INFORMATION RETRIEVAL

Near duplicate detection

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Applications of NDD

Many problems in data mining can be seen as searching in sets of similar items:

- Pages with similar words, for classification on topics.
- Topic suggestion to Twitter users with similar profiles (recommendation systems).
- Dual problem: identifying communities of users with similar interests
- Identifying same user in different contexts (e.g. social media platforms)

a.a. 2021-2022 2/4

On the web

- The web is full of duplicated content.
- More so than many other collections
- Exact duplicates
 - Easy to eliminate
 - E.g., use hash/fingerprint
- Near-duplicates
 - Abundant on the web
 - Difficult to eliminate
- For the user, it's annoying to get a search result with near-identical documents.
- Marginal relevance is zero: even a highly relevant document becomes nonrelevant if it appears below a (near-)duplicate.
- We need to eliminate near-duplicates.

a.a. 2021-2022 3/4

Similar documents

Finding sets of documents (web pages) with much text in common:

- Mirror or quasi-mirror sites
 - Application: elimination of duplicates.
- Plagiarism, inclusion of extensive citations.
- Articles with similar content in different news sites.
 - Application: grouping articles as a "common history".

a.a. 2021-2022 4/4

Detecting near-duplicates

- Compute similarity with an edit-distance measure
- We want "syntactic" (as opposed to semantic) similarity.
 - True semantic similarity (similarity in content) is too difficult to compute.
- We do not consider documents near-duplicates if they have the same content, but express it with different words.
- \odot Use similarity threshold θ to make the call "is/isn't a near-duplicate".
- \odot E.g., two documents are near-duplicates if similarity $> \theta = 80\%$.

a.a. 2021-2022 5/40

Three techniques useful for NDD

- Shingling: convert documents, e-mail, ecc, in sets of items.
- Minhashing: convert large sets in short sketches (or signatures), preserving similarity.
- Locality Sensitive Hashing (LSH): consider pairs of signature that could be similar with at least a given probability.

a.a. 2021-2022 6/4

Architecture

Document

document

Shingling

Sketches: short vectors of integers representing shingles, and preserving their similarity

Minhash-

ing

Locality-

sensitive

Hashing

Sketch pairs to test for similarity

i.a. 2021-2022 7/46

Represent each document as set of shingles

Shingles are used as features to measure syntactic similarity of documents.

- ⊙ A shingle is just a word k-gram.
- A document is represented as a set of shingles
- For n = 5, "In a hole in the ground there lived a hobbit" would be represented as this set of shingles:
 - {In a hole in the, a hole in the ground, hole in the ground there, in the ground there lived, the ground there lived a, ground there lived a hobbit }
- Similar documents will have many shingles in common

a.a. 2021-2022 8/46

Represent each document as set of shingles

- Modifying a word affects only k shingles (the ones at distance at most k from the word)
- Moving a paragraph affects 2k shingles (the ones at distance at most k from the paragraph borders)
- \odot For n=3, changing "In a hole in the ground there lived a hobbit" to "In a hole in the ground there was a hobbit" only changes shingles { ground there lived, there lived a, lived a hobbit}

Documents as sets of shingles

- \odot In general, different documents should have few shingles in common, especially for higher k
- We define the similarity of two documents as the Jaccard coefficient of their shingle sets.

a.a. 2021-2022 10/4

Recall: Jaccard coefficient

- A commonly used measure of overlap of two sets
- Let *A* and *B* be two sets: their Jaccard coefficient is defined as:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

$$(A \neq \emptyset \text{ or } B \neq \emptyset)$$

- (0, A) = 1
- J(A, B) = 0 if $A \cap B = 0$
- ⊙ *A* and *B* don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Example

