Information retrieval

Scoring, term weighting & the vector space model

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Derived from slides originally produced by C. Manning and by H. Schütze

- ⊚ Boolean queries.
	- Documents either match or don't.
- ⊚ Good for expert users with precise understanding of their needs and of the collection.
- ⊚ Also good for applications: Applications can easily consume 1000s of results.
- ⊚ Not good for the majority of users
	- Most users are not capable of writing Boolean queries …
		- …or they are, but they think it's too much work.
	- Most users don't want to wade through 1000s of results.
	- This is particularly true of web search.
- ⊚ Boolean queries often result in either too few (=0) or too many (1000s) results.
- ⊚ Query 1 (boolean conjunction): "world climate crisis"
	- \rightarrow 200,000 hits feast
- ⊚ Query 2 (boolean conjunction): "world climate crisis merkel"
	- $\bullet \rightarrow 0$ hits famine
- ⊚ In Boolean retrieval, it takes a lot of skill to come up with a query that produces a manageable number of hits.
	- AND gives too few; OR gives too many
- ⊚ Suggested solution:
	- Rank documents by goodness a sort of clever "soft AND"

With ranking, large result sets are not an issue.

- ⊚ Just show the top 10 results
- ⊚ Doesn't overwhelm the user
- ⊚ Premise: the ranking algorithm works, that is, more relevant results are ranked higher than less relevant results.
- ⊚ How can we accomplish a relevance ranking of the documents with respect to a query?
- ⊚ Assign a score to each query-document pair, say in [0*,* 1].
- ⊚ This score measures how well document and query "match".
- ⊚ Sort documents according to scores

How do we compute the score of a query-document pair?

- ⊚ If no query term occurs in the document: score should be 0.
- ⊚ The more frequent a query term in the document, the higher the score
- ⊚ The more query terms occur in the document, the higher the score

A commonly used measure of overlap of two sets

- \circ Let A and B be two sets
- ⊚ Jaccard coefficient:

$$
JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}
$$

 $(A \neq \emptyset \text{ or } B \neq \emptyset)$

- \odot JACCARD $(A, A) = 1$
- \odot jaccard $(A, B) = 0$ if $A \cap B = 0$
- \odot A and B don't have to be the same size.
- ⊚ Always assigns a number between 0 and 1.
- ⊚ What is the query-document match score that the Jaccard coefficient computes for:
	- Query: "ides of March"
	- Document "Caesar died in March"
	- JACCARD $(q, d) = 1/6$
- ⊚ It doesn't consider term frequency (how many occurrences a term has).
- ⊚ Rare terms are more informative than frequent terms. Jaccard does not consider this information.
- © Usually,, $\frac{|A \cap B|}{\sqrt{2\pi}}$ $\sqrt{|A \cup B|}$ (cosine) seems better than $|A\cap B\|A\cup B|$ (Jaccard) for length normalization.
- ⊚ We need a way of assigning a score to a query/document pair
- ⊚ Let's start with a one-term query
- ⊚ If the query term does not occur in the document: score should be 0
- ⊚ The more frequent the query term in the document, the higher the score (should be)

Consider the occurrence of a term in a document:

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

Consider the number of occurrences of a term in a document:

…

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}.$

- ⊚ We do not consider the order of words in a document.
- ⊚ *John is quicker than Mary* and *Mary is quicker than John* are represented the same way.
- ⊚ This is called a bag of words model.
- ⊚ Information loss, but simplification of the problem: the positional index was able to distinguish these two documents.
- ⊚ The term frequency tf*,* of term in document is defined as the number of times that *t* occurs in d .
- ⊚ We want to use tf when computing query-document match scores.
- ⊚ But how?
- ⊚ Raw term frequency is not what we want because:
	- A document with $tf = 10$ occurrences of the term is more relevant than a document with $tf = 1$ occurrence of the term.
	- But not 10 times more relevant.
- ⊚ Relevance does not increase proportionally with term frequency.

