
Information retrieval
Scoring, term weighting & the vector space model

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Derived from slides originally produced by C. Manning and by H. Schütze

Ranked retrieval

⊚ Boolean queries.
• Documents either match or don’t.

⊚ Good for expert users with precise understanding of their needs and of the collection.

⊚ Also good for applications: Applications can easily consume 1000s of results.
⊚ Not good for the majority of users

• Most users are not capable of writing Boolean queries …
• …or they are, but they think it’s too much work.

• Most users don’t want to wade through 1000s of results.
• This is particularly true of web search.

a.a. 2021-2022 3 / 58

Problem with Boolean search: Feast or famine

⊚ Boolean queries often result in either too few (=0) or too many (1000s) results.
⊚ Query 1 (boolean conjunction): “world climate crisis”

• → 200,000 hits – feast

⊚ Query 2 (boolean conjunction): “world climate crisis merkel”
• → 0 hits – famine

⊚ In Boolean retrieval, it takes a lot of skill to come up with a query that produces a
manageable number of hits.

• AND gives too few; OR gives too many

⊚ Suggested solution:
• Rank documents by goodness – a sort of clever “soft AND”

a.a. 2021-2022 4 / 58

Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

⊚ Just show the top 10 results

⊚ Doesn’t overwhelm the user

⊚ Premise: the ranking algorithm works, that is, more relevant results are ranked higher
than less relevant results.

a.a. 2021-2022 5 / 58

Scoring as the basis of ranked retrieval

⊚ How can we accomplish a relevance ranking of the documents with respect to a
query?

⊚ Assign a score to each query-document pair, say in [0, 1].
⊚ This score measures how well document and query “match”.

⊚ Sort documents according to scores

a.a. 2021-2022 6 / 58

Query-document matching scores

How do we compute the score of a query-document pair?

⊚ If no query term occurs in the document: score should be 0.

⊚ The more frequent a query term in the document, the higher the score

⊚ The more query terms occur in the document, the higher the score

a.a. 2021-2022 7 / 58

Jaccard coefficient

A commonly used measure of overlap of two sets

⊚ Let 𝐴 and 𝐵 be two sets

⊚ Jaccard coefficient:

jaccard(𝐴,𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

(𝐴 ≠ ∅ or 𝐵 ≠ ∅)

⊚ jaccard(𝐴,𝐴) = 1
⊚ jaccard(𝐴,𝐵) = 0 if 𝐴 ∩ 𝐵 = 0
⊚ 𝐴 and 𝐵 don’t have to be the same size.

⊚ Always assigns a number between 0 and 1.

a.a. 2021-2022 8 / 58

Jaccard coefficient: Example

⊚ What is the query-document match score that the Jaccard coefficient computes for:
• Query: “ides of March”
• Document “Caesar died in March”
• jaccard(𝑞, 𝑑) = 1/6

a.a. 2021-2022 9 / 58

What’s wrong with Jaccard?

⊚ It doesn’t consider term frequency (how many occurrences a term has).

⊚ Rare terms are more informative than frequent terms. Jaccard does not consider this
information.

⊚ Usually„
|𝐴 ∩ 𝐵|
√|𝐴 ∪ 𝐵|

(cosine) seems better than |𝐴 ∩ 𝐵||𝐴 ∪ 𝐵| (Jaccard) for length
normalization.

a.a. 2021-2022 10 / 58

Query-document matching scores

⊚ We need a way of assigning a score to a query/document pair

⊚ Let’s start with a one-term query

⊚ If the query term does not occur in the document: score should be 0

⊚ The more frequent the query term in the document, the higher the score (should be)

a.a. 2021-2022 11 / 58

Binary incidence matrix

Consider the occurrence of a term in a document:

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
…

Each document is represented as a binary vector ∈ {0, 1}∣𝑉 ∣.

a.a. 2021-2022 13 / 58

Count matrix

Consider the number of occurrences of a term in a document:

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
…

Each document is now represented as a count vector ∈ ℕ∣𝑉 ∣.

a.a. 2021-2022 14 / 58

Bag of words model

⊚ We do not consider the order of words in a document.

