
Introduction to Information Retrieval

Introduction to
Information Retrieval

CS276
Information Retrieval and Web Search

Chris Manning and Pandu Nayak
Systems issues

Introduction to Information Retrieval

Background

§ Score computation is a large (10s of %) fraction of
the CPU work on a query
§ Generally, we have a tight budget on latency (say, 250ms)

§ CPU provisioning doesn’t permit exhaustively scoring every
document on every query

§ Today we’ll look at ways of cutting CPU usage for
scoring, without compromising the quality of results
(much)

§ Basic idea: avoid scoring docs that won’t make it into
the top K

2

Introduction to Information Retrieval

Safe vs non-safe ranking
§ The terminology “safe ranking” is used for methods

that guarantee that the K docs returned are the K
absolute highest scoring documents

§ Is it ok to be non-safe?

3

Introduction to Information Retrieval

Ranking function is only a proxy
§ User has a task and a query formulation
§ Ranking function matches docs to query
§ Thus the ranking function is anyway a proxy for user

happiness
§ If we get a list of K docs “close” to the top K by the

ranking function measure, should be ok

Sec. 7.1.1

Introduction to Information Retrieval

Recap: Queries as vectors
§ Key idea 1: Do the same for queries: represent them

as vectors in the space
§ Key idea 2: Rank documents according to their

proximity to the query in this space
§ proximity = similarity of vectors, measured by cosine

similarity

Ch. 6

Introduction to Information Retrieval

Efficient cosine ranking
§ Find the K docs in the collection “nearest” to the

query Þ K largest query-doc cosines.
§ Efficient ranking:

§ Computing a single cosine efficiently.
§ Choosing the K largest cosine values efficiently.

§ Can we do this without computing all N cosines?

Sec. 7.1

Introduction to Information Retrieval

Computing the K largest cosines:
selection vs. sorting
§ Typically we want to retrieve the top K docs (in the

cosine ranking for the query)
§ not to totally order all docs in the collection

§ Can we pick off docs with K highest cosines?
§ Let J = number of docs with nonzero cosines

§ We seek the K best of these J

Sec. 7.1

Introduction to Information Retrieval

Use heap for selecting top K
§ Binary tree in which each node’s value > the values

of children
§ Takes 2J operations to construct, then each of K

“winners” read off in O(log J) steps.
§ For J=1M, K=100, this is about 10% of the cost of

sorting.
1

.9 .3

.8.3

.1

.1

Sec. 7.1

Introduction to Information Retrieval

Bottlenecks
§ Primary computational bottleneck in scoring: cosine

computation
§ Can we avoid all this computation?
§ Yes, but may sometimes get it wrong

§ a doc not in the top K may creep into the list of K
output docs

§ As noted earlier, this may not be a bad thing

Sec. 7.1.1

Introduction to Information Retrieval

SPEEDING COSINE COMPUTATION
BY PRUNING

10

Introduction to Information Retrieval

Generic approach
§ Find a set A of contenders, with K < |A| << N

§ A does not necessarily contain the top K, but has
many docs from among the top K

§ Return the top K docs in A
§ Think of A as pruning non-contenders
§ The same approach is also used for other (non-

cosine) scoring functions
§ Will look at several schemes following this approach

Sec. 7.1.1

Introduction to Information Retrieval

Index elimination
§ Basic cosine computation algorithm only considers

docs containing at least one query term
§ Take this further:

§ Only consider high-idf query terms
§ Only consider docs containing many query terms

Sec. 7.1.2

Introduction to Information Retrieval

High-idf query terms only
§ For a query such as catcher in the rye
§ Only accumulate scores from catcher and rye
§ Intuition: in and the contribute little to the scores

and so don’t alter rank-ordering much
§ Benefit:

§ Postings of low-idf terms have many docs ® these (many)
docs get eliminated from set A of contenders

Sec. 7.1.2

Introduction to Information Retrieval

Docs containing many query terms
§ Any doc with at least one query term is a candidate

for the top K output list
§ For multi-term queries, only compute scores for docs

containing several of the query terms
§ Say, at least 3 out of 4
§ Imposes a “soft conjunction” on queries seen on web

search engines (early Google)
§ Easy to implement in postings traversal

Sec. 7.1.2

Introduction to Information Retrieval

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Introduction to Information Retrieval

Champion lists
§ Precompute for each dictionary term t, the r docs of

highest weight in t’s postings
§ Call this the champion list for t
§ (aka fancy list or top docs for t)

§ Note that r has to be chosen at index build time
§ Thus, it’s possible that r < K

§ At query time, only compute scores for docs in the
champion list of some query term
§ Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Introduction to Information Retrieval

Exercises
§ How can Champion Lists be implemented in an

inverted index?