 \circ The log frequency weight of term t in d is defined as

$$
\mathbf{w}_{t,d} = \begin{cases} 1 + \log_{10} \mathbf{tf}_{t,d} & \text{if } \mathbf{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}
$$

$$
\begin{aligned}\n\textcircled{\scriptsize{b}} \quad & \text{tf}_{t,d} \to \text{w}_{t,d}: \\
& 0 \to 0, \ 1 \to 1, \ 2 \to 1.3, \ 10 \to 2, \ 1000 \to 4, \ \text{etc.}\n\end{aligned}
$$

- ⊚ Score for a document-query pair: sum over terms *t* in both *q* and *d*: tf-matching-score(q , d) = $\sum_{t \in q \cap d} (1 + \log t \mathbf{f}_{t,d})$
- ⊚ The score is 0 if none of the query terms is present in the document.

Compute the Jaccard matching score and the tf matching score for the following query-document pairs.

- ⊚ q: [information on cars] d: "all you've ever wanted to know about cars"
- ⊚ q: [information on cars] d: "information on trucks, information on planes, information on trains"
- ⊚ q: [red cars and red trucks] d: "cops stop red cars more often"
- ⊚ In addition, to term frequency (the frequency of the term in the document) …
- ⊚ …we also want to use the frequency of the term in the collection for weighting and ranking.
- ⊚ Rare terms are more informative than frequent terms.
- ⊚ Consider a term in the query that is rare in the collection (e.g., **Phenethylamine**).
- ⊚ A document containing this term is very likely to be relevant.
- ⊚ We want high weights for rare terms like **Phenethylamine**.
- ⊚ Frequent terms are less informative than rare terms.
- ⊚ Consider a term in the query that is frequent in the collection (e.g., **good**, **increase**, **line**).
- ⊚ A document containing this term is more likely to be relevant than a document that doesn't
- ⊚ But words like **good**, **increase** and **line** are not sure indicators of relevance.
- ⊚ As a consequence, for frequent terms like **good**, **increase**, and **line**, we want positive weights,
- ⊚ but lower weights than for rare terms.
- ⊚ We want high weights for rare terms like **Phenethylamine**.
- ⊚ We want low (positive) weights for frequent words like **good**, **increase**, and **line**.
- ⊚ We will use document frequency to factor this into computing the matching score.
- ⊚ The document frequency is the number of documents in the collection that the term occurs in.
- ⊚ d f_t is the document frequency, the number of documents that t occurs in.
- ⊚ df_t is an inverse measure of the informativeness of term *t*.
- \odot We define the idf weight of term t as follows:

$$
\mathrm{idf}_t = \log_{10} \frac{N}{\mathrm{df}_t}
$$

 $(N$ is the number of documents in the collection.)

- ⊚ idf_t is a measure of the informativeness of the term.
- ⊚ $\log \frac{N}{10}$ df_t instead of $\frac{N}{16}$ $\frac{d\mathbf{v}}{dt}$ to "dampen" the effect of idf
- ⊚ Note that we use the log transformation for both term frequency and document frequency.
- \circledcirc df_t is the document frequency, the number of documents that t occurs in.
- ⊚ d f_t is an inverse measure of the informativeness of term t .
- \odot We define the idf weight of term t as follows:

$$
\mathrm{idf}_t = \log_{10} \frac{N}{\mathrm{df}_t}
$$

 $(N$ is the number of documents in the collection.)

