## INFORMATION RETRIEVAL

Scoring, term weighting & the vector space model

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022



#### Ranked retrieval

- Boolean queries.
  - Documents either match or don't.
- Occord for expert users with precise understanding of their needs and of the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users
  - Most users are not capable of writing Boolean queries ...
    - · ...or they are, but they think it's too much work.
  - Most users don't want to wade through 1000s of results.
  - This is particularly true of web search.

a.a. 2021-2022 3/58

#### Problem with Boolean search: Feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1 (boolean conjunction): "world climate crisis"
  - $\rightarrow$  200,000 hits feast
- Query 2 (boolean conjunction): "world climate crisis merkel"
  - $\rightarrow$  0 hits famine
- In Boolean retrieval, it takes a lot of skill to come up with a query that produces a manageable number of hits.
  - AND gives too few; OR gives too many
- Suggested solution:
  - Rank documents by goodness a sort of clever "soft AND"

a.a. 2021-2022 4/58

### Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

- Just show the top 10 results
- Doesn't overwhelm the user
- Premise: the ranking algorithm works, that is, more relevant results are ranked higher than less relevant results.

a.a. 2021-2022 5/5

## Scoring as the basis of ranked retrieval

- Mow can we accomplish a relevance ranking of the documents with respect to a query?
- $\odot$  Assign a score to each query-document pair, say in [0, 1].
- This score measures how well document and query "match".
- Sort documents according to scores

. 2021-2022 6/58

### **Query-document matching scores**

How do we compute the score of a query-document pair?

- If no query term occurs in the document: score should be 0.
- The more frequent a query term in the document, the higher the score
- The more query terms occur in the document, the higher the score

2021-2022 7 / 58

### Jaccard coefficient

A commonly used measure of overlap of two sets

- O Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- $\odot$  JACCARD(A, A) = 1
- $\odot$  JACCARD(A, B) = 0 if  $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

### **Jaccard coefficient:** Example

- What is the query-document match score that the Jaccard coefficient computes for:
  - Query: "ides of March"
  - Document "Caesar died in March"
  - JACCARD(q, d) = 1/6

### What's wrong with Jaccard?

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard does not consider this information.
- ⊙ Usually,,  $\frac{|A \cap B|}{\sqrt{|A \cup B|}}$  (cosine) seems better than  $|A \cap B| |A \cup B|$  (Jaccard) for length normalization.

10 / 58

### **Query-document matching scores**

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)

. 2021-2022 11/58

### Binary incidence matrix

Consider the occurrence of a term in a document:

|           | Anthony<br>and<br>Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |  |
|-----------|-----------------------------|------------------|----------------|--------|---------|---------|--|
| Anthony   | 1                           | 1                | 0              | 0      | 0       | 1       |  |
| Brutus    | 1                           | 1                | 0              | 1      | 0       | 0       |  |
| Caesar    | 1                           | 1                | 0              | 1      | 1       | 1       |  |
| Calpurnia | 0                           | 1                | 0              | 0      | 0       | 0       |  |
| Cleopatra | 1                           | 0                | 0              | 0      | 0       | 0       |  |
| mercy     | 1                           | 0                | 1              | 1      | 1       | 1       |  |
| worser    | 1                           | 0                | 1              | 1      | 1       | 0       |  |
|           |                             |                  |                |        |         |         |  |

Each document is represented as a binary vector  $\in \{0, 1\}^{|V|}$ .

#### **Count matrix**

Consider the number of occurrences of a term in a document:

|           | Anthony<br>and<br>Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |  |
|-----------|-----------------------------|------------------|----------------|--------|---------|---------|--|
| Anthony   | 157                         | 73               | 0              | 0      | 0       | 1       |  |
| Brutus    | 4                           | 157              | 0              | 2      | 0       | 0       |  |
| Caesar    | 232                         | 227              | 0              | 2      | 1       | 0       |  |
| Calpurnia | 0                           | 10               | 0              | 0      | 0       | 0       |  |
| Cleopatra | 57                          | 0                | 0              | 0      | 0       | 0       |  |
| mercy     | 2                           | 0                | 3              | 8      | 5       | 8       |  |
| worser    | 2                           | 0                | 1              | 1      | 1       | 5       |  |
|           |                             |                  |                |        |         |         |  |

