Introduction to
Information Retrieval

Introducing Information Retrieval
and Web Search

Introduction to Information Retrieval

Information Retrieval

* |nformation Retrieval (IR) is finding material (usually
documents) of an unstructured nature (usually text)
that satisfies an information need from within large

collections (usually stored on computers).

" These days we frequently think first of web search, but
there are many other cases:

= E-mail search

= Searching your laptop

= Corporate knowledge bases
= Legal information retrieval

Unstructured (text) vs. structured

(database) data in the mid-nineties

250 -

200 -

150 -

B Unstructured
B Structured

100 -

50 -

Data volume Market Cap

Unstructured (text) vs. structured

(database) data today

250 ~

200 -

150 -

B Unstructured
B Structured

100 -

50 -

Data volume Market Cap

Introduction to Information Retrieval Sec. 1.1

Basic assumptions of Information Retrieval

= Collection: A set of documents

= Assume it is a static collection for the moment

" Goal: Retrieve documents with information that is
relevant to the user’s information need and helps the
user complete a task

Introduction to Information Retrieval

The classic search model

Misconception?

Get rid of mice in a
politically correct way

Misformulation?

N

'
Info about removing mice
without killing them

;I

Quel'y\:

Search

refinement

{ Results >

snome \

|

how trap mice alive

Collection J_J

Introduction to Information Retrieval Sec. 1.1

How good are the retrieved docs?

= Precision : Fraction of retrieved docs that are
relevant to the user’s information need

= Recall : Fraction of relevant docs in collection that
are retrieved

= More precise definitions and measurements to follow later

Introduction to
Information Retrieval

Term-document incidence matrices

Introduction to Information Retrieval Sec. 1.1

Unstructured data in 1620

= Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

" One could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing Calpurnia?

= Why is that not the answer?
= Slow (for large corpora)
= NOT Calpurnia is non-trivial

= Other operations (e.g., find the word Romans near
countrymen) not feasible

= Ranked retrieval (best documents to return)

= Later lectures

Introduction to Information Retrieval Sec. 1.1

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains

Introduction to Information Retrieval Sec. 1.1

Incidence vectors

= So we have a 0/1 vector for each term.

"= To answer query: take the vectors for Brutus, Caesar
and Calpurnia (complemented) = bitwise AND.
= 110100 AND
= 110111 AND

= 101111 =
u 100 1 00 Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

11

Introduction to Information Retrieval Sec. 1.1

Answers to query

= Antony and Cleopatra, Act Ill, Scene i

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

= Hamlet, Act Ill, Scene il

Lord Polonius: | did enact Julius Caesar | was killed i’ the
Capitol; Brutus killed me.

Introduction to Information Retrieval Sec. 1.1

Bigger collections

= Consider N =1 million documents, each with about
1000 words.

= Avg 6 bytes/word including spaces/punctuation

= 6GB of data in the documents.

= Say there are M = 500K distinct terms among these.

13

Introduction to Information Retrieval Sec. 1.1

Can’t build the matrix

= 500K x 1M matrix has half-a-trillion O’s and 1’s.

= But it has no more than one billion 1’s. <= Why?

" matrix is extremely sparse.

* What's a better representation?

= We only record the 1 positions.

14

Introduction to
Information Retrieval

The Inverted Index

The key data structure underlying modern IR

Introduction to Information Retrieval Sec. 1.2

Inverted index

= For each term t, we must store a list of all documents
that contain t.
= |dentify each doc by a docID, a document serial number

= Can we used fixed-size arrays for this?

Brutus m——>[1 [2] 4]11] 31] 45173174
Caesar n——>[] 21 4] 516 |16/ 57/132
Calpurnia | "——>[2 [31] 54[101

What happens if the word Caesar
is added to document 147?

16

Introduction to Information Retrieval Sec. 1.2

Inverted index

= We need variable-size postings lists

" On disk, a continuous run of postings is normal and best

" |n memory, can use linked lists or variable length arrays
= Some tradeoffs in size/ease of insertion

Posting

/

Brutus m——>[1 [2] 4]11] 31] 45173174
Caesar >] 21 4] 516 | 16/ 57/132
Calpurnia | "——>[2 [31] 54[101

——
Dictionary Postings
Sorted by docID (more later on why).