- Three documents:
 - d_1 : "Jack London traveled to Oakland"
 - d_2 : "Jack London traveled to the city of Oakland"
 - d₃: "Jack traveled from Oakland to London"
- © Based on shingles of size 2 (2-grams or bigrams), what are the Jaccard coefficients $J(d_1, d_2)$ and $J(d_1, d_3)$?
- ⊙ 1. $s(d_1)$ ={"Jack London", "London traveled", "traveled to", "to Oakland"}
 - 2. $s(d_2)$ ={"Jack London", "London traveled", "traveled to", "to the", "the city", "city of", "of Oakland"}
 - 3. $s(d_3)=\{\text{``Jack traveled''}, \text{``traveled from''}, \text{``from Oakland''}, \text{``Oakland to''}, \text{``to London'}\}$
- there are

a.a. 2021-2022 12/

Represent each document as a sketch

- \odot The number of shingles per document is large: computing Jaccard directly from M is expensive
- To increase efficiency, we will represent documents by means of sketches, cleverly chosen subsets of their shingles.
- ⊚ Let h be a predefined sketch size and let S be the overall set of shingles: document sketches are derived by means of a set of h different random permutations $\pi_1 \dots \pi_h$ of S
- \odot Each π_i maps a shingle to a different integer in $\{1, \dots, |S|\}$
- The sketch of a document *d* is defined as:

$$\left(\min_{s \in d} \pi_1(s), \min_{s \in d} \pi_2(s), \dots, \min_{s \in d} \pi_h(s)\right)$$

(a vector of *h* integers).

a.a. 2021-2022 13/4

From sets of documents+shingles to boolean matrices

A set of documents can be represented as a boolean matrix M, where

- columns are associated to documents
- o rows correspond to all shingles appearing in any document
- \odot M(i, j) = 1 iff the *i*-th shingle appear in the *j*-th document
- The matrix is usually sparse

The Jaccard similarity of two documents can be derived from the corresponding columns

a.a. 2021-2022 14/46

Four types of rows

 \odot For any pair of columns S_1, S_2 , rows can be classified in four types according to the values of the corresponding values in the matrix: each type has a different effect on numerator N and denominator D of $J(S_1, S_2)$

	S_1	S_2	effect on N	effect on D
a	1	1	increase	increase
b	1	0	same	increase
C	0	1	same	increase
d	0	0	same	same

- \odot In fact, $J(S_1, S_2) = \frac{\#a}{\#a + \#b + \#c}$
- \odot Many rows are of type d

a.a. 2021-2022 15/40

Minhashing

Permutations of shingles correspond here to permutations of rows of M. The above considerations can be accordingly translated as follows.

- \odot Given a row permutation π , for any document d corresponding to a column c_i in M, let us define as the Minhash of d under permutation π , denoted as $MH_{\pi}(d)$ the index j of the first row (according to π) such that M(i,i) = 1.
- As an extension, given a set Π_r of r permutations, for any document d corresponding to a column c_i in M, $MH_{\Pi_n}(d)$ is defined as the vector of integers (j_1, \dots, j_r) such that j_t is the index of the first row (according to permutation π_t) such that $M(j_t, i) = 1$.

16 / 46

Minhashing

- $_{\odot}\;$ The sketch vector MH $_{\Pi_{r}}(d)$ can be interpreted as a signature of d
- © Signatures can be visualized as columns in a new matrix M', where columns correspond to documents while rows correspond to permutattions. The values in column c_i are then defined as $\mathsf{MH}_{\Pi_r}(d_i)$, where d_i is the document corresponding to c_i

a.a. 2021-2022 17/40

Shingle/document matrix M

d_1	d_2	d_3	d_4
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Permutations

 d_1

1
3
7
6

d_1	d_2	d_3	d_4
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

M

Signature matrix M'

$$S_1$$
 S_2 S_3 S_4

Permutations

1	4
3	2
7	1
6	3
2	6
5	7
4	_

M

d_1	d_2	d_3	d_4
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M'

$$S_1$$
 S_2 S_3 S_4

Permutations

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

M

d_1	d_2	d_3	d_4
1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M'

S_1	S_2	S_3	S_4
2	1	2	- 1
2	1	4	1
1	2	1	2

Assume a single permutation π . Check is performed as follows:

- ⊚ If $MH_{\pi(d_1)} = MH_{\pi(d_2)}$ then d_1 and d_2 probably are near-duplicates.
- ⊚ If $MH_{\pi(d_1)} \neq MH_{\pi(d_2)}$ then d_1 and d_2 are probably not near-duplicates.

a. 2021-2022 22/4

Why does it work? Let us first recall that by b, c, a we denote the set of shingles in d_1 and not in d_2 , in d_2 and not in d_1 , in both d_1 and d_2 , respectively. Then,