⊚ John is quicker than Mary and Mary is quicker than John are represented the same way.

⊚ This is called a bag of words model.

⊚ Information loss, but simplification of the problem: the positional index was able to
distinguish these two documents.

a.a. 2021-2022 15 / 58

Term frequency tf

⊚ The term frequency tf𝑡,𝑑 of term 𝑡 in document 𝑑 is defined as the number of times
that 𝑡 occurs in 𝑑 .

⊚ We want to use tf when computing query-document match scores.

⊚ But how?
⊚ Raw term frequency is not what we want because:

• A document with tf = 10 occurrences of the term is more relevant than a document with
tf = 1 occurrence of the term.

• But not 10 times more relevant.

⊚ Relevance does not increase proportionally with term frequency.

a.a. 2021-2022 16 / 58

Instead of raw frequency: Log frequency weighting

⊚ The log frequency weight of term 𝑡 in 𝑑 is defined as

w𝑡,𝑑 = { 1 + log10 tf𝑡,𝑑 if tf𝑡,𝑑 > 0
0 otherwise

⊚ tf𝑡,𝑑 → w𝑡,𝑑 :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

⊚ Score for a document-query pair: sum over terms 𝑡 in both 𝑞 and 𝑑 :
tf-matching-score(𝑞, 𝑑) = ∑𝑡∈𝑞∩𝑑 (1 + log tf𝑡,𝑑)

⊚ The score is 0 if none of the query terms is present in the document.

a.a. 2021-2022 17 / 58

Exercise

Compute the Jaccard matching score and the tf matching score for the following
query-document pairs.

⊚ q: [information on cars] d: “all you’ve ever wanted to know about cars”

⊚ q: [information on cars] d: “information on trucks, information on planes,
information on trains”

⊚ q: [red cars and red trucks] d: “cops stop red cars more often”

a.a. 2021-2022 18 / 58

Frequency in document vs. frequency in collection

⊚ In addition, to term frequency (the frequency of the term in the document) …

⊚ …we also want to use the frequency of the term in the collection for weighting and
ranking.

a.a. 2021-2022 20 / 58

Desired weight for rare terms

⊚ Rare terms are more informative than frequent terms.

⊚ Consider a term in the query that is rare in the collection (e.g., Phenethylamine).
⊚ A document containing this term is very likely to be relevant.

⊚ We want high weights for rare terms like Phenethylamine.

a.a. 2021-2022 21 / 58

Desired weight for frequent terms

⊚ Frequent terms are less informative than rare terms.

⊚ Consider a term in the query that is frequent in the collection (e.g., good, increase,
line).

⊚ A document containing this term is more likely to be relevant than a document that
doesn’t

⊚ But words like good, increase and line are not sure indicators of relevance.

⊚ As a consequence, for frequent terms like good, increase, and line, we want positive
weights,

⊚ but lower weights than for rare terms.

a.a. 2021-2022 22 / 58

Document frequency

⊚ We want high weights for rare terms like Phenethylamine.
⊚ We want low (positive) weights for frequent words like good, increase, and line.
⊚ We will use document frequency to factor this into computing the matching score.

⊚ The document frequency is the number of documents in the collection that the term
occurs in.

a.a. 2021-2022 23 / 58

idf weight

⊚ df𝑡 is the document frequency, the number of documents that 𝑡 occurs in.

⊚ df𝑡 is an inverse measure of the informativeness of term 𝑡 .
⊚ We define the idf weight of term 𝑡 as follows:

idf𝑡 = log10
𝑁
df𝑡

(𝑁 is the number of documents in the collection.)

⊚ idf𝑡 is a measure of the informativeness of the term.

⊚ log 𝑁
df𝑡

instead of 𝑁
df𝑡

to “dampen” the effect of idf

⊚ Note that we use the log transformation for both term frequency and document
frequency.

a.a. 2021-2022 24 / 58

idf weight

⊚ df𝑡 is the document frequency, the number of documents that 𝑡 occurs in.

