
Information retrieval
Near duplicate detection

Corso di Laurea Magistrale in Informatica

Università di Roma Tor Vergata

Prof. Giorgio Gambosi

a.a. 2021-2022

Derived from slides originally produced by C. Manning and by H. Schütze

Applications of NDD

Many problems in data mining can be seen as searching in sets of similar items:

⊚ Pages with similar words, for classification on topics.

⊚ Topic suggestion to Twitter users with similar profiles (recommendation systems).

⊚ Dual problem: identifying communities of users with similar interests

⊚ Identifying same user in different contexts (e.g. social media platforms)

a.a. 2021-2022 2 / 46

On the web

⊚ The web is full of duplicated content.

⊚ More so than many other collections
⊚ Exact duplicates

• Easy to eliminate
• E.g., use hash/fingerprint

⊚ Near-duplicates
• Abundant on the web
• Difficult to eliminate

⊚ For the user, it’s annoying to get a search result with near-identical documents.

⊚ Marginal relevance is zero: even a highly relevant document becomes nonrelevant if it
appears below a (near-)duplicate.

⊚ We need to eliminate near-duplicates.

a.a. 2021-2022 3 / 46

Similar documents

Finding sets of documents (web pages) with much text in common:

⊚ Mirror or quasi-mirror sites
• Application: elimination of duplicates.

⊚ Plagiarism, inclusion of extensive citations .
⊚ Articles with similar content in different news sites .

• Application: grouping articles as a “common history”.

a.a. 2021-2022 4 / 46

Detecting near-duplicates

⊚ Compute similarity with an edit-distance measure
⊚ We want “syntactic” (as opposed to semantic) similarity.

• True semantic similarity (similarity in content) is too difficult to compute.

⊚ We do not consider documents near-duplicates if they have the same content, but
express it with different words.

⊚ Use similarity threshold 𝜃 to make the call “is/isn’t a near-duplicate”.

⊚ E.g., two documents are near-duplicates if similarity > 𝜃 = 80%.

a.a. 2021-2022 5 / 46

Three techniques useful for NDD

⊚ Shingling: convert documents, e-mail, ecc, in sets of items.

⊚ Minhashing: convert large sets in short sketches (or signatures), preserving similarity.

⊚ Locality Sensitive Hashing (LSH): consider pairs of signature that could be similar
with at least a given probability.

a.a. 2021-2022 6 / 46

Architecture

Document
Sketch pairs to test
for similarity

Shingles: Word
sequences of length
𝑘 occurring in the
document

Sketches: short
vectors of integers
representing
shingles, and
preserving their
similarity

a.a. 2021-2022 7 / 46

Represent each document as set of shingles

Shingles are used as features to measure syntactic similarity of documents.

⊚ A shingle is just a word 𝑘-gram.

⊚ A document is represented as a set of shingles
⊚ For 𝑛 = 5, “In a hole in the ground there lived a hobbit” would be represented as this set

of shingles:
• {In a hole in the, a hole in the ground, hole in the ground there, in the ground there lived,

the ground there lived a, ground there lived a hobbit }
⊚ Similar documents will have many shingles in common

a.a. 2021-2022 8 / 46

Represent each document as set of shingles

⊚ Modifying a word affects only 𝑘 shingles (the ones at distance at most 𝑘 from the
word)

⊚ Moving a paragraph affects 2𝑘 shingles (the ones at distance at most 𝑘 from the
paragraph borders)

⊚ For 𝑛 = 3, changing “In a hole in the ground there lived a hobbit” to “In a hole in the
ground there was a hobbit” only changes shingles { ground there lived, there lived a,
lived a hobbit}

a.a. 2021-2022 9 / 46

Documents as sets of shingles

⊚ In general, different documents should have few shingles in common, especially for
higher 𝑘

⊚ We define the similarity of two documents as the Jaccard coefficient of their shingle
sets.

a.a. 2021-2022 10 / 46

Recall: Jaccard coefficient

⊚ A commonly used measure of overlap of two sets

⊚ Let 𝐴 and 𝐵 be two sets: their Jaccard coefficient is defined as:

𝐽 (𝐴,𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

(𝐴 ≠ ∅ or 𝐵 ≠ ∅)

⊚ 𝐽(𝐴,𝐴) = 1
⊚ 𝐽(𝐴,𝐵) = 0 if 𝐴 ∩ 𝐵 = 0
⊚ 𝐴 and 𝐵 don’t have to be the same size.

