
Information retrieval
Language models

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Derived from slides originally produced by C. Manning and by H. Schütze

Using language models (LMs) for IR

⊚ We view the document in terms of as a generative model that generates the query
⊚ What we need to do:

• Define the precise generative model we want to use
• Estimate parameters (different parameters for each document’s model)
• Smooth to avoid zeros
• Apply to query and find document most likely to have generated the query
• Present most likely document(s) to user

a.a. 2021-2022 3 / 31

What is a language model?

⊚ Assume we are reading (or generating) a document 𝑑 term by term

⊚ We can view a language model 𝑀𝑑 for 𝑑 as a way to determine the next term which
will be read (generated)

We can view the language model as a finite state automaton, where the transitions
between states are associated to terms

𝑚𝑒
𝑚𝑒 𝑚𝑒 𝑚𝑒 𝑚𝑒 …

𝑤𝑖𝑠ℎ

𝐼
𝐼 𝑤𝑖𝑠ℎ 𝐼 𝑤𝑖𝑠ℎ…

Cannot generate: “I I”, “ wish wish wish” or “wish I wish”: history counts
a.a. 2021-2022 4 / 31

Probabilistic language models

Each document was generated by a different automaton like this, except that these
automata are probabilistic.

⊚ For each node, a probability distribution is defined on all transitions

⊚ A document corresponds to (is generated as) a sequence of random sample on such
distributions

a.a. 2021-2022 5 / 31

A probabilistic language model

0 1 2

3

𝐹 𝑟𝑜𝑑𝑜, 𝑆𝑎𝑚

𝐼
𝑦𝑜𝑢 𝑠𝑎𝑤

𝑎𝑚, 𝑠𝑒𝑒

𝑃(term|state)

𝑡 𝑝(𝑡|0) 𝑝(𝑡|1) 𝑝(𝑡|2) 𝑝(𝑡|3)
𝐼 0.4
𝑦𝑜𝑢 0.4
𝑎𝑚 0.5
𝑠𝑒𝑒 0.5
𝑠𝑎𝑤 1
𝐹 𝑟𝑜𝑑𝑜 0.8
𝑆𝑎𝑚 0.2
STOP 0.2

⊚ This is a probabilistic finite-state automaton and the transition distribution for its
states 0, 1, 2, 3.

⊚ STOP is not a word, but a special symbol indicating that the automaton stops.

a.a. 2021-2022 6 / 31

A probabilistic language model

0 1 2

3

𝐹 𝑟𝑜𝑑𝑜, 𝑆𝑎𝑚

𝐼
𝑦𝑜𝑢 𝑠𝑎𝑤

𝑎𝑚, 𝑠𝑒𝑒

𝑃(term|state)

𝑡 𝑝(𝑡|0) 𝑝(𝑡|1) 𝑝(𝑡|2) 𝑝(𝑡|3)
𝐼 0.4
𝑦𝑜𝑢 0.4
𝑎𝑚 0.5
𝑠𝑒𝑒 0.5
𝑠𝑎𝑤 1
𝐹 𝑟𝑜𝑑𝑜 0.8
𝑆𝑎𝑚 0.2
STOP 0.2

⊚ possible sequence generated:
𝑤 I am Frodo you saw Sam STOP
𝑃(𝑡|𝑠) 0.4 0.5 0.8 0.4 1 0.2 0.2

Total sequence probability = 0.00256
a.a. 2021-2022 7 / 31

A probabilistic unigram language model

A simple version of language models, that we will consider here, is provided by the case
when there is a unique state, hence 𝑝(𝑡|𝑠) = 𝑝(𝑡) for each term

∗

𝑃(term)
𝑡 𝑝(𝑡)
𝐼 0.1
𝑦𝑜𝑢 0.05
𝑎𝑚 0.1
𝑠𝑒𝑒 0.15
𝑠𝑎𝑤 0.1
𝐹 𝑟𝑜𝑑𝑜 0.3
𝑆𝑎𝑚 0.1
STOP 0.1

⊚ possible sequence generated:
𝑤 Frodo I Sam Sam saw see Frodo STOP
𝑃(𝑡|𝑠) 0.3 0.1 0.1 0.1 0.15 0.2 0.3 0.1