⊚ df𝑡 is an inverse measure of the informativeness of term 𝑡 .
⊚ We define the idf weight of term 𝑡 as follows:

idf𝑡 = log10
𝑁
df𝑡

(𝑁 is the number of documents in the collection.)

⊚ idf𝑡 is a measure of the informativeness of the term.

⊚ [log𝑁/df𝑡] instead of [𝑁/df𝑡] to “dampen” the effect of idf

⊚ Note that we use the log transformation for both term frequency and document
frequency.

a.a. 2021-2022 25 / 58

idf weight

⊚ 𝑁
df𝑡

⊚ log 𝑁
df𝑡

a.a. 2021-2022 26 / 58

Examples for idf

Compute idf𝑡 using the formula: idf𝑡 = log10
1,000,000

df𝑡

term df𝑡 idf𝑡
calpurnia 1
animal 100
sunday 1000
fly 10,000
under 100,000
the 1,000,000

a.a. 2021-2022 27 / 58

Examples for idf

Compute idf𝑡 using the formula: idf𝑡 = log10
1,000,000

df𝑡

term df𝑡 idf𝑡
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

a.a. 2021-2022 28 / 58

Effect of idf on ranking

⊚ idf affects the ranking of documents for queries with at least two terms.

⊚ For example, in the query “arachnocentric line”, idf weighting increases the relative
weight of arachnocentric and decreases the relative weight of line.

⊚ idf has little effect on ranking for one-term queries.

a.a. 2021-2022 29 / 58

Collection frequency vs. Document frequency

word collection frequency document frequency
insurance 10440 3997
try 10422 8760

⊚ Collection frequency of 𝑡 : number of tokens of 𝑡 in the collection

⊚ Document frequency of 𝑡 : number of documents 𝑡 occurs in

⊚ Which word is a better search term (and should get a higher weight)?

⊚ This example suggests that df (and idf) is better for weighting than cf (and “icf”).

a.a. 2021-2022 30 / 58

tf-idf weighting

⊚ The tf-idf weight of a term is the product of its tf weight and its idf weight.

⊚
𝑤𝑡,𝑑 = (1 + log tf𝑡,𝑑) ⋅ log 𝑁

df𝑡

⊚ tf-weight

⊚ idf-weight

⊚ Best known weighting scheme in information retrieval

⊚ Alternative names: tf.idf, tf x idf

a.a. 2021-2022 31 / 58

Summary: tf-idf

⊚ Assign a tf-idf weight for each term 𝑡 in each document 𝑑 : 𝑤𝑡,𝑑 = (1 + log tf𝑡,𝑑) ⋅ log 𝑁
df𝑡

⊚ The tf-idf weight …
• …increases with the number of occurrences within a document. (term frequency)
• …increases with the rarity of the term in the collection. (inverse document frequency)

a.a. 2021-2022 32 / 58

Exercise: Term, collection and document frequency

Quantity Symbol Definition
term frequency tf𝑡,𝑑 number of occurrences of 𝑡 in 𝑑
document frequency df𝑡 number of documents in the

collection that 𝑡 occurs in
collection frequency cf𝑡 total number of occurrences of 𝑡

in the collection

⊚ Relationship between df and cf?

⊚ Relationship between tf and cf?

⊚ Relationship between tf and df?

a.a. 2021-2022 33 / 58

Binary incidence matrix

Consider the occurrence of a term in a document:

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
…

Each document is represented as a binary vector ∈ {0, 1}∣𝑉 ∣.

a.a. 2021-2022 35 / 58

Count matrix

Consider the number of occurrences of a term in a document:

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
…

Each document is now represented as a count vector ∈ ℕ∣𝑉 ∣.

a.a. 2021-2022 36 / 58

Binary → count → weight matrix

Consider the tf-idf score of a term in a document

Anthony Julius The Hamlet Othello Macbeth …
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
…

Each document is now represented as a real-valued vector of tf-idf weights ∈ ℝ|𝑉 |.

a.a. 2021-2022 37 / 58

Documents as vectors

⊚ Each document is now represented as a real-valued vector of tf-idf weights ∈ ℝ∣𝑉 ∣.
⊚ So we have a ∣ 𝑉 ∣-dimensional real-valued vector space.