Each document is now represented as a count vector  $\in \mathbb{N}^{|V|}$ .

a. 2021-2022 14/58

### Bag of words model

- We do not consider the order of words in a document.
- o John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- Information loss, but simplification of the problem: the positional index was able to distinguish these two documents.

a.a. 2021-2022 15/58

### Term frequency tf

- The term frequency  $tf_{t,d}$  of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want because:
  - A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
  - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

16 / 58

## Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as

$$\mathbf{w}_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \text{if } \mathsf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- $\odot$  tf<sub>t,d</sub>  $\rightarrow$  w<sub>t,d</sub>:  $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4$ , etc.
- $\odot$  Score for a document-query pair: sum over terms t in both q and d: tf-matching-score $(q, d) = \sum_{t \in q \cap d} (1 + \log t f_{t,d})$
- The score is 0 if none of the guery terms is present in the document.

#### Exercise

Compute the Jaccard matching score and the tf matching score for the following query-document pairs.

- q: [information on cars] d: "all you've ever wanted to know about cars"
- q: [information on cars] d: "information on trucks, information on planes, information on trains"
- q: [red cars and red trucks] d: "cops stop red cars more often"

a.a. 2021-2022 18/58

## Frequency in document vs. frequency in collection

- $\odot$  In addition, to term frequency (the frequency of the term in the document) ...
- ...we also want to use the frequency of the term in the collection for weighting and ranking.

a.a. 2021-2022 20 / 58

#### Desired weight for rare terms

- Rare terms are more informative than frequent terms.
- © Consider a term in the query that is rare in the collection (e.g., **Phenethylamine**).
- A document containing this term is very likely to be relevant.
- We want high weights for rare terms like Phenethylamine.

a.a. 2021-2022 21/58

### Desired weight for frequent terms

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., good, increase, line).
- A document containing this term is more likely to be relevant than a document that doesn't
- But words like good, increase and line are not sure indicators of relevance.
- As a consequence, for frequent terms like good, increase, and line, we want positive weights,
- but lower weights than for rare terms.

a.a. 2021-2022 22/58

#### **Document frequency**

- We want high weights for rare terms like Phenethylamine.
- We want low (positive) weights for frequent words like good, increase, and line.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

2021-2022 23 / 58

## idf weight

- $\odot$  df<sub>t</sub> is the document frequency, the number of documents that t occurs in.
- $\odot$  df<sub>t</sub> is an inverse measure of the informativeness of term t.
- $\odot$  We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \log_{10} \frac{N}{\mathsf{df}_t}$$

(*N* is the number of documents in the collection.)

- $\odot$  idf<sub>t</sub> is a measure of the informativeness of the term.
- $\odot \log \frac{N}{\mathrm{df}_t}$  instead of  $\frac{N}{\mathrm{df}_t}$  to "dampen" the effect of idf
- Note that we use the log transformation for both term frequency and document frequency.

a.a. 2021-2022 24/58

### idf weight

- $df_t$  is the document frequency, the number of documents that t occurs in.
- $df_t$  is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$idf_t = \log_{10} \frac{N}{df_t}$$

(*N* is the number of documents in the collection.)

- $idf_t$  is a measure of the informativeness of the term.
- $[\log N/\mathrm{df}_t]$  instead of  $[N/\mathrm{df}_t]$  to "dampen" the effect of idf
- Note that we use the log transformation for both term frequency and document frequency.