Total sequence probability = 2.7 ⋅ 10−7
a.a. 2021-2022 8 / 31

A different language model for each document

𝑀𝑑1 : language model of 𝑑1
𝑡 𝑝(𝑡) 𝑡 𝑝(𝑡)
STOP .1 I .15
you .2 am .05
see .05 saw .05
Frodo .2 Sam .2

𝑀𝑑1 : language model of 𝑑1
𝑡 𝑝(𝑡) 𝑡 𝑝(𝑡)
STOP .2 I .1
you .1 am .05
see .15 saw .2
Frodo .15 Sam .05

query: Frodo saw Sam STOP

𝑝(query|𝑀𝑑1) = 0.2 ⋅ 0.05 ⋅ 0.2 ⋅ 0.1 = 2 ⋅ 10−4
𝑝(query|𝑀𝑑2) = 0.15 ⋅ 0.2 ⋅ 0.05 ⋅ 0.2 = 3 ⋅ 10−4

𝑝(query|𝑀𝑑1) < 𝑝(query|𝑀𝑑2): thus, document 𝑑2 is “more relevant” to the query “Frodo
saw Sam STOP ” than 𝑑1 is.

a.a. 2021-2022 9 / 31

Using language models in IR

⊚ Each document is treated as (the basis for) a language model.
⊚ Given a query 𝑞:

• We wish to rank documents by

𝑝(𝑑|𝑞) = 𝑝(𝑞|𝑑)𝑝(𝑑)
𝑝(𝑞)

• 𝑝(𝑞) is the same for all documents, so ignore
• 𝑝(𝑑) is the prior – often treated as the same for all 𝑑

• But we could give a higher prior to documents which are relevant wrt some other measure,
e.g., those with high PageRank.

• 𝑝(𝑞|𝑑) is the probability of 𝑞 given 𝑑
• For uniform prior: ranking documents according to 𝑝(𝑞|𝑑) and 𝑝(𝑑|𝑞) is equivalent.

a.a. 2021-2022 11 / 31

Where we are

We may see 𝑝(𝑞|𝑑) as the probability that the document the user had in mind when she
was formulating the query was in fact this one.

⊚ In the LM approach to IR, we attempt to model the query generation process.

⊚ Then we rank documents by the probability that a query would be observed as a
random sample from their respective document models (probability distributions)

⊚ That is, we rank according to 𝑃(𝑞|𝑑).
⊚ In general, a document model structure (type of probability distribution) is assumed

and its parameters values are derived, for each document, from its content

a.a. 2021-2022 12 / 31

How to compute 𝑃(𝑞|𝑑)

⊚ We make the Naive Bayes conditional independence assumption:

𝑝(𝑞|𝑀𝑑) = 𝑝(< 𝑤1,… ,𝑤|𝑞| > |𝑀𝑑) =
|𝑞|
∏
𝑖=1

𝑝(𝑤𝑘 |𝑀𝑑)

|𝑞|: length of 𝑞; 𝑤𝑘 : token 𝑡 occurring at position 𝑘 in 𝑞

a.a. 2021-2022 13 / 31

How to compute 𝑃(𝑞|𝑑)

Where do the parameters 𝑝(𝑤𝑘 |𝑀𝑑) come from?

⊚ Likelihood: this is the probability of data given a model, in this case 𝑝(𝑞|𝑀𝑑)
• For fixed data, this provides a measure associated to each model instance (parameter

values): the probability that such data are generated in the probabilistic framework
defined by the model instance (for example, probability distribution)

• This can be seen as “how much” a model instance explains the given data

a.a. 2021-2022 14 / 31

How to compute 𝑃(𝑞|𝑑)

An hypothesis on the model structure (and the generation process) must be assumed.