⊚ Terms are axes of the space.

⊚ Documents are points or vectors in this space.

⊚ Very high-dimensional: tens of millions of dimensions when you apply this to web
search engines

⊚ Each vector is very sparse - most entries are zero.

a.a. 2021-2022 38 / 58

Queries as vectors

⊚ Key idea 1: do the same for queries: represent them as vectors in the
high-dimensional space

⊚ Key idea 2: Rank documents according to their proximity to the query

⊚ proximity = similarity ≈ negative distance

⊚ Rank documents in inverse order wrt the distance of its vector from the query vector

⊚ How to define a distance between vectors of terms?

a.a. 2021-2022 39 / 58

How do we formalize vector space similarity?

⊚ First approach: distance of vectors = distance between their endpoints

⊚ For example, euclidean distance

⊚ Endpoint distance is a bad idea: it is heavily affected by vector lengths

⊚ It may be large for vectors of different lengths

a.a. 2021-2022 40 / 58

Why distance is a bad idea

The Euclidean distance of 𝑞 and 𝑑2 is large although the distribution of terms in the query 𝑞
and the distribution of terms in the document 𝑑2 are very similar.

a.a. 2021-2022 41 / 58

Why distance is a bad idea

⊚ Thought experiment: take a document 𝑑 and append it to itself. Call this document 𝑑′.
𝑑′ is twice as long as 𝑑 .

⊚ “Semantically” 𝑑 and 𝑑′ have the same content.

⊚ The angle between the two documents is 0, corresponding to maximal similarity

⊚ The Euclidean distance between the two documents can be quite large.

Better approach: rank documents according to angle with query

a.a. 2021-2022 42 / 58

Cosine function

The cosine function is monotonically decreasing in [0, 2𝜋]

a.a. 2021-2022 43 / 58

From angles to cosines

⊚ The following two notions are equivalent.
• Rank documents according to the angle between query and document in decreasing

order
• Rank documents according to cosine(query,document) in increasing order

⊚ Cosine is a monotonically decreasing function of the angle for the interval [0∘, 180∘]

a.a. 2021-2022 44 / 58

Cosine distance and length normalization

⊚ A vector can be normalized by dividing each of its components by its length (norm)

⊚ here we use the 𝐿2 (euclidean) norm: ‖𝑥‖2 = √∑𝑖 𝑥2𝑖
⊚ This maps vectors onto the unit sphere, since after normalization: ‖𝑥‖2 = √∑𝑖 𝑥2𝑖 = 1
⊚ As a result, longer documents and shorter documents have weights of the same order

of magnitude.

⊚ Effect on the two documents 𝑑 and 𝑑′ (𝑑 appended to itself) from earlier slide: they
have identical vectors after length normalization.

a.a. 2021-2022 45 / 58

Cosine for normalized vectors

⊚ For normalized vectors, the cosine is equivalent to the dot (or scalar) product.

⊚ cos(𝑞, 𝑑) = 𝑞 ⋅ 𝑑 = ∑𝑖 𝑞𝑖 ⋅ 𝑑𝑖
• (if 𝑞 and 𝑑 are length-normalized).

⊚ this result in an approach to compute cosine similarity:
• normalize vectors
• sum of products for all components different from 0 in both vectors (terms appearing in

both documents or in both document and query)

a.a. 2021-2022 46 / 58

Cosine similarity between query and document

cos(𝑞, 𝑑) = sim(𝑞, 𝑑) = 𝑞
|𝑞| ⋅

𝑑
|𝑑|

= 𝑞 ⋅ 𝑑
|𝑞||𝑑|

= ∑∣𝑉 ∣
𝑖=1 𝑞𝑖𝑑𝑖

√∑∣𝑉 ∣
𝑖=1 𝑞2𝑖 √∑∣𝑉 ∣

𝑖=1 𝑑2𝑖

⊚ 𝑞𝑖 is the tf-idf weight of term 𝑖 in the query.

⊚ 𝑑𝑖 is the tf-idf weight of term 𝑖 in the document.