- \odot the number of shingles occurring in d_1 , that is of rows i such that M'(i, 1) = 1, is #a + #b
- similarly, the number of shingles occurring in d_2 , that is of rows i such that M'(i, 2) = 1, is #a + #c
- \odot the number of possible (not distinct) pairs of shingles, the first one occurring in d_1 and the second one in d_2 , that is of (not distinct) pairs of rows i, j in M' such that M'(i, 1) = M'(i, 2) = 1 is (#a + #b)(#a + #c) - #b#c
- \odot the number of possible (not distinct) pairs of shingles both occurring in both d_1 and in d_2 , that is of (not distinct) pairs of rows i, j in M' such that M'(i, 1) = M'(i, 2) = M'(i, 1) = M'(i, 2) = 1 is $\#a^2$

23 / 46

Let us now estimate the probability that, by randomly choosing π , we get $\mathsf{MH}_{\pi}(d_1) = \mathsf{MH}_{\pi}(d_2)$.

- ⊚ the number of possible pairs $(MH_{\pi}(d_1), MH_{\pi}(d_2))$ is equal to the number of pairs of shingles, the first one occurring in d_1 and the second one in d_2 , that is (#a + #b)(#a + #c) #b#c
- ⊚ the number of possible pairs $(MH_{\pi}(d_1), MH_{\pi}(d_2))$ with $MH_{\pi}(d_1) = MH_{\pi}(d_2)$ is equal to the number of pairs of shingles both occurring in both d_1 and in d_2 , that is # a^2
- \odot assuming a uniform probability of selection of permutations, the probability that $MH_{\pi}(d_1) = MH_{\pi}(d_2)$ is then given by

$$p(d_1, d_2) = \frac{\#a^2}{(\#a + \#b)(\#a + \#c) - \#b\#c}$$

a.a. 2021-2022 24/46

But

$$\frac{\#a^2}{(\#a + \#b)(\#a + \#c) - \#b\#c} = \frac{\#a}{\#a + \#b + \#c}$$

is the Jaccard coefficient $J(d_1, d_2)$, that is our similarity measure between d_1 and d_2 . So, estimating $p(d_1, d_2)$ corresponds to estimating the similarity between d_1 and d_2

How can we get a good estimate of $pi(d_1, d_2)$ more efficiently than computing $I(d_1, d_2)$ (which implies taking into account all their shingles?)

25 / 46

- \circ $p(d_1, d_2)$ can be seen as the probability that, given d_1 and d_2 , a uniformly sampled permutation of the set of shingles assigns the same index to the first shingle in both documents
- Selecting π and observing whether $MH_{\pi}(d_1) = MH_{\pi}(d_2)$ can be seen as sampling a stone from an urn containing #a red stones and #b + #c black stones and checking whether the sampled stone is red

a.a. 2021-2022 26 / 46

- \odot Performing a random sample of r independent permutations π_1,\ldots,π_r and observing whether $\mathsf{MH}_{\pi_i}(d_1)=\mathsf{MH}_{\pi_i}(d_2)$ for each π_i corresponds to sampling r stones from the urn (with replacement) and checking how many sampled stoned are red
- \odot This is a sequence of Bernoulli trials with probability $p(d_1, d_2)$. In this case, the number of red stones is distributed according to a binomial distribution

$$p(\text{MH}_{\pi_i}(d_1) = \text{MH}_{\pi_i}(d_2) \text{ for } t \text{ permutations}) = \binom{t}{r} p(d_1, d_2)^t (1 - p(d_1, d_2))^{r-t}$$

which has mean $r \cdot p(d_1, d_2)$

a.a. 2021-2022 27/4

- \odot $I(d_1, d_2)$ can be estimated by estimating $p(d_1, d_2)$ from the sample of size r provided by the set functions Π_r .
- o by standard statistics, an unbiased estimator of p is $\hat{p} = \frac{t}{z}$, where t is the number of functions $h \in \Pi_k$ such that $MH_{\pi}(d_1) = MH_{\pi}(d_2)$
- the corresponding standard error is given by the sample standard deviation $\hat{s} = \sqrt{\frac{\hat{p}(1-\hat{p})}{r}}$: this makes it possible to a define confidence interval on $J(d_1, d_2)$ at any given confidence level θ as $[\hat{p} - Z_{\theta}\hat{s}, \hat{p} + Z_{\theta}\hat{s}]$, where Z_{θ} is the Z-score at probability θ (number of standard deviations from the mean of a gaussian such that the tail probability is $1 - \theta$)
- the precision of the estimation improves as *r* increases

28 / 46

Random hash functions as permutations

Sketches can be efficiently computed by means of random hash functions.

