a.a. 2021-2022 66 / 80

Term occurrences as 2-Poisson distribution

In the case of no relevance/elite information available, we assume:

⊚ 𝑝(𝐸𝑖|𝑅, 𝑣𝑞) = 0.5
⊚ 𝑝(𝐸𝑖|𝑅, 𝑣𝑞) ≈ 𝑝(𝐸𝑖) can be further approximated by assuming 𝐸𝑖 = 1 for all documents

in wich 𝑡𝑖 occurs
this results into

log
𝑝𝑖(1 − 𝑝)
(1 − 𝑝𝑖)𝑝

≈ log 𝑁
𝑑𝑓𝑡𝑖

and to a scoring function

𝑅𝑆𝑉𝑑 = ∑
𝑡𝑖∶𝑦𝑖=1

(𝑘 + 1)𝑛𝑖
𝑘 + 𝑛𝑖

log 𝑁
𝑑𝑓𝑡𝑖

This is a first step towards the BM25 model

a.a. 2021-2022 67 / 80

Okapi BM25: Overview

⊚ Okapi BM25 is a probabilistic model that incorporates term frequency (i.e., it’s
nonbinary) and length normalization.

⊚ BIM was originally designed for short catalog records of fairly consistent length, and
it works reasonably in these contexts

⊚ For modern full-text search collections, a model should pay attention to term
frequency and document length

⊚ BestMatch25 (a.k.a BM25 or Okapi) is sensitive to these quantities

⊚ BM25 is one of the most widely used and robust retrieval models

a.a. 2021-2022 68 / 80

Okapi BM25: Starting point

⊚ The simplest score for document 𝑑 is just idf weighting of the query terms present in
the document:

𝑅𝑆𝑉𝑑 = ∑
𝑡∈𝑞

log 𝑁
df𝑡

a.a. 2021-2022 69 / 80

Okapi BM25 first basic weighting

⊚ Improve idf term log 𝑁
df𝑡

by factoring in term frequency.

𝑅𝑆𝑉𝑑 = ∑
𝑡∈𝑞

(𝑘1 + 1)tf𝑡𝑑
𝑘1 + tf𝑡𝑑

log 𝑁
df𝑡

⊚ 𝑘1: tuning parameter controlling the document term frequency scaling

⊚ (𝑘1 + 1) factor does not change ranking, but makes term score 1 when tf𝑡𝑑 = 1
⊚ Similar to tf-idf, but term scores are bounded

a.a. 2021-2022 70 / 80

Role of parameter 𝑘1

⊚ 𝑘1 helps determine term frequency saturation characteristics

⊚ it limits how much a single query term can affect the score of a given document. It
does this through approaching an asymptote

⊚ A higher/lower 𝑘1 value means that the slope of tf of BM25 curve changes. This has
the effect of changing how terms occurring extra times add extra score.

⊚ Usually, values around 1.2 − 2

a.a. 2021-2022 71 / 80

Exercise

⊚ Interpret weighting formula for 𝑘1 = 0
⊚ Interpret weighting formula for 𝑘1 = 1
⊚ Interpret weighting formula for 𝑘1 ↦ ∞

a.a. 2021-2022 72 / 80

Document length normalization

⊚ Longer documents are likely to have larger tf𝑡𝑑 values
⊚ Why might documents be longer?

• Verbosity: suggests observed tf𝑡𝑑 too high
• Larger scope: suggests observed tf𝑡𝑑 may be right

⊚ A real document collection probably has both effects so we should apply some kind of
partial normalization

a.a. 2021-2022 73 / 80

Document length normalization

⊚ Document length
𝐿𝑑 = ∑

𝑡
tf𝑡𝑑

⊚ Document length average in the collection 𝐷

𝐿ave = 1
|𝐷| ∑𝑑∈𝐷

𝐿𝑑

⊚ Length normalization component

𝐵 = (1 − 𝑏) + 𝑏 𝐿𝑑
𝐿ave

0 ≤ 𝑏 ≤ 1

• 𝑏 = 1: full document length normalization
• 𝑏 = 0: no document length normalization

a.a. 2021-2022 74 / 80

Role of parameter 𝑏
𝐵 shows up in the denominator of 𝑅𝑆𝑉𝑑 : longer documents correspond to higher 𝐿𝑑/𝐿ave
and smaller 𝑅𝑆𝑉𝑑
⊚ higher 𝑏 results in smaller 𝐵 (for a fixed 𝐿𝑑/𝐿ave) and higher 𝑅𝑆𝑉𝑑
⊚ smaller 𝑏 results in higher 𝐵 (for a fixed 𝐿𝑑/𝐿ave) and smaller 𝑅𝑆𝑉𝑑
⊚ Usually, 𝑏 has a value around 0.75.