⊚ hypothesis: all terms have an associated probability to be the next word generated;
this probability is independent from previous occurrences

⊚ the probability of observing 𝑘 occurrences of term 𝑡 in the query 𝑞 is given by the
binomial distribution

𝑝(tf𝑡,𝑞 = 𝑘) = |𝑞|!
𝑘!(|𝑞| − 𝑘)!𝑝

𝑘(1 − 𝑝)|𝑞|−𝑘

⊚ the probability of observing 𝑘1, 𝑘2,… , 𝑘𝑚 occurrences of all terms 𝑡1,… , 𝑡𝑚 in the query
𝑞 is given by the multinomial distribution

𝑝(tf𝑡𝑖,𝑞 = 𝑘𝑖, 𝑖 = 1,… ,𝑚) = |𝑞|!
∏𝑚

𝑖=1 𝑘𝑖!
𝑚
∏
𝑖=1

𝑝𝑘𝑖𝑖

a.a. 2021-2022 15 / 31

How to compute 𝑃(𝑞|𝑑)

⊚ That is, for each document 𝑑 ,

𝑝(tf𝑡𝑖,𝑞 = 𝑘𝑖, 𝑖 = 1,… ,𝑚|𝑀𝑑) ≈ ∏
𝑡∈𝑞

𝑝(𝑡|𝑀𝑑)tf𝑡,𝑞

since the multiplying factor
|𝑞|!

∏𝑚
𝑖=1 tf𝑡𝑖,𝑞!

is independent from the document

⊚ here 𝑀𝑑 is an 𝑚-dimensional array

𝑀𝑑 = [𝑝1, 𝑝2,…𝑝𝑚]
with ∑𝑚

𝑖=1 𝑝𝑖 = 1 and 𝑝(𝑡𝑖|𝑀𝑑) = 𝑝𝑖
a.a. 2021-2022 16 / 31

Parameter estimation

⊚ The probability of the term in the document model, estimated by maximum likelihood
is

̂𝑝𝑖 = ̂𝑝(𝑡𝑖|𝑀𝑑) =
tf𝑡𝑖,𝑑
|𝑑|

⊚ |𝑑|: length of 𝑑
⊚ tf𝑡𝑖,𝑑 : #occurrences of 𝑡𝑖 in 𝑑

a.a. 2021-2022 17 / 31

Different models

Different hypotheses on the distribution (generative process) provide different estimations.

⊚ Multiple Poisson: we assume a dependancy exists between occurrences of a term.
This is formalized by a Poisson distribution

𝑝(tf𝑡,𝑞 = 𝑘) = 𝑒−𝜆|𝑞|(𝜆|𝑞|)𝑘
𝑘!

where 𝜆|𝑞| is the expected number of occurrences of 𝑡 in 𝑞
⊚ for the whole query

𝑝(tf𝑡𝑖,𝑞 = 𝑘𝑖, 𝑖 = 1,… ,𝑚|𝑀𝑑) =
𝑚
∏
𝑖=1

𝑒−𝜆𝑖|𝑞|(𝜆𝑖|𝑞|)𝑘𝑖
𝑘𝑖!

⊚ here 𝑀𝑑 is an 𝑚-dimensional array

𝑀𝑑 = [𝜆1, 𝜆2,…𝜆𝑚]
a.a. 2021-2022 18 / 31

Smoothing in the multinomial model

⊚ We have a problem with zeros: a single 𝑡 with 𝑝(𝑡|𝑀𝑑) = 0 will make
𝑝(𝑞|𝑀𝑑) = ∏𝑝(𝑡|𝑀𝑑) = 0

⊚ We would give a single term “veto power”.

⊚ For example, for query [Frodo goes to mount Doom] a document about “Frodo Sam
Doom” would have 𝑝(𝑞|𝑀𝑑) = 0

⊚ We need to smooth the estimates to avoid zeros.

a.a. 2021-2022 19 / 31

Laplace smoothing

⊚ Key intuition: A nonoccurring term is possible (even though it didn’t occur), so we
don’t want to assign 0 probability to it

⊚ We may avoid the zero probability case by adding a constant value, such as 1, to the
count tf𝑡,𝑑 in the maximum likelihood estimation: the numerator of the estimation
ratio is now tf𝑡,𝑑 + 1

⊚ This eliminates the zero probability case, but makes the normalization wrong, that is
∑𝑡 tf𝑡,𝑑 > |𝑑|. This can be avoided by summing 𝑀 , the overall number of terms to |𝑑| at
the denominator