⊚ Always assigns a number between 0 and 1.

a.a. 2021-2022 11 / 46

Jaccard coefficient: Example

⊚ Three documents:
𝑑1: “Jack London traveled to Oakland”
𝑑2: “Jack London traveled to the city of Oakland”
𝑑3: “Jack traveled from Oakland to London”

⊚ Based on shingles of size 2 (2-grams or bigrams), what are the Jaccard coefficients
𝐽 (𝑑1, 𝑑2) and 𝐽 (𝑑1, 𝑑3)?

⊚ 1. 𝑠(𝑑1)={“Jack London”, “London traveled”, “traveled to”, “to Oakland”}
2. 𝑠(𝑑2)={“Jack London”, “London traveled”, “traveled to”, “to the”, “the city”, “city of”, “of

Oakland”}
3. 𝑠(𝑑3)={“Jack traveled”, “traveled from”, “from Oakland”, “Oakland to”, “to London’}

⊚ there are

⊚ 𝐽(𝑑1, 𝑑2) = 3/8 = 0.375
⊚ 𝐽(𝑑1, 𝑑3) = 𝐽 (𝑑2, 𝑑3) = 0

a.a. 2021-2022 12 / 46

Represent each document as a sketch

⊚ The number of shingles per document is large: computing Jaccard directly from 𝑀 is
expensive

⊚ To increase efficiency, we will represent documents by means of sketches, cleverly
chosen subsets of their shingles.

⊚ Let ℎ be a predefined sketch size and let 𝑆 be the overall set of shingles: document
sketches are derived by means of a set of ℎ different random permutations 𝜋1…𝜋ℎ of 𝑆

⊚ Each 𝜋𝑖 maps a shingle to a different integer in {1,… , |𝑆|}
⊚ The sketch of a document 𝑑 is defined as:

(min𝑠∈𝑑 𝜋1(𝑠),min𝑠∈𝑑 𝜋2(𝑠),… ,min𝑠∈𝑑 𝜋ℎ(𝑠))

(a vector of ℎ integers).

a.a. 2021-2022 13 / 46

From sets of documents+shingles to boolean matrices

A set of documents can be represented as a boolean matrix 𝑀 , where

⊚ columns are associated to documents

⊚ rows correspond to all shingles appearing in any document

⊚ 𝑀(𝑖, 𝑗) = 1 iff the 𝑖-th shingle appear in the 𝑗-th document

⊚ The matrix is usually sparse

The Jaccard similarity of two documents can be derived from the corresponding columns

a.a. 2021-2022 14 / 46

Four types of rows

⊚ For any pair of columns 𝑆1, 𝑆2, rows can be classified in four types according to the
values of the corresponding values in the matrix: each type has a different effect on
numerator 𝑁 and denominator 𝐷 of 𝐽 (𝑆1, 𝑆2)

𝑆1 𝑆2 effect on 𝑁 effect on 𝐷
a 1 1 increase increase
b 1 0 same increase
c 0 1 same increase
d 0 0 same same

⊚ In fact, 𝐽 (𝑆1, 𝑆2) = #𝑎
#𝑎 + #𝑏 + #𝑐

⊚ Many rows are of type 𝑑

a.a. 2021-2022 15 / 46

Minhashing

Permutations of shingles correspond here to permutations of rows of 𝑀 . The above
considerations can be accordingly translated as follows.

⊚ Given a row permutation 𝜋 , for any document 𝑑 corresponding to a column 𝑐𝑖 in 𝑀 , let
us define as the Minhash of 𝑑 under permutation 𝜋 , denoted as MH𝜋 (𝑑) the index 𝑗 of
the first row (according to 𝜋) such that 𝑀(𝑗, 𝑖) = 1.