- ⊚ idf_t is a measure of the informativeness of the term.
- ⊚ $[\log N/\mathrm{df}_t]$ instead of $[N/\mathrm{df}_t]$ to "dampen" the effect of idf
- ⊚ Note that we use the log transformation for both term frequency and document frequency.

idf weight

$$
\log \frac{N}{\mathsf{df}_t}
$$

 \overline{N} df_t

a.a. 2021-2022 26/58

Compute idf_t using the formula: $\mathsf{idf}_t = \log_{10} \frac{1,000,000}{\mathsf{df}_t}$ df

Compute idf_t using the formula: $\mathsf{idf}_t = \log_{10} \frac{1,000,000}{\mathsf{df}_t}$ df

- ⊚ idf affects the ranking of documents for queries with at least two terms.
- ⊚ For example, in the query "arachnocentric line", idf weighting increases the relative weight of **arachnocentric** and decreases the relative weight of **line**.
- ⊚ idf has little effect on ranking for one-term queries.

- \odot Collection frequency of *t*: number of tokens of *t* in the collection
- ⊚ Document frequency of : number of documents occurs in
- ⊚ Which word is a better search term (and should get a higher weight)?
- ⊚ This example suggests that df (and idf) is better for weighting than cf (and "icf").

⊚

⊚ The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$
w_{t,d} = (1 + \log \text{tf}_{t,d}) \cdot \log \frac{N}{\text{df}_t}
$$

- ⊚ tf-weight
- ⊚ idf-weight
- ⊚ Best known weighting scheme in information retrieval
- ⊚ Alternative names: tf.idf, tf x idf
- ⊚ Assign a tf-idf weight for each term *t* in each document *d*: $w_{t,d} = (1 + \log t f_{t,d}) \cdot \log \frac{N}{df_t}$
- ⊚ The tf-idf weight …
	- …increases with the number of occurrences within a document. (term frequency)
	- …increases with the rarity of the term in the collection. (inverse document frequency)

- ⊚ Relationship between df and cf?
- ⊚ Relationship between tf and cf?
- ⊚ Relationship between tf and df?

Consider the occurrence of a term in a document:

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

Count matrix

Consider the number of occurrences of a term in a document:

…

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}.$

Binary → **count** → **weight matrix**

Consider the tf-idf score of a term in a document

…

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

- ⊚ Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- ⊚ So we have a ∣ ∣-dimensional real-valued vector space.
- ⊚ Terms are axes of the space.
- ⊚ Documents are points or vectors in this space.
- ⊚ Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- ⊚ Each vector is very sparse most entries are zero.
- ⊚ Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- ⊚ Key idea 2: Rank documents according to their proximity to the query
- ⊚ proximity = similarity ≈ negative distance
- ⊚ Rank documents in inverse order wrt the distance of its vector from the query vector
- ⊚ How to define a distance between vectors of terms?
- ⊚ First approach: distance of vectors = distance between their endpoints
- ⊚ For example, euclidean distance
- ⊚ Endpoint distance is a bad idea: it is heavily affected by vector lengths
- ⊚ It may be large for vectors of different lengths

Why distance is a bad idea

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

- \circledcirc Thought experiment: take a document d and append it to itself. Call this document d' . d' is twice as long as d .
- \circ "Semantically" d and d' have the same content.
- ⊚ The angle between the two documents is 0, corresponding to maximal similarity
- ⊚ The Euclidean distance between the two documents can be quite large.

Better approach: rank documents according to angle with query

The cosine function is monotonically decreasing in $[0, 2\pi]$

- ⊚ The following two notions are equivalent.
	- Rank documents according to the angle between query and document in decreasing order
	- Rank documents according to cosine(query,document) in increasing order
- ⊚ Cosine is a monotonically decreasing function of the angle for the interval [0[∘] *,* 180[∘]]
- ⊚ A vector can be normalized by dividing each of its components by its length (norm)
- ⊚ here we use the L_2 (euclidean) norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- ⊚ This maps vectors onto the unit sphere, since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1$
- ⊚ As a result, longer documents and shorter documents have weights of the same order of magnitude.
- \odot Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length normalization.
- ⊚ For normalized vectors, the cosine is equivalent to the dot (or scalar) product.
- $\circ \cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$
	- (if \vec{q} and \vec{d} are length-normalized).
- ⊚ this result in an approach to compute cosine similarity:
	- normalize vectors
	- sum of products for all components different from 0 in both vectors (terms appearing in both documents or in both document and query)