25 / 58

# idf weight



 $\frac{N}{\mathsf{df}_t}$ 



 $\log \frac{N}{dt}$ 

a.a. 2021-2022

26 / 58

## Examples for idf

Compute  $\mathrm{idf}_t$  using the formula:  $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$ 

| term      | $df_t$    | $idf_t$ |
|-----------|-----------|---------|
| calpurnia | 1         |         |
| animal    | 100       |         |
| sunday    | 1000      |         |
| fly       | 10,000    |         |
| under     | 100,000   |         |
| the       | 1,000,000 |         |

## Examples for idf

Compute  $\mathrm{idf}_t$  using the formula:  $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$ 

| term      | $df_t$    | $idf_t$ |
|-----------|-----------|---------|
| calpurnia | 1         | 6       |
| animal    | 100       | 4       |
| sunday    | 1000      | 3       |
| fly       | 10,000    | 2       |
| under     | 100,000   | 1       |
| the       | 1,000,000 | 0       |

a. 2021-2022 28 / 58

### Effect of idf on ranking

- o idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of arachnocentric and decreases the relative weight of line.
- idf has little effect on ranking for one-term queries.

a.a. 2021-2022 29 / 58

# Collection frequency vs. Document frequency

| word      | collection frequency | document frequency |
|-----------|----------------------|--------------------|
| insurance | 10440                | 3997               |
| try       | 10422                | 8760               |

- Collection frequency of t: number of tokens of t in the collection
- Document frequency of t: number of documents t occurs in
- Which word is a better search term (and should get a higher weight)?
- This example suggests that df (and idf) is better for weighting than cf (and "icf").

30 / 58

## tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

0

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- tf-weight
- o idf-weight
- Best known weighting scheme in information retrieval
- Alternative names: tf.idf, tf x idf

## Summary: tf-idf

- Assign a tf-idf weight for each term t in each document d:  $w_{t,d} = (1 + \log tf_{t,d}) \cdot \log \frac{N}{df}$
- The tf-idf weight ...
  - ...increases with the number of occurrences within a document. (term frequency)
  - ...increases with the rarity of the term in the collection. (inverse document frequency)

32 / 58

## Exercise: Term, collection and document frequency

| Quantity             | Symbol     | Definition                          |
|----------------------|------------|-------------------------------------|
| term frequency       | $tf_{t,d}$ | number of occurrences of $t$ in $d$ |
| document frequency   | $df_t$     | number of documents in the          |
|                      |            | collection that t occurs in         |
| collection frequency | $cf_t$     | total number of occurrences of $t$  |
|                      |            | in the collection                   |

- Relationship between df and cf?
- Relationship between tf and cf?
- Relationship between tf and df?

### Binary incidence matrix

Consider the occurrence of a term in a document:

|           | Anthony<br>and<br>Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |  |
|-----------|-----------------------------|------------------|----------------|--------|---------|---------|--|
| Anthony   | 1                           | 1                | 0              | 0      | 0       | 1       |  |
| Brutus    | 1                           | 1                | 0              | 1      | 0       | 0       |  |
| Caesar    | 1                           | 1                | 0              | 1      | 1       | 1       |  |
| Calpurnia | 0                           | 1                | 0              | 0      | 0       | 0       |  |
| Cleopatra | 1                           | 0                | 0              | 0      | 0       | 0       |  |
| mercy     | 1                           | 0                | 1              | 1      | 1       | 1       |  |
| worser    | 1                           | 0                | 1              | 1      | 1       | 0       |  |
|           |                             |                  |                |        |         |         |  |

Each document is represented as a binary vector  $\in \{0, 1\}^{|V|}$ .

#### **Count matrix**

Consider the number of occurrences of a term in a document:

|           | Anthony<br>and<br>Cleopatra | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth | ••• |
|-----------|-----------------------------|------------------|----------------|--------|---------|---------|-----|
| Anthony   | 157                         | 73               | 0              | 0      | 0       | 1       |     |
| Brutus    | 4                           | 157              | 0              | 2      | 0       | 0       |     |
| Caesar    | 232                         | 227              | 0              | 2      | 1       | 0       |     |
| Calpurnia | 0                           | 10               | 0              | 0      | 0       | 0       |     |
| Cleopatra | 57                          | 0                | 0              | 0      | 0       | 0       |     |
| mercy     | 2                           | 0                | 3              | 8      | 5       | 8       |     |
| worser    | 2                           | 0                | 1              | 1      | 1       | 5       |     |
|           |                             |                  |                |        |         |         |     |