Introduction to Information Retrieval Sec. 1.2

Inverted index construction

sz} [(]

==l =
(=il i

= == .
Documents to F=t T = | Friends, Romans, countrymen.

be indexed | 1 .

[Tokenizer]

Token stream l Friends || Romans | | Countrymen
Linguistic W
modules

Modified tokens 1 friend | |roman| |countryman
[IndexerJ‘friend m——> |24 —

Inverted index 1 roman m——>> |1 =2~

countryman®——>| 13 16

Introduction to Information Retrieval

Initial stages of text processing

= Tokenization

= Cut character sequence into word tokens
= Deal with “John’s”, a state-of-the-art solution

= Normalization

= Map text and query term to same form
= You want U.S.A. and USA to match

= Stemming

= We may wish different forms of a root to match
= guthorize, authorization

= Stop words

= We may omit very common words (or not)
* the, a, to, of

Introduction to Information Retrieval Sec. 1.2

Indexer steps: Token sequence

= Sequence of (Modified token, Document ID) pairs. L S
did 1

il 1

caesar 1

| 1

was 1

killed 1

i 1

the 1

capitol 1

brutus 1

DOC 1 DOC 2 — l:,;led 1

ot 3

it 2

| did enact Julius So let it be with n :
Caesar | was killed Caesar. The noble e 3
I the Capitol; Brutus hath told you ran g
Brutus killed me. | | Caesar was ambitious o :
was 2

ambitious 2

Introduction to Information Retrieval Sec. 1.2

Indexer steps: Sort

Term doclID

[I] Term_ docID

Sort by terms L s

far;.act :]] brutus 1

Julius brutus 2

= At least conceptually cassa | pio

) caesar 1

was caesar 2

= And then docID e T casar 3

the 1 enact 1

capitol 1 hath 1

brutus 1 I 1

killed 1 | 1

ﬁ me 1 * i 1

sO 2 it 2

° ° let 2 julius 1

Core indexing step g 2 s 1
e killed

with 2 let 2

caesar 2 me 1

the 2 noble 2

noble 2 SO 2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2

Introduction to Information Retrieval Sec. 1.2

Indexer steps: Dictionary & Postings

term doc. freq. ostings lists

©

= Multiple term Torm - doclD ombitous [1] —
entries in a single ot i bratus | 2 = -2
document are S =l 2o
merged. = L EL -k

= Split into Dictionary i | gy (T B
and Postings 't i e - 4

= Doc. frequency e 1 s | 1 - B
information is o % et 1 -
added. T - ST - b
e = w2 - B
Why frequency? was i e | - B
Will discuss later. e ’ vas 21\| - %ﬂ‘

Introduction to Information Retrieval Sec. 1.2

Where do we pay in storage?

term doc. freq.
ambitious | 1 |

be | 1
brutus | 2
capitol | 1 |

stings lists

©
(=}

Lists of
doclIDs

.

l
™)

caesar | 2
did | 1
Te rms enact | 1 |

hath | 1
and > a
i1

counts '

the | 2
told | 1 |
you

N e
l

u

ENNENNENEENEENERRRRNN

was

2 —
with | 1 | Poin-te

3

24

Introduction to
Information Retrieval

Query processing with an inverted index

Introduction to Information Retrieval Sec. 1.3

The index we just built

* How do we process a query? <II;1 Our focus
= Later — what kinds of queries can we process?

26

Introduction to Information Retrieval Sec. 1.3

Query processing: AND

= Consider processing the query:

Brutus AND Caesar

" Locate Brutus in the Dictionary;
= Retrieve its postings.

" Locate Caesar in the Dictionary;
= Retrieve its postings.

= “Merge” the two postings (intersect the document sets):

2—4—8—16~ 32— 64 — 128 | Brutus

h1 "2 3 {58 {13 21— 34| Caesar

27

Introduction to Information Retrieval Sec. 1.3

The merge

= Walk through the two postings simultaneously, in
time linear in the total number of postings entries

2—4—8—16 —~ 32 — 64 — 128 | | Brutus
_1 1235813 ~ 21— 34 | Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclID.