- ⊚ We can map shingles to integers by fingerprinting, that is by applying a given hash function h which maps any sequence of unigrams to a sequence of (say) m bytes, that is to an integer interval $0.2^m 1$
- ⊚ For suitably large m, with high probability there is no collision between pairs of shingles, that is $h(s_1) \neq h(s_2)$ for all s_1, s_2
- \odot Then, for suitably large m, h defines a permutation of shingles with high probability

a.a. 2021-2022 29/46

Implementing Minhashing

- \odot Let h_1, \ldots, h_k be a set of hash functions and d_1, \ldots, d_m a set of documents
- Let S be a $k \times m$ matrix: at the end of the algorithm: let $S(i, j) = \infty$ for all i, j
- For each document d_i
 - For each shingle s in d_i
 - For each hash function h_i , set $S(i, j) = \min(h_i(s), S(i, j))$
- At the end, S(i, j) will store the minimum index, in the permutation of shingles induced by h_i , of a shingle in document d_i . This is the MinHash of document d_i when function h_i is applied.

30 / 46

Example

i
$$d_1$$
 d_2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1
 $h_1(x) = x \mod 5$
 $h_2(x) = (2x+1) \mod 5$

$$\begin{array}{ccccc} h_2 & d_1 & d_2 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 & 1 & 1 \\ \end{array}$$

$$\min(h_2(d_1)) = 1 \neq 2 = \min(h_2(d_2))$$

$$\hat{J}(d_1, d_2) = \frac{1}{2} = .5$$

 $\min(h_1(d_1))=0=0=\min(h_1(d_2))$

$$J(d_1, d_2) = \frac{2}{5} = .4$$

a.a. 2021-2022 31/4

Example

i	d_1	d_{2}
0	1	1
1	0	0
2	1	1
3	1	0
4	0	1

	$M(h_i(s),1)$	$M(h_i(s),2)$	S	
h_1			∞	∞
h_2			∞	∞
$h_1(0) = 0$	1	1	0	0
$h_2(0) = 1$	0	0	∞	∞
$h_1(1) = 1$	0	0	0	0
$h_2(1) = 3$	1	0	1	∞
$h_1(2) = 2$	1	1	0	0
$h_2(2) = 0$	1	1	1	2
$h_1(3) = 3$	1	0	0	0
$h_2(3) = 2$	1	1	1	2
$h_1(4) = 4$	0	1	0	0
$h_2(4) = 4$	0	1	1	2

$$h_1(x) = x \mod 5$$

 $h_2(x) = (2x + 1) \mod 5$

a.a. 2021-2022 32/46

Efficient near-duplicate detection

- We have an extremely efficient method for estimating similarity for a single pair of documents
- \odot But we still have to estimate $O(n^2)$ values where n is the number of documents: still intractable
- However, often we need to derive all pairs whose similarity is above a given threshold
- One solution: locality sensitive hashing (LSH)

Candidate pairs

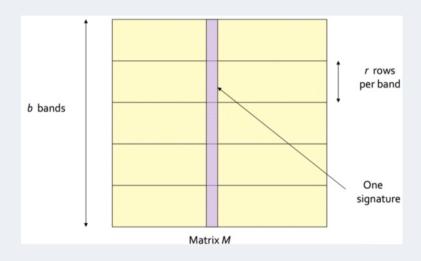
- \odot pick a similarity threshold θ , $0 \le \theta \le 1$
- \odot goal: find pairs of documents with Jaccard similarity at least heta
- \odot columns *i* and *j* are a candidate pair if their signatures agree in at least a fraction θ of their rows
- we expect pairs of documents to have the same similarity as their signatures