̂𝑝(𝑡 |𝑀𝑑) =
tf𝑡,𝑑 + 1
|𝑑| + 𝑀

a.a. 2021-2022 20 / 31

Smoothing through collection model

⊚ We may estimate its probability of a term in a document model by looking at the
whole collection

⊚ Let us consider the collection model 𝑀𝑐 the collection model: we may estimate

⊚ The maximum likelihood estimate of the probability of the term in the whole
collection is given by

̂𝑝(𝑡 |𝑀𝑐) =
cf𝑡
𝑇

where cf𝑡 is the number of occurrences of 𝑡 in the collection and 𝑇 = ∑𝑡 cf𝑡 is the total
number of tokens in the collection.

⊚ We will use (the estimate of) ̂𝑝(𝑡 |𝑀𝑐) to “smooth” (the estimate of) 𝑝(𝑡|𝑑) away from
zero.

a.a. 2021-2022 21 / 31

Jelinek-Mercer smoothing

The estimated probability of the term wrt the document is defined as a linear combination
of the probability according to the document model and the probability according to the
collection model

𝑝(𝑡|𝑑) = 𝜆𝑝(𝑡|𝑀𝑑) + (1 − 𝜆)𝑝(𝑡|𝑀𝑐)
𝜆 is a hyper-parameter which tunes the relevance of the document model wrt the
collection model

⊚ Mixtures of two distributions

⊚ Correctly setting 𝜆 is very important for good performance

a.a. 2021-2022 22 / 31

Jelinek-Mercer smoothing

Assuming the conditional independence of terms,

𝑝(𝑞|𝑑) = ∏
1≤𝑘≤|𝑞|

(𝜆𝑝(𝑡𝑘 |𝑀𝑑) + (1 − 𝜆)𝑝(𝑡𝑘 |𝑀𝑐))

⊚ Basic idea: we model the case that the user has a document in mind and generates
the query from this document.

⊚ • High value of 𝜆: “conjunctive-like” search – tends to retrieve documents containing all
query words.

• Low value of 𝜆: more disjunctive, suitable for long queries

a.a. 2021-2022 23 / 31

Example

Collection:

⊚ 𝑑1: “Frodo and Sam reached mount Doom with the help of Gollum”

⊚ 𝑑2: “Gollum was attracted by the One Ring”

Query 𝑞: “Gollum Ring”

⊚ Use mixture model with 𝜆 = 1/2
⊚ |𝑑1| = 11, |𝑑2| = 7, 𝑇 = 18
⊚ 𝑃(𝑞|𝑑1) = [(1/11 + 2/18)/2] ⋅ [(0/11 + 1/18)/2] =≈ 0.0028
⊚ 𝑃(𝑞|𝑑2) = [(1/7 + 2/18)/2] ⋅ [(1/7 + 1/18)/2] ≈ 0.0125
⊚ Ranking: 𝑑2 > 𝑑1

a.a. 2021-2022 24 / 31

Exercise: Compute ranking

⊚ Collection: 𝑑1 and 𝑑2
⊚ 𝑑1: Frodo had a small sword and a coat

⊚ 𝑑2: The Shire was a small region in the west of Middle Earth

⊚ Query 𝑞: west small

⊚ Use mixture model with 𝜆 = 1/2
⊚ |𝑑1| = 8, |𝑑2| = 12, 𝑇 = 20

𝑡 tf𝑡,𝑑1 tf𝑡,𝑑2 cf𝑡
west 0 1 1
small 1 1 2

⊚ …

a.a. 2021-2022 25 / 31

Dirichlet smoothing

This is a bayesian approach: 𝑀𝑑 is a random variable, with an associated distribution.