28

Intersecting two postings lists

(a “merge” algorithm)

INTERSECT(p1, p2)
answer «— ()
while p; # NIL and p, # NIL
do if docID(p;1) = doclD(py)
then ADD(answer, doclD(p;))

p1 < next(py)

p2 < next(pz)
else if docID(p1) < doclD(p»)

then p; < next(p1)
else po «— next(p»)
return answer

© 0O NO OB W N =

—
-

29

Introduction to
Information Retrieval

The Boolean Retrieval Model
& Extended Boolean Models

Introduction to Information Retrieval Sec. 1.3

Boolean queries: Exact match

= The Boolean retrieval model is being able to ask a
qguery that is a Boolean expression:

" Boolean Queries are queries using AND, OR and NOT to
join query terms
= Views each document as a set of words
" |s precise: document matches condition or not.

" Perhaps the simplest model to build an IR system on
* Primary commercial retrieval tool for 3 decades.

= Many search systems you still use are Boolean:
= Email, library catalog, macOS Spotlight

31

Introduction to Information Retrieval Sec. 1.4

Exam P le: WestLaw http://www.westlaw.com/

= Largest commercial (paying subscribers) legal

search service (started 1975, ranking added
1992; new federated search added 2010)

= Tens of terabytes of data; ~700,000 users
= Majority of users still use boolean queries
= Example query:

= What is the statute of limitations in cases involving
the federal tort claims act?

= LIMIT!/3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

= /3 = within 3 words, /S = in same sentence .

Introduction to Information Retrieval Sec. 1.4

Exam P le: WestLaw http://www.westlaw.com/

= Another example query:

= Requirements for disabled people to be able to access a
workplace

= disabl! /p access! /s work-site work-place (employment /3
place

= Note that SPACE is disjunction, not conjunction!

= Long, precise queries; proximity operators;
incrementally developed; not like web search

= Many professional searchers still like Boolean search

= You know exactly what you are getting

= But that doesn’t mean it actually works better....

Introduction to Information Retrieval Sec. 1.3

Boolean queries:
More general merges

" Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

= Can we still run through the merge in time O(x+y)?
What can we achieve?

34

Introduction to Information Retrieval Sec. 1.3

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)

= Can we always merge in “linear” time?

= Linear in what?

= Can we do better?

35

Introduction to Information Retrieval Sec. 1.3

Query optimization

* What is the best order for query processing?

= Consider a query that is an AND of n termes.

= For each of the n terms, get its postings, then
AND them toget

Brutus

Caesar

Calpurnia

In—— >
In—— >
In—— >

ner.

2 14 16| 32| 64]128

1 518 |16 21 34
13116

Query: Brutus AND Calpurnia AND Caesar

36

Introduction to Information Retrieval Sec. 1.3

Query optimization example

" Process in order of increasing freq:

= start with smallest set, then keep cutting further.

4

This is why we kept
document freq. in dictionary

Brutus m——>[214 7] 8] 16] 32] 64128
Caesar > 21 31 518 |16/ 21 34
Calpurnia | "——>[13 116

Execute the query as (Calpurnia AND Brutus) AND Caesar.

37

Introduction to Information Retrieval

Exercise

= Recommend a query
processing order for

(tangerine OR trees) AND

(marl.nalade OR skies) AND T;;:: 2?;;?2
(kaleidoscope OR eyes) kaleidoscope 87009
marmalade 107913

= Which two terms should we skies 271658
process first? tangerine 46653

trees 316812

38

Introduction to Information Retrieval Sec. 1.3

More general optimization

" e.g., (madding OR crowd) AND (ignoble OR
strife)

" Get doc. freq.’s for all terms.

" Estimate the size of each OR by the sum of its
doc. freq.'s (conservative).

" Process in increasing order of OR sizes.

39

Introduction to Information Retrieval

Query processing exercises

= Exercise: If the query is friends AND romans AND
(NOT countrymen), how could we use the freq of
countrymen??

= Exercise: Extend the merge to an arbitrary Boolean
qguery. Can we always guarantee execution in time
linear in the total postings size?

" Hint: Begin with the case of a Boolean formula
qguery: in this, each query term appears only once in
the query.