a.a. 2021-2022 75 / 80

Okapi BM25 basic weighting

⊚ Improve idf term log 𝑁
df𝑡

by factoring in term frequency and document length.

𝑅𝑆𝑉𝑑 = ∑
𝑡∈𝑞

(𝑘1 + 1)tf𝑡𝑑
𝑘1((1 − 𝑏) + 𝑏 𝐿𝑑

𝐿ave) + tf𝑡𝑑
log 𝑁

df𝑡

⊚ tf𝑡𝑑 : term frequency in document 𝑑
⊚ 𝐿𝑑 (𝐿ave): length of document 𝑑 (average document length in the whole collection)

⊚ 𝑘1: tuning parameter controlling the document term frequency scaling (𝑘1 = 0 is
binary model, 𝑘1 large is raw term frequency); usually around 1.2-2

⊚ 𝑏: tuning parameter controlling the scaling by document length (𝑏 = 0 is no
normalization, 𝑏 = 1 is full normalization); usually around .75

a.a. 2021-2022 76 / 80

Exercise

⊚ Interpret BM25 weighting formula for 𝑘1 = 0
⊚ Interpret BM25 weighting formula for 𝑘1 = 1 and 𝑏 = 0
⊚ Interpret BM25 weighting formula for 𝑘1 ↦ ∞ and 𝑏 = 0
⊚ Interpret BM25 weighting formula for 𝑘1 ↦ ∞ and 𝑏 = 1

a.a. 2021-2022 77 / 80

BM25 vs tf-idf

⊚ Suppose your query is [machine learning]
⊚ Suppose you have 2 documents with term counts:

• doc1: learning 1024; machine 1
• doc2: learning 16; machine 8

⊚ Suppose that machine occurs in 1 out of 7 documents in the collection

⊚ Suppose that learning occurs in 1 out of 10 documents in the collection
⊚ tf-idf: 1 + log10(1 + 𝑡𝑓) log10(𝑁/𝑑𝑓)

• doc1: 41.1
• doc2: 35.8

⊚ BM25: 𝑘1 = 2
• doc1: 31
• doc2: 42.6

a.a. 2021-2022 78 / 80

Okapi BM25 weighting for long queries

⊚ For long queries, use similar weighting for query terms

𝑅𝑆𝑉𝑑 = ∑
𝑡∈𝑞

[log 𝑁
df𝑡

] ⋅ (𝑘1 + 1)tf𝑡𝑑
𝑘1((1 − 𝑏) + 𝑏 × (𝐿𝑑/𝐿ave)) + tf𝑡𝑑

⋅ (𝑘3 + 1)tf𝑡𝑞
𝑘3 + tf𝑡𝑞

⊚ tf𝑡𝑞 : term frequency in the query 𝑞
⊚ 𝑘3: tuning parameter controlling term frequency scaling of the query

⊚ No length normalization of queries (because retrieval is being done with respect to a
single fixed query)

⊚ The above tuning parameters should ideally be set to optimize performance on a
development test collection. In the absence of such optimization, experiments have
shown reasonable values are to set 𝑘1 and 𝑘3 to a value between 1.2 and 2 and 𝑏 = 0.75

a.a. 2021-2022 79 / 80

Which ranking model should I use?

⊚ I want something basic and simple → use vector space with tf-idf weighting.

⊚ I want to use a state-of-the-art ranking model with excellent performance → use
BM25 (or language models) with tuned parameters

⊚ In between: BM25 or language models with no or just one tuned parameter

a.a. 2021-2022 80 / 80

	Probabilistic Approach to IR
	Basic Probability Theory
	Probability Ranking Principle
	Appraisal&Extensions