Cosine similarity between query and document

$$
\cos(\vec{q}, \vec{d}) = \sin(\vec{q}, \vec{d}) = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}
$$

- $\circledcirc q_i$ is the tf-idf weight of term *i* in the query.
- \circledcirc d_i is the tf-idf weight of term *i* in the document.
- ⊚ $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- ⊚ This is the cosine similarity of \vec{q} and \vec{d} … or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine similarity illustrated

How similar are these novels? SaS: Sense and Sensibility PaP: Pride and Prejudice WH: Wuthering Heights

term frequencies (counts)

term frequencies (counts)

log frequency weighting

(To simplify this example, we don't do idf weighting.)

log frequency weighting

log frequency weighting & cosine normalization

⊚ cos(SaS,PaP) ≈ 0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

⊚ cos(SaS,WH) ≈ 0.79

⊚ cos(PaP,WH) ≈ 0.69

⊚ Why do we have cos(SaS,PaP) > cos(SAS,WH)?

$CosINEScore(q)$

- 1 $float\,Scores[N] = 0$
- 2 $float$ $Length[N]$
- 3 **for each** query term
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** pair(d , tf_{t,d}) in postings list
- 6 **do** $Scores[d] += w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 **for each**
- 9 **do** $Scores[d] = Scores[d]/Length[d]$
- 10 **return** Top K components of Scores^[]
- ⊚ The previous algorithm scores term-at-a-time (TAAT)
- ⊚ Algorithm can be adapted to scoring document-at-a-time (DAAT)

Storing $w_{t,d}$ in each posting could be expensive

- ⊚ …because we'd have to store a floating point number
- ⊚ For tf-idf scoring, it suffices to store tft,d in the posting and idft in the head of the postings list

Extracting the top K items can be done with a priority queue (e.g., a heap)

Variants of tf weighting

⊚ | d : number of distinct terms in document d

- \textcircled{c} |c|: number of documents in collection \textcircled{c}
- θ (θ): number of occurrences of term *t* in document *d*
- $\frac{\partial}{\partial t}(X/d) = \sum_{i} n(t, d)$: length (overall number of occurrences of all terms) in document d
 $\frac{\partial}{\partial t}(X/d) = \frac{1}{|d|} \sum_{i} n(t, d)$: average number of occurrences of terms in document d
-
- \circ *ndl*(*d*, *c*) = $\frac{N(d)}{adl(c)}$: length of document *d* normalized wrt collection *c*
- ⊚ $\alpha dl(d, c) = \frac{1}{|c|} \sum_{d \in c} N(d)$: average length of documents in collection c
- © TF_{total}, TF_{sum}, TF_{max} all correspond to assuming "independence" of occurrences: tf increases by a same amount for each successive occurrence (independently from the number of occurrences already observed)
- ⊚ TF has no normalization wrt document length: biased toward longer documents
- ⊚ assume a set of documents of different length with the same fraction of occurrences of a certain term t : how do we want documents scored wrt t ?
- ⊚ TF has no normalization wrt document length: longer documents receive higher score (this could happen even for a lower fraction of occurrences, since only the absolute amount of occurrences is considered)
- ⊚ TF normalizes wrt document length: all documents receive the same score, but perhaps we would prefer longer documents to be preferred in a certain amount, even if the fraction of term occurrences is the same
- \odot TF_{max} is an intermediate approach: for a same fraction of occurrences, longer documents are preferred, but not as much as in TF_{total}

Variants of tf weighting

[◎] TF *frac* introduces a decreasing marginal gain wrt the number of occurrences: its increase deriving from the n -th occurrence of a term is smaller for larger n

⊚ the same holds for TF

Variants of idf weighting

⊚ $|c|$: number of documents in collection c

 \odot *n*(*t*,*c*): number of documents in collection *c* in which term *t* occurs