Each document is now represented as a count vector  $\in \mathbb{N}^{|V|}$ .

i.a. 2021-2022 36/58

### Binary $\rightarrow$ count $\rightarrow$ weight matrix

Consider the tf-idf score of a term in a document

|           | Anthony<br>and | Julius<br>Caesar | The<br>Tempest | Hamlet | Othello | Macbeth |  |
|-----------|----------------|------------------|----------------|--------|---------|---------|--|
|           | Cleopatra      |                  |                |        |         |         |  |
| Anthony   | 5.25           | 3.18             | 0.0            | 0.0    | 0.0     | 0.35    |  |
| Brutus    | 1.21           | 6.10             | 0.0            | 1.0    | 0.0     | 0.0     |  |
| Caesar    | 8.59           | 2.54             | 0.0            | 1.51   | 0.25    | 0.0     |  |
| Calpurnia | 0.0            | 1.54             | 0.0            | 0.0    | 0.0     | 0.0     |  |
| Cleopatra | 2.85           | 0.0              | 0.0            | 0.0    | 0.0     | 0.0     |  |
| mercy     | 1.51           | 0.0              | 1.90           | 0.12   | 5.25    | 0.88    |  |
| worser    | 1.37           | 0.0              | 0.11           | 4.15   | 0.25    | 1.95    |  |
|           |                |                  |                |        |         |         |  |

Each document is now represented as a real-valued vector of tf-idf weights  $\in \mathbb{R}^{|V|}$ .

a. 2021-2022 37/5

#### **Documents as vectors**

- ⊚ Each document is now represented as a real-valued vector of tf-idf weights  $\in \mathbb{R}^{|V|}$ .
- $\odot$  So we have a  $\mid V \mid$ -dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

#### Queries as vectors

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- ⊙ proximity = similarity ≈ negative distance
- Rank documents in inverse order wrt the distance of its vector from the query vector
- Mow to define a distance between vectors of terms?

a.a. 2021-2022 39/58

### How do we formalize vector space similarity?

- First approach: distance of vectors = distance between their endpoints
- o For example, euclidean distance
- Endpoint distance is a bad idea: it is heavily affected by vector lengths
- It may be large for vectors of different lengths

a.a. 2021-2022 40/58

### Why distance is a bad idea



The Euclidean distance of  $\vec{q}$  and  $\vec{d}_2$  is large although the distribution of terms in the query q and the distribution of terms in the document  $d_2$  are very similar.

a.a. 2021-2022 41/58

### Why distance is a bad idea

- Thought experiment: take a document d and append it to itself. Call this document d'.
   d' is twice as long as d.
- $\odot$  "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity
- The Euclidean distance between the two documents can be quite large.

Better approach: rank documents according to angle with query

a.a. 2021-2022 42/58

#### **Cosine function**

The cosine function is monotonically decreasing in  $[0, 2\pi]$ 



a. 2021-2022 43/5

### From angles to cosines

- The following two notions are equivalent.
  - Rank documents according to the angle between query and document in decreasing order
  - Rank documents according to cosine(query,document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval [0°, 180°]

a.a. 2021-2022 44/58

# Cosine distance and length normalization

- A vector can be normalized by dividing each of its components by its length (norm)
- $\odot$  here we use the  $L_2$  (euclidean) norm:  $\|x\|_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere, since after normalization:  $||x||_2 = \sqrt{\sum_i x_i^2} = 1$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length normalization.