⊚ |𝑞| and |𝑑| are the lengths of 𝑞 and 𝑑 .
⊚ This is the cosine similarity of 𝑞 and 𝑑 ……or, equivalently, the cosine of the angle

between 𝑞 and 𝑑 .

a.a. 2021-2022 47 / 58

Cosine similarity illustrated

a.a. 2021-2022 48 / 58

Cosine: Example

How similar are
these novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

a.a. 2021-2022 49 / 58

Cosine: Example

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)

a.a. 2021-2022 50 / 58

Cosine: Example

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

⊚ cos(SaS,PaP) ≈ 0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.
⊚ cos(SaS,WH) ≈ 0.79
⊚ cos(PaP,WH) ≈ 0.69
⊚ Why do we have cos(SaS,PaP) > cos(SAS,WH)?

a.a. 2021-2022 51 / 58

Computing the cosine score

CosineScore(𝑞)
1 𝑓 𝑙𝑜𝑎𝑡 𝑆𝑐𝑜𝑟𝑒𝑠[𝑁] = 0
2 𝑓 𝑙𝑜𝑎𝑡 𝐿𝑒𝑛𝑔𝑡ℎ[𝑁]
3 for each query term 𝑡
4 do calculate w𝑡,𝑞 and fetch postings list for 𝑡
5 for each pair(𝑑, tf𝑡,𝑑) in postings list
6 do 𝑆𝑐𝑜𝑟𝑒𝑠[𝑑]+ = w𝑡,𝑑 × w𝑡,𝑞
7 Read the array 𝐿𝑒𝑛𝑔𝑡ℎ
8 for each 𝑑
9 do 𝑆𝑐𝑜𝑟𝑒𝑠[𝑑] = 𝑆𝑐𝑜𝑟𝑒𝑠[𝑑]/𝐿𝑒𝑛𝑔𝑡ℎ[𝑑]

10 return Top 𝐾 components of 𝑆𝑐𝑜𝑟𝑒𝑠[]

a.a. 2021-2022 52 / 58

Computing the cosine score

⊚ The previous algorithm scores term-at-a-time (TAAT)

⊚ Algorithm can be adapted to scoring document-at-a-time (DAAT)

Storing 𝑤𝑡,𝑑 in each posting could be expensive

⊚ …because we’d have to store a floating point number

⊚ For tf-idf scoring, it suffices to store tft,d in the posting and idft in the head of the
postings list

Extracting the top 𝐾 items can be done with a priority queue (e.g., a heap)

a.a. 2021-2022 53 / 58

Variants of tf weighting

natural TF𝑡𝑜𝑡𝑎𝑙(𝑡, 𝑑) 𝑛(𝑡, 𝑑)
boolean TF𝑏𝑜𝑜𝑙(𝑡, 𝑑) {1 if 𝑛(𝑡, 𝑑) > 0

0 otherwise

sum TF𝑠𝑢𝑚(𝑡, 𝑑)
𝑛(𝑡, 𝑑)
𝑁 (𝑑)

max TF𝑚𝑎𝑥 (𝑡, 𝑑)
𝑛(𝑡, 𝑑)

max𝑡′ 𝑛(𝑡′, 𝑑)
augmented TF𝑎𝑢𝑔(𝑡, 𝑑) 0.5 + 0.5 ⋅ 𝑛(𝑡, 𝑑)

max𝑡′ 𝑛(𝑡′, 𝑑)
log TF𝑙𝑜𝑔(𝑡, 𝑑) log(1 + 𝑛(𝑡, 𝑑))
log avg TF𝑙𝑜𝑔𝑎𝑣𝑔(𝑡, 𝑑)

log(1 + 𝑛(𝑡, 𝑑))
log(1 + 𝑛𝑎(𝑑))

frac TF𝑓 𝑟𝑎𝑐(𝑡, 𝑑; 𝑘)
𝑛(𝑡, 𝑑)

𝑛(𝑡, 𝑑) + 𝑘
BM25 TF𝐵𝑀25(𝑡, 𝑑, 𝑐; 𝑘, 𝑏)