⊚ As an extension, given a set Π𝑟 of 𝑟 permutations, for any document 𝑑 corresponding
to a column 𝑐𝑖 in 𝑀 , MHΠ𝑟 (𝑑) is defined as the vector of integers (𝑗1,… , 𝑗𝑟) such that 𝑗𝑡
is the index of the first row (according to permutation 𝜋𝑡) such that 𝑀(𝑗𝑡 , 𝑖) = 1.

a.a. 2021-2022 16 / 46

Minhashing

⊚ The sketch vector MHΠ𝑟 (𝑑) can be interpreted as a signature of 𝑑
⊚ Signatures can be visualized as columns in a new matrix 𝑀′, where columns

correspond to documents while rows correspond to permutattions. The values in
column 𝑐𝑖 are then defined as MHΠ𝑟 (𝑑𝑖), where 𝑑𝑖 is the document corresponding to 𝑐𝑖

a.a. 2021-2022 17 / 46

Minhashing example

Shingle/document
matrix 𝑀

𝑑1 𝑑2 𝑑3 𝑑4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

a.a. 2021-2022 18 / 46

Minhashing example

Permutations

1
3
7
6
2
5
4

𝑀
𝑑1 𝑑2 𝑑3 𝑑4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix 𝑀′

𝑆1 𝑆2 𝑆3 𝑆4

1 2 1 2

a.a. 2021-2022 19 / 46

Minhashing example

Permutations

1 4
3 2
7 1
6 3
2 6
5 7
4 5

𝑀
𝑑1 𝑑2 𝑑3 𝑑4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix 𝑀′

𝑆1 𝑆2 𝑆3 𝑆4

2 1 4 1
1 2 1 2

a.a. 2021-2022 20 / 46

Minhashing example

Permutations

1 4 3
3 2 4
7 1 7
6 3 6
2 6 1
5 7 2
4 5 5

𝑀
𝑑1 𝑑2 𝑑3 𝑑4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix 𝑀′

𝑆1 𝑆2 𝑆3 𝑆4
2 1 2 1
2 1 4 1
1 2 1 2

a.a. 2021-2022 21 / 46

Detecting near-duplicates from sketches

Assume a single permutation 𝜋 . Check is performed as follows:

⊚ If MH𝜋(𝑑1) = MH𝜋(𝑑2) then 𝑑1 and 𝑑2 probably are near-duplicates.

⊚ If MH𝜋(𝑑1) ≠ MH𝜋(𝑑2) then 𝑑1 and 𝑑2 are probably not near-duplicates.

a.a. 2021-2022 22 / 46

Detecting near-duplicates from sketches

Why does it work? Let us first recall that by 𝑏, 𝑐, 𝑎 we denote the set of shingles in 𝑑1 and
not in 𝑑2, in 𝑑2 and not in 𝑑1, in both 𝑑1 and 𝑑2, respectively. Then,
⊚ the number of shingles occurring in 𝑑1, that is of rows 𝑖 such that𝑀′(𝑖, 1) = 1, is #𝑎 +#𝑏
⊚ similarly, the number of shingles occurring in 𝑑2, that is of rows 𝑖 such that

𝑀′(𝑖, 2) = 1, is #𝑎 + #𝑐
⊚ the number of possible (not distinct) pairs of shingles, the first one occurring in 𝑑1 and

the second one in 𝑑2, that is of (not distinct) pairs of rows 𝑖, 𝑗 in 𝑀′ such that
𝑀′(𝑖, 1) = 𝑀′(𝑗, 2) = 1 is (#𝑎 + #𝑏)(#𝑎 + #𝑐) − #𝑏#𝑐

⊚ the number of possible (not distinct) pairs of shingles both occurring in both 𝑑1 and in
𝑑2, that is of (not distinct) pairs of rows 𝑖, 𝑗 in 𝑀′ such that
𝑀′(𝑖, 1) = 𝑀′(𝑖, 2) = 𝑀′(𝑗, 1) = 𝑀′(𝑗, 2) = 1 is #𝑎2

a.a. 2021-2022 23 / 46

Detecting near-duplicates from sketches

Let us now estimate the probability that, by randomly choosing 𝜋 , we get
MH𝜋 (𝑑1) = MH𝜋 (𝑑2).
⊚ the number of possible pairs (MH𝜋 (𝑑1),MH𝜋 (𝑑2)) is equal to the number of pairs of

shingles, the first one occurring in 𝑑1 and the second one in 𝑑2, that is
(#𝑎 + #𝑏)(#𝑎 + #𝑐) − #𝑏#𝑐