45 / 58

#### Cosine for normalized vectors

- For normalized vectors, the cosine is equivalent to the dot (or scalar) product.
- $\odot \cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$ 
  - (if  $\vec{q}$  and  $\vec{d}$  are length-normalized).
- o this result in an approach to compute cosine similarity:
  - normalize vectors
  - sum of products for all components different from 0 in both vectors (terms appearing in both documents or in both document and query)

46 / 58

# Cosine similarity between query and document

$$\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- $\odot$   $q_i$  is the tf-idf weight of term i in the query.
- $d_i$  is the tf-idf weight of term i in the document.
- $|\vec{q}|$  and  $|\vec{d}|$  are the lengths of  $\vec{q}$  and  $\vec{d}$ .
- This is the cosine similarity of  $\vec{q}$  and  $\vec{d}$  .....or, equivalently, the cosine of the angle between  $\vec{q}$  and  $\vec{d}$ .

2021-2022 47 / 58

# Cosine similarity illustrated



a.a. 2021-2022 48/58

#### **Cosine: Example**

How similar are these novels?

SaS: Sense and Sensibility

PaP: Pride and Prejudice

WH: Wuthering Heights

### term frequencies (counts)

| term      | SaS | PaP | WH |
|-----------|-----|-----|----|
| affection | 115 | 58  | 20 |
| jealous   | 10  | 7   | 11 |
| gossip    | 2   | 0   | 6  |
| wuthering | 0   | 0   | 38 |
|           |     |     |    |

.a. 2021-2022 49/58

## **Cosine: Example**

term frequencies (counts)

| term      | SaS | PaP | WH |
|-----------|-----|-----|----|
| affection | 115 | 58  | 20 |
| jealous   | 10  | 7   | 11 |
| gossip    | 2   | 0   | 6  |
| wuthering | 0   | 0   | 38 |

log frequency weighting

| term      | SaS  | PaP  | WH   |
|-----------|------|------|------|
| affection | 3.06 | 2.76 | 2.30 |
| jealous   | 2.0  | 1.85 | 2.04 |
| gossip    | 1.30 | 0    | 1.78 |
| wuthering | 0    | 0    | 2.58 |
|           |      |      |      |

(To simplify this example, we don't do idf weighting.)

a. 2021-2022 50/58

# Cosine: Example

log frequency weighting

| term      | SaS  | PaP  | WH   |
|-----------|------|------|------|
| affection | 3.06 | 2.76 | 2.30 |
| jealous   | 2.0  | 1.85 | 2.04 |
| gossip    | 1.30 | 0    | 1.78 |
| wuthering | 0    | 0    | 2.58 |

log frequency weighting & cosine normalization

| term      | SaS   | PaP   | WH    |
|-----------|-------|-------|-------|
| affection | 0.789 | 0.832 | 0.524 |
| jealous   | 0.515 | 0.555 | 0.465 |
| gossip    | 0.335 | 0.0   | 0.405 |
| wuthering | 0.0   | 0.0   | 0.588 |

- cos(SaS,PaP) ≈ 0.789 \* 0.832 + 0.515 \* 0.555 + 0.335 \* 0.0 + 0.0 \* 0.0 ≈ 0.94.
- $\odot$  cos(SaS,WH)  $\approx$  0.79
- $\odot$  cos(PaP,WH)  $\approx$  0.69
- $\odot$  Why do we have  $\cos(SaS,PaP) > \cos(SAS,WH)$ ?