𝑛(𝑡, 𝑑)
𝑛(𝑡, 𝑑) + 𝑘(𝑏 ⋅ 𝑛𝑑𝑙(𝑑, 𝑐) + (1 − 𝑏))

⊚ |𝑑|: number of distinct terms in document 𝑑
⊚ |𝑐|: number of documents in collection 𝑐
⊚ 𝑛(𝑡, 𝑑): number of occurrences of term 𝑡 in document 𝑑
⊚ 𝑁(𝑑) = ∑𝑡 𝑛(𝑡, 𝑑): length (overall number of occurrences of all terms) in document 𝑑
⊚ 𝑛𝑎(𝑑) = 1

|𝑑| ∑𝑡 𝑛(𝑡, 𝑑): average number of occurrences of terms in document 𝑑
⊚ 𝑛𝑑𝑙(𝑑, 𝑐) = 𝑁(𝑑)

𝑎𝑑𝑙(𝑐) : length of document 𝑑 normalized wrt collection 𝑐
⊚ 𝑎𝑑𝑙(𝑑, 𝑐) = 1

|𝑐| ∑𝑑∈𝑐
𝑁(𝑑): average length of documents in collection 𝑐

a.a. 2021-2022 54 / 58

Variants of tf weighting

⊚ TF𝑡𝑜𝑡𝑎𝑙 , TF𝑠𝑢𝑚, TF𝑚𝑎𝑥 all correspond to assuming “independence” of occurrences: tf
increases by a same amount for each successive occurrence (independently from the
number of occurrences already observed)

⊚ TF𝑡𝑜𝑡𝑎𝑙 has no normalization wrt document length: biased toward longer documents

⊚ assume a set of documents of different length with the same fraction of occurrences
of a certain term 𝑡 : how do we want documents scored wrt 𝑡?

a.a. 2021-2022 55 / 58

Variants of tf weighting

⊚ TF𝑡𝑜𝑡𝑎𝑙 has no normalization wrt document length: longer documents receive higher
score (this could happen even for a lower fraction of occurrences, since only the
absolute amount of occurrences is considered)

⊚ TF𝑠𝑢𝑚 normalizes wrt document length: all documents receive the same score, but
perhaps we would prefer longer documents to be preferred in a certain amount, even
if the fraction of term occurrences is the same

⊚ TF𝑚𝑎𝑥 is an intermediate approach: for a same fraction of occurrences, longer
documents are preferred, but not as much as in TF𝑡𝑜𝑡𝑎𝑙

a.a. 2021-2022 56 / 58

Variants of tf weighting

⊚ TF𝑓 𝑟𝑎𝑐 introduces a decreasing marginal gain wrt the number of occurrences: its
increase deriving from the 𝑛-th occurrence of a term is smaller for larger 𝑛

⊚ the same holds for TF𝑙𝑜𝑔
a.a. 2021-2022 57 / 58

Variants of idf weighting

total idf𝑡𝑜𝑡𝑎𝑙(𝑡, 𝑐) − log 𝑛(𝑡, 𝑐)
sum idf𝑠𝑢𝑚(𝑡, 𝑐) − log

𝑛(𝑡, 𝑐)
|𝑐|

smooth sum idf𝑠𝑚𝑜𝑜𝑡ℎ(𝑡, 𝑐) − log
𝑛(𝑡, 𝑐) + 0.5

|𝑐| + 1
prob idf𝑝𝑟𝑜𝑏(𝑡, 𝑐) max (0,− log

𝑛(𝑡, 𝑐)
|𝑐| − 𝑛(𝑡, 𝑐))

smooth prob idf𝑠𝑚𝑜𝑜𝑡ℎ𝑝𝑟𝑜𝑏(𝑡, 𝑐) max (0,− log
𝑛(𝑡, 𝑐) + 0.5

|𝑐| − 𝑛(𝑡, 𝑐) + 0.5)

⊚ |𝑐|: number of documents in collection 𝑐
⊚ 𝑛(𝑡, 𝑐): number of documents in collection 𝑐 in which term 𝑡 occurs

a.a. 2021-2022 58 / 58

	Why ranked retrieval?
	Term frequency
	tf-idf weighting
	The vector space model