Locality-Sensitive Hashing (LSH) for signatures

- Oldea: Hash columns of signatures matrix M to a predefined set of buckets in such a way that similar columns are likely to be hashed to the same bucket, with high probability
- A pair of columns hashed to the same bucket is a candidate pair for similarity, to be verified more accurately
- False positives (dissimilar pairs hashed to same bucket); false negatives (similar pairs hashed to different buckets)

a.a. 2021-2022 35/46

Partition in bands



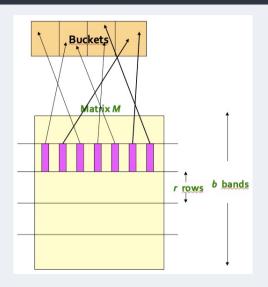
a.a. 2021-2022 36/46

Partition in bands

- \odot Divide the signature matrix *S* into *b* bands, each of *r* rows.
- \odot For each band B_i , a hash function h_i is defined which maps vectors of r integers to k buckets, with k large enough
- We could use the same hash functions for all bands, but different bucket arrays
- A pair of columns is a candidate pair if they are hashed to the same bucket for at least 1 band
- \odot Tune b (and correspondingly r) to catch most similar pairs, but few not similar ones.

a.a. 2021-2022 37/4

Band hashing



- Columns 2 and 6 are probably identical (candidate pair)
- Columns 6 and 7 are different (wrt to this band, they could be declared candidate pairs by hashing the other bands)

Example

- \odot Assume we have 10^5 columns (documents).
- Each signature is a vector of length 100 (100 hash functions applied).
- Each signature element is an integer 4 bytes long.
- Then all signatures are 40MB long.
- The naive approach requires $10^5 \times (10^5 1) \times .5 \simeq 5 \times 10^9$ pairs of signatures to be compared: could take months
- \odot Let us apply LSH: choose, for example, b = 20, r = 5

39 / 46

False negatives

Assume we wish all document pairs with similarity at least .8

- \odot Let columns C_1, C_2 be signatures of similar documents: that is, they have equal values in at least a .8 fraction of their rows
- ⊚ The probability that columns C_1, C_2 collide in a given band is then $(0.8)^5 = 0.328$.
- ⊚ The probability that C_1 , C_2 do not collide in any of the 20 bands is then $(1 0.328)^{20} \approx 0.00035$.
 - that is, there is a chance of 1 over about 3000 that two 0.8 similar columns do not collide anywhere, and are declared not similar (false negative)
 - \bullet we would find 99.965% pairs of truly similar documents: very few false negatives

a.a. 2021-2022 40/46

False positives

- Assume columns C_1, C_2 are signatures of not similar documents: they have equal values in a .3 fraction of their rows
- The probability that columns C_1 , C_2 collide in a given band is then $(0.3)^5 = 0.00243$.
- The probability that C_1 , C_2 collide in at least one of the 20 bands is then $1 - (1 - 0.00243)^{20} \approx 0.0474$.
 - that is, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs (false positive)
 - they will be checked more precisely and it will turn out they are not similar (at .8 threshold)

Collision probability in a band

- The probability that two given columns C_1, C_2 have equal rows in a certain band is θ^r
- The probability that two given columns C_1, C_2 differ in at least one row in a certain band is $1 - \theta^r$
- The probability that two given columns C_1 , C_2 differ in at least one row in all bands is $(1-\theta^r)^b$
- The probability that two given columns C_1, C_2 have equal rows in at least one band (they are a candidate pair) is $1 - (1 - \theta^r)^b$

LSH Involves a Tradeoff

- O Pick
 - The number of MinHashes (rows of *S*)
 - The number of bands b
 - The number of rows r per band
- to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

43 / 46

Example: b = 20, r = 5

 \odot Similarity threshold θ

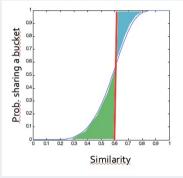
Probability that at least 1 band is identical (collision)

$$\begin{array}{c|cc} \theta & 1 - (1 - \theta^r)^b \\ .2 & .006 \\ .3 & .047 \\ .4 & .186 \\ .5 & .47 \\ .6 & .802 \\ .7 & .975 \\ .8 & .9996 \end{array}$$

.a. 2021-2022 44/4

Picking the S-curve

- \odot Picking r and b to get the best curve
- \odot 50 hash-functions (r = 5, b = 10)



- Blue area: False Negative rate
- Green area: False Positive rate

a. 2021-2022 45 / 46

LSH summary

- \odot Tune S, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures

a.a. 2021-2022 46/4