Sec. 7.1.3

Introduction to Information Retrieval

QUERY-INDEPENDENT DOCUMENT
SCORES

18

Introduction to Information Retrieval

Quantitative

Static quality scores
§ We want top-ranking documents to be both relevant

and authoritative
§ Relevance is being modeled by cosine scores
§ Authority is typically a query-independent property

of a document
§ Examples of authority signals

§ Wikipedia among websites
§ Articles in certain newspapers
§ A paper with many citations
§ Many bitlys, likes, or bookmarks
§ Pagerank

Sec. 7.1.4

Introduction to Information Retrieval

Modeling authority
§ Assign to each document a query-independent

quality score in [0,1] to each document d
§ Denote this by g(d)

§ Thus, a quantity like the number of citations is scaled
into [0,1]
§ Exercise: suggest a formula for this.

Sec. 7.1.4

Introduction to Information Retrieval

Net score
§ Consider a simple total score combining cosine

relevance and authority
§ net-score(q,d) = g(d) + cosine(q,d)

§ Can use some other linear combination
§ Indeed, any function of the two “signals” of user

happiness
§ Now we seek the top K docs by net score

Sec. 7.1.4

Introduction to Information Retrieval

Top K by net score – fast methods
§ First idea: Order all postings by g(d)
§ Key: this is a common ordering for all postings
§ Thus, can concurrently traverse query terms’

postings for
§ Postings intersection
§ Cosine score computation

§ Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Sec. 7.1.4

Introduction to Information Retrieval

Why order postings by g(d)?
§ Under g(d)-ordering, top-scoring docs likely to

appear early in postings traversal
§ In time-bound applications (say, we have to return

whatever search results we can in 50 ms), this allows
us to stop postings traversal early
§ Short of computing scores for all docs in postings

Sec. 7.1.4

Introduction to Information Retrieval

Champion lists in g(d)-ordering
§ Can combine champion lists with g(d)-ordering
§ Maintain for each term a champion list of the r docs

with highest g(d) + tf-idftd

§ Seek top-K results from only the docs in these
champion lists

Sec. 7.1.4

Introduction to Information Retrieval

CLUSTER PRUNING

25

Introduction to Information Retrieval

Cluster pruning: preprocessing
§ Pick ÖN docs at random: call these leaders
§ For every other doc, pre-compute nearest

leader
§ Docs attached to a leader: its followers;
§ Likely: each leader has ~ ÖN followers.

Sec. 7.1.6

Introduction to Information Retrieval

Cluster pruning: query processing
§ Process a query as follows:

§ Given query Q, find its nearest leader L.
§ Seek K nearest docs from among L’s

followers.

Sec. 7.1.6

Introduction to Information Retrieval

Visualization

Query

Leader Follower

Sec. 7.1.6

Introduction to Information Retrieval

Why use random sampling
§ Fast
§ Leaders reflect data distribution

Sec. 7.1.6

Introduction to Information Retrieval

General variants
§ Have each follower attached to b1=3 (say) nearest

leaders.
§ From query, find b2=4 (say) nearest leaders and their

followers.
§ Can recurse on leader/follower construction.

Sec. 7.1.6

Introduction to Information Retrieval

TIERED INDEXES

31

Introduction to Information Retrieval

High and low lists
§ For each term, we maintain two postings lists called

high and low
§ Think of high as the champion list

§ When traversing postings on a query, only traverse
high lists first
§ If we get more than K docs, select the top K and stop
§ Else proceed to get docs from the low lists

§ Can be used even for simple cosine scores, without
global quality g(d)

§ A means for segmenting index into two tiers

Sec. 7.1.4

Introduction to Information Retrieval

Tiered indexes
§ Break postings up into a hierarchy of lists

§ Most important
§ …
§ Least important

§ Can be done by g(d) or another measure
§ Inverted index thus broken up into tiers of decreasing

importance
§ At query time use top tier unless it fails to yield K

docs
§ If so drop to lower tiers

Sec. 7.2.1

Introduction to Information Retrieval

Example tiered index

Sec. 7.2.1

Introduction to Information Retrieval

Impact-ordered postings
§ We only want to compute scores for docs for which

wft,d is high enough
§ We sort each postings list by wft,d

§ Now: not all postings in a common order!
§ How do we compute scores in order to pick off top K?