⊚ the number of possible pairs (MH𝜋 (𝑑1),MH𝜋 (𝑑2)) with MH𝜋 (𝑑1) = MH𝜋 (𝑑2) is equal
to the number of pairs of shingles both occurring in both 𝑑1 and in 𝑑2, that is #𝑎2

⊚ assuming a uniform probability of selection of permutations, the probability that
MH𝜋 (𝑑1) = MH𝜋 (𝑑2) is then given by

𝑝(𝑑1, 𝑑2) = #𝑎2
(#𝑎 + #𝑏)(#𝑎 + #𝑐) − #𝑏#𝑐

a.a. 2021-2022 24 / 46

Detecting near-duplicates from sketches

⊚ But
#𝑎2

(#𝑎 + #𝑏)(#𝑎 + #𝑐) − #𝑏#𝑐 = #𝑎
#𝑎 + #𝑏 + #𝑐

is the Jaccard coefficient 𝐽 (𝑑1, 𝑑2), that is our similarity measure between 𝑑1 and 𝑑2.
So, estimating 𝑝(𝑑1, 𝑑2) corresponds to estimating the similarity between 𝑑1 and 𝑑2

⊚ How can we get a good estimate of 𝑝𝑖(𝑑1, 𝑑2) more efficiently than computing 𝐽 (𝑑1, 𝑑2)
(which implies taking into account all their shingles?)

a.a. 2021-2022 25 / 46

Detecting near-duplicates from sketches

⊚ 𝑝(𝑑1, 𝑑2) can be seen as the probability that, given 𝑑1 and 𝑑2, a uniformly sampled
permutation of the set of shingles assigns the same index to the first shingle in both
documents

⊚ Selecting 𝜋 and observing whether MH𝜋 (𝑑1) = MH𝜋 (𝑑2) can be seen as sampling a
stone from an urn containing #𝑎 red stones and #𝑏 + #𝑐 black stones and checking
whether the sampled stone is red

a.a. 2021-2022 26 / 46

Detecting near-duplicates from sketches

⊚ Performing a random sample of 𝑟 independent permutations 𝜋1,… , 𝜋𝑟 and observing
whether MH𝜋𝑖(𝑑1) = MH𝜋𝑖(𝑑2) for each 𝜋𝑖 corresponds to sampling 𝑟 stones from the
urn (with replacement) and checking how many sampled stoned are red

⊚ This is a sequence of Bernoulli trials with probability 𝑝(𝑑1, 𝑑2). In this case, the
number of red stones is distributed according to a binomial distribution

𝑝(MH𝜋𝑖(𝑑1) = MH𝜋𝑖(𝑑2) for 𝑡 permutations) = (𝑡𝑟)𝑝(𝑑1, 𝑑2)
𝑡(1 − 𝑝(𝑑1, 𝑑2))𝑟−𝑡

which has mean 𝑟 ⋅ 𝑝(𝑑1, 𝑑2)

a.a. 2021-2022 27 / 46

Detecting near-duplicates from sketches

⊚ 𝐽(𝑑1, 𝑑2) can be estimated by estimating 𝑝(𝑑1, 𝑑2) from the sample of size 𝑟 provided
by the set functions Π𝑟 .

⊚ by standard statistics, an unbiased estimator of 𝑝 is ̂𝑝 = 𝑡
𝑟 , where 𝑡 is the number of

functions ℎ ∈ Π𝑘 such that MH𝜋 (𝑑1) = MH𝜋 (𝑑2)
⊚ the corresponding standard error is given by the sample standard deviation

̂𝑠 = √
̂𝑝(1− ̂𝑝)
𝑟 : this makes it possible to a define confidence interval on 𝐽 (𝑑1, 𝑑2) at any

given confidence level 𝜃 as [̂𝑝 − 𝑍𝜃 ̂𝑠, ̂𝑝 + 𝑍𝜃 ̂𝑠], where 𝑍𝜃 is the 𝑍 -score at probability 𝜃
(number of standard deviations from the mean of a gaussian such that the tail
probability is 1 − 𝜃)

⊚ the precision of the estimation improves as 𝑟 increases

a.a. 2021-2022 28 / 46

Random hash functions as permutations

Sketches can be efficiently computed by means of random hash functions.