40

Introduction to Information Retrieval

Exercise

" Try the search feature at
http://www.rhymezone.com/shakespeare/

= Write down five search features you think it could do
better

41

http://www.rhymezone.com/shakespeare/

Introduction to
Information Retrieval

Phrase queries and positional indexes

Introduction to Information Retrieval Sec. 2.4

Phrase queries

= We want to be able to answer queries such as
“stanford university” — as a phrase

= Thus the sentence “I went to university at Stanford”
is not a match.

" The concept of phrase queries has proven easily

understood by users; one of the few “advanced search”
ideas that works

= Many more queries are implicit phrase queries
" For this, it no longer suffices to store only
<term : docs> entries

Introduction to Information Retrieval Sec. 2.4.1

A first attempt: Biword indexes

" |ndex every consecutive pair of terms in the text as a
phrase

* For example the text “Friends, Romans,
Countrymen” would generate the biwords
= friends romans

= romans countrymen
= Each of these biwords is now a dictionary term

= Two-word phrase query-processing is now
immediate.

Introduction to Information Retrieval Sec. 2.4.1

Longer phrase queries

= Longer phrases can be processed by breaking them
down

= stanford university palo alto can be broken into the
Boolean query on biwords:

stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain the

phrase.
—

Can have false positives!

Introduction to Information Retrieval Sec. 2.4.1

Issues for biword indexes

= False positives, as noted before

= |Index blowup due to bigger dictionary
" |Infeasible for more than biwords, big even for them

= Biword indexes are not the standard solution (for all
biwords) but can be part of a compound strategy

Introduction to Information Retrieval Sec. 2.4.2

Solution 2: Positional indexes

" |n the postings, store, for each term the position(s) in
which tokens of it appear:

<term, number of docs containing term;
docl: positionl, position?2 ... ;

doc2: position1, position?2 ... ;

etc.>

Introduction to Information Retrieval Sec. 2.4.2

Positional index example

<be: 993427;
1:7,18, 33,72, 86, 231;

Which of docs 1,2,4,5
2:3,149; < could contain “fo be
4: 17,191, 291, 430, 434;

or not to be”’!
5:363,367,..>

= For phrase queries, we use a merge algorithm
recursively at the document level

= But we now need to deal with more than just
equality

Introduction to Information Retrieval Sec. 2.4.2

Processing a phrase query

= Extract inverted index entries for each distinct term:
to, be, or, not.

= Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

= to:

= 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...
= be:

= 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

= Same general method for proximity searches

Introduction to Information Retrieval Sec. 2.4.2

Proximity queries

= LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

= Again, here, /k means “within k words of”.

= Clearly, positional indexes can be used for such
gueries; biword indexes cannot.

= Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it work for
any value of k?
" This is a little tricky to do correctly and efficiently
= See Figure 2.12 of IR

Introduction to Information Retrieval Sec. 2.4.2

Positional index size

= A positional index expands postings storage
substantially
= Even though indices can be compressed

= Nevertheless, a positional index is now standardly
used because of the power and usefulness of phrase
and proximity queries ... whether used explicitly or
implicitly in a ranking retrieval system.

Introduction to Information Retrieval Sec. 2.4.2

Positional index size

= Need an entry for each occurrence, not just once per
document

= [ndex size depends on average document size Whyv?

= Average web page has <1000 terms

= SEC filings, books, even some epic poems ... easily 100,000
terms

= Consider a term with frequency 0.1%

Document size Postings Positional postings

1000 1 1
100,000 1 100

Introduction to Information Retrieval Sec. 2.4.2

Rules of thumb

= A positional index is 2—4 as large as a non-positional
index

= Positional index size 35-50% of volume of original
text

= Caveat: all of this holds for “English-like” languages

Introduction to Information Retrieval Sec. 2.4.3

Combination schemes

* These two approaches can be profitably combined

" For particular phrases (“Michael Jackson”, “Britney
Spears”) it is inefficient to keep on merging positional
postings lists

= Even more so for phrases like “The Who”
= Williams et al. (2004) evaluate a more sophisticated
mixed indexing scheme

= A typical web query mixture was executed in % of the time
of using just a positional index

" |t required 26% more space than having a positional index
alone