a.a. 2021-2022 51/5

# Computing the cosine score

```
CosineScore(q)
    float\ Scores[N] = 0
    float Length[N]
     for each query term t
     do calculate w_{t,q} and fetch postings list for t
        for each pair(d, tf<sub>t,d</sub>) in postings list
         do Scores[d] + = w_{t,d} \times w_{t,q}
     Read the array Length
     for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

52 / 58

## Computing the cosine score

- The previous algorithm scores term-at-a-time (TAAT)
- Algorithm can be adapted to scoring document-at-a-time (DAAT)

Storing  $w_{t,d}$  in each posting could be expensive

- ...because we'd have to store a floating point number
- For tf-idf scoring, it suffices to store tft,d in the posting and idft in the head of the postings list

Extracting the top K items can be done with a priority queue (e.g., a heap)

a.a. 2021-2022 53/58

| natural   | $TF_{total}(t,d)$      | n(t,d)                                                                        |
|-----------|------------------------|-------------------------------------------------------------------------------|
| boolean   | $TF_{bool}(t,d)$       | $\begin{cases} 1 & \text{if } n(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$ |
| sum       | $TF_{sum}(t,d)$        | $\frac{n(t,d)}{N(d)}$                                                         |
| max       | $TF_{max}(t,d)$        | $\frac{n(t,d)}{\max_{t'} n(t',d)}$                                            |
| augmented | $TF_{aug}(t,d)$        | $0.5 + \frac{0.5 \cdot n(t,d)}{\max_{t'} n(t',d)}$                            |
| log       | $TF_{log}(t,d)$        | $\log(1+n(t,d))$                                                              |
| log avg   | $TF_{logavg}(t,d)$     | $\frac{\log(1+n(t,d))}{\log(1+na(d))}$                                        |
| frac      | $TF_{frac}(t,d;k)$     | $\frac{n(t,d)}{n(t,d)+k}$                                                     |
| BM25      | $TF_{BM25}(t,d,c;k,b)$ | $\frac{n(t,d)}{n(t,d) + k(b \cdot ndl(d,c) + (1-b))}$                         |

- $\odot$  |d|: number of distinct terms in document d
- ⊚ |c|: number of documents in collection c
- o n(t, d): number of occurrences of term t in document d
- ⊚  $N(d) = \sum_{t} n(t, d)$ : length (overall number of occurrences of all terms) in document d⊚  $na(d) = \frac{1}{|d|} \sum_{t} n(t, d)$ : average number of occurrences of terms in document d
- o  $ndl(d,c) = \frac{N(d)}{adl(c)}$ : length of document d normalized wrt collection c
- $\odot \ \ adl(d,c) = \frac{1}{|c|} \sum_{d,c} N(d)$ : average length of documents in collection c

a.a. 2021-2022 54 / 58

- $\odot$  TF<sub>total</sub>, TF<sub>sum</sub>, TF<sub>max</sub> all correspond to assuming "independence" of occurrences: tf increases by a same amount for each successive occurrence (independently from the number of occurrences already observed)
- TF<sub>total</sub> has no normalization wrt document length: biased toward longer documents
- assume a set of documents of different length with the same fraction of occurrences of a certain term t: how do we want documents scored wrt t?

a.a. 2021-2022 55/58

- TF<sub>total</sub> has no normalization wrt document length: longer documents receive higher score (this could happen even for a lower fraction of occurrences, since only the absolute amount of occurrences is considered)
- $\odot$  TF<sub>sum</sub> normalizes wrt document length: all documents receive the same score, but perhaps we would prefer longer documents to be preferred in a certain amount, even if the fraction of term occurrences is the same
- $\odot$  TF<sub>max</sub> is an intermediate approach: for a same fraction of occurrences, longer documents are preferred, but not as much as in TF<sub>total</sub>

a.a. 2021-2022 56/58

 $\odot$  TF<sub>frac</sub> introduces a decreasing marginal gain wrt the number of occurrences: its increase deriving from the *n*-th occurrence of a term is smaller for larger *n* 



 $\odot$  the same holds for TF $_{log}$ 

a.a. 2021-2022 57/58

| total       | $idf_{total}(t,c)$      | $-\log n(t,c)$                                                     |
|-------------|-------------------------|--------------------------------------------------------------------|
| sum         | $idf_{sum}(t,c)$        | $-\log \frac{n(t,c)}{ c }$                                         |
| smooth sum  | $idf_{smooth}(t,c)$     | $-\log \frac{n(t,c)+0.5}{ c +1}$                                   |
| prob        | $idf_{prob}(t,c)$       | $\max\left(0, -\log\frac{n(t,c)}{ c  - n(t,c)}\right)$             |
| smooth prob | $idf_{smoothprob}(t,c)$ | $\max\left(0, -\log\frac{n(t,c) + 0.5}{ c  - n(t,c) + 0.5}\right)$ |

- $\circ$  n(t,c): number of documents in collection c in which term t occurs

a. 2021-2022 58/58