§ Two ideas follow

Sec. 7.1.5

Introduction to Information Retrieval

1. Early termination
§ When traversing t’s postings, stop early after either

§ a fixed number of r docs
§ wft,d drops below some threshold

§ Take the union of the resulting sets of docs
§ One from the postings of each query term

§ Compute only the scores for docs in this union

Sec. 7.1.5

Introduction to Information Retrieval

2. idf-ordered terms
§ When considering the postings of query terms
§ Look at them in order of decreasing idf

§ High idf terms likely to contribute most to score
§ As we update score contribution from each query

term
§ Stop if doc scores relatively unchanged

§ Can apply to cosine or some other net scores

Sec. 7.1.5

Introduction to Information Retrieval

SAFE RANKING

38

Introduction to Information Retrieval

Safe vs non-safe ranking
§ The terminology “safe ranking” is used for methods

that guarantee that the K docs returned are the K
absolute highest scoring documents
§ (Not necessarily just under cosine similarity)

39

Introduction to Information Retrieval

Safe ranking
§ When we output the top K docs, we have a proof

that these are indeed the top K
§ Does this imply we always have to compute all N

cosines?
§ We’ll look at pruning methods
§ So we only fully score some J documents

40

Introduction to Information Retrieval

WAND scoring
§ An instance of Document At A Time (DAAT) scoring
§ Basic idea reminiscent of branch and bound

§ We maintain a running threshold score – e.g., the Kth

highest score computed so far
§ We prune away all docs whose cosine scores are

guaranteed to be below the threshold
§ We compute exact cosine scores for only the un-pruned

docs

41

Broder et al. Efficient Query Evaluation using a Two-Level Retrieval Process.

Introduction to Information Retrieval

Index structure for WAND
§ Postings ordered by docID
§ Assume a special iterator on the postings of the form

“go to the first docID greater than or equal to X”
§ Typical state: we have a “finger” at some docID in the

postings of each query term
§ Each finger moves only to the right, to larger docIDs

§ Invariant – all docIDs lower than any finger have
already been processed, meaning
§ These docIDs are either pruned away or
§ Their cosine scores have been computed

42

Introduction to Information Retrieval

Upper bounds
§ At all times for each query term t, we maintain an

upper bound UBt on the score contribution of any
doc to the right of the finger
§ Max (over docs remaining in t’s postings) of wt(doc)

43

t 3 7 11 17 29 38 57 79

finger

UBt = wt(38)

As finger moves right, UB drops

Introduction to Information Retrieval

Pivoting
§ Query: catcher in the rye
§ Let’s say the current finger positions are as below

44

catcher

rye

in

the

273

304

589

762

UBcatcher= 2.3

UBrye = 1.8

UBin = 3.3

UBthe = 4.3

Threshold = 6.8

Pivot

Introduction to Information Retrieval

Prune docs that have no hope
§ Terms sorted in order of finger positions
§ Move fingers to 589 or right

45

catcher

rye

in

the

273

304

589

762

UBcatcher= 2.3

UBrye = 1.8

UBin = 3.3

UBthe = 4.3

Threshold = 6.8

Pivot

Hopeless docs

Hopeless docs

Update UB’s

Introduction to Information Retrieval

Compute 589’s score if need be
§ If 589 is present in enough postings, compute its full

cosine score – else some fingers to right of 589
§ Pivot again …

46

catcher

rye

in

the

589

762

589

589

Introduction to Information Retrieval

WAND summary
§ In tests, WAND leads to a 90+% reduction in score

computation
§ Better gains on longer queries

§ Nothing we did was specific to cosine ranking
§ We need scoring to be additive by term

§ WAND and variants give us safe ranking
§ Possible to devise “careless” variants that are a bit faster

but not safe (see summary in Ding+Suel 2011)
§ Ideas combine some of the non-safe scoring we

considered

47