⊚ a prior distribution 𝑝(𝑀𝑑) is defined from the collection model 𝑀𝑐 : it is a distribution
of probabilities of 𝑚-dimensional vectors (summing to 1) with expected value 𝑀𝑐 and
other parameters predefined

⊚ by observing the document 𝑑 content, a posterior distribution 𝑝(𝑀𝑑 |𝑑) is derived by
applying Bayes rule

𝑝(𝑀𝑑 |𝑑) =
𝑝(𝑑|𝑀𝑑)𝑝(𝑀𝑑)

𝑝(𝑑)
⊚ 𝑝(𝑑|𝑀𝑑) is a multinomial distribution, by hypothesis

⊚ 𝑝(𝑀𝑑) is chosen in such a way that 𝑝(𝑀𝑑) and 𝑝(𝑀𝑑 |𝑑) are of the same type
(conjugate to the multinomial)

⊚ typical choice, Dirichlet distribution

a.a. 2021-2022 26 / 31

Dirichlet smoothing

⊚ Dirichlet distribution

𝐷𝑖𝑟(𝑝1,… , 𝑝𝑚 |𝛼1,… , 𝛼𝑚) =
Γ(∑𝑚

𝑖=1)𝛼𝑖)
∏𝑚

𝑖=1 Γ(𝛼𝑖)
𝑚
∏
𝑖=1

𝑝𝛼𝑖−1𝑖

⊚ assume the prior distribution is defined as 𝛼𝑖 = 𝜇 ⋅ 𝑝(𝑡𝑖|𝑀𝑐), where 𝑝(𝑡𝑖|𝑀𝑐) is estimated
as before

⊚ under this hypothesis, it can be proved that the posterior distribution is then

𝑝(𝑀𝑑 |𝑑) = 𝑝(𝑝(𝑡1|𝑀𝑑),… , 𝑝(𝑡𝑚 |𝑀𝑑)|𝑑,𝑀𝑐 , 𝜇)

≃
𝑚
∏
𝑖1

𝑝(𝑡𝑖|𝑀𝑑)tf𝑡,𝑑+𝜇⋅𝑝(𝑡𝑖|𝑀𝑐)−1

a Dirichlet with parameters 𝛼𝑖 = tf𝑡𝑖,𝑑 + 𝜇 ⋅ 𝑝(𝑡𝑖|𝑀𝑐)
a.a. 2021-2022 27 / 31

Dirichlet smoothing

The resulting document model 𝑀𝑑 is the expectation of the posterior distribution

⊚ in general, in a Dirichlet distribution the expectation is the 𝑚-dimensional array with
components 𝛼𝑖

∑𝑚
𝑘=1 𝛼𝑘

⊚ as a consequence, 𝑀𝑑 is the 𝑚-dimensional array with components

tf𝑡𝑖,𝑑 + 𝜇 ⋅ 𝑝(𝑡𝑖|𝑀𝑐)
∑𝑚

𝑘=1(tf𝑡𝑘 ,𝑑 + 𝜇 ⋅ 𝑝(𝑡𝑘 |𝑀𝑐))
= tf𝑡𝑖,𝑑 + 𝜇 ⋅ 𝑝(𝑡𝑖|𝑀𝑐)

|𝑑| + 𝜇

a.a. 2021-2022 28 / 31

Dirichlet smoothing

⊚ Intuition: Before having seen any part of the document we start with the background
distribution as our estimate.

⊚ As we read the document and count terms we update the background distribution.

⊚ The weighting factor 𝜇 determines how strong an effect the prior has.

a.a. 2021-2022 29 / 31

Jelinek-Mercer or Dirichlet?

⊚ Dirichlet performs better for keyword queries, Jelinek-Mercer performs better for
verbose queries.

⊚ Both models are sensitive to the smoothing parameters – you shouldn’t use these
models without parameter tuning.

a.a. 2021-2022 30 / 31

Vector space vs BM25 vs LM

⊚ BM25/LM: based on probability theory

⊚ Vector space: based on similarity, a geometric/linear algebra notion
⊚ Term frequency is directly used in all three models.

• LMs: raw term frequency, BM25/Vector space: more complex

⊚ Length normalization
• Vector space: document vectors normalized
• LMs: probabilities are inherently length normalized
• BM25: tuning parameters for optimizing length normalization

⊚ idf: BM25/vector space use it directly.
⊚ LMs: Mixing term and collection frequencies has an effect similar to idf.

• Terms rare in the general collection, but common in some documents will have a greater
influence on the ranking.

⊚ Collection frequency (LMs) vs. document frequency (BM25, vector space)

a.a. 2021-2022 31 / 31

	Language models
	Language Models for IR