⊚ We can map shingles to integers by fingerprinting, that is by applying a given hash
function ℎ which maps any sequence of unigrams to a sequence of (say) 𝑚 bytes, that
is to an integer interval 0..2𝑚 − 1

⊚ For suitably large 𝑚, with high probability there is no collision between pairs of
shingles, that is ℎ(𝑠1) ≠ ℎ(𝑠2) for all 𝑠1, 𝑠2

⊚ Then, for suitably large 𝑚, ℎ defines a permutation of shingles with high probability

a.a. 2021-2022 29 / 46

Implementing Minhashing

⊚ Let ℎ1,… , ℎ𝑘 be a set of hash functions and 𝑑1,… , 𝑑𝑚 a set of documents

⊚ Let 𝑆 be a 𝑘 × 𝑚 matrix: at the end of the algorithm: let 𝑆(𝑖, 𝑗) = ∞ for all 𝑖, 𝑗
⊚ For each document 𝑑𝑗

• For each shingle 𝑠 in 𝑑𝑗
• For each hash function ℎ𝑖, set 𝑆(𝑖, 𝑗) = min(ℎ𝑖(𝑠), 𝑆(𝑖, 𝑗))

⊚ At the end, 𝑆(𝑖, 𝑗) will store the minimum index, in the permutation of shingles
induced by ℎ𝑖, of a shingle in document 𝑑𝑗 . This is the MinHash of document 𝑑𝑗 when
function ℎ𝑖 is applied.

a.a. 2021-2022 30 / 46

Example

i 𝑑1 𝑑2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

ℎ1(𝑥) = 𝑥 mod 5
ℎ2(𝑥) = (2𝑥 + 1) mod 5

ℎ1 𝑑1 𝑑2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

ℎ2 𝑑1 𝑑2
0 0 0
1 1 0
2 1 1
3 1 1
4 0 1

min(ℎ1(𝑑1))=0=0=min(ℎ1(𝑑2))

min(ℎ2(𝑑1))=1≠2=min(ℎ2(𝑑2))

̂𝐽 (𝑑1, 𝑑2) = 1
2 = .5

𝐽 (𝑑1, 𝑑2) = 2
5 = .4

a.a. 2021-2022 31 / 46

Example

i 𝑑1 𝑑2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

𝑀(ℎ𝑖(𝑠),1) 𝑀(ℎ𝑖(𝑠),2) 𝑆
ℎ1 ∞ ∞
ℎ2 ∞ ∞
ℎ1(0) = 0 1 1 0 0
ℎ2(0) = 1 0 0 ∞ ∞
ℎ1(1) = 1 0 0 0 0
ℎ2(1) = 3 1 0 1 ∞
ℎ1(2) = 2 1 1 0 0
ℎ2(2) = 0 1 1 1 2
ℎ1(3) = 3 1 0 0 0
ℎ2(3) = 2 1 1 1 2
ℎ1(4) = 4 0 1 0 0
ℎ2(4) = 4 0 1 1 2

ℎ1(𝑥) = 𝑥 mod 5
ℎ2(𝑥) = (2𝑥 + 1) mod 5

a.a. 2021-2022 32 / 46

Efficient near-duplicate detection

⊚ We have an extremely efficient method for estimating similarity for a single pair of
documents

⊚ But we still have to estimate 𝑂(𝑛2) values where 𝑛 is the number of documents: still
intractable

⊚ However, often we need to derive all pairs whose similarity is above a given threshold

⊚ One solution: locality sensitive hashing (LSH)

a.a. 2021-2022 33 / 46

Candidate pairs

⊚ pick a similarity threshold 𝜃 , 0 ≤ 𝜃 ≤ 1
⊚ goal: find pairs of documents with Jaccard similarity at least 𝜃
⊚ columns 𝑖 and 𝑗 are a candidate pair if their signatures agree in at least a fraction 𝜃 of

their rows

⊚ we expect pairs of documents to have the same similarity as their signatures

a.a. 2021-2022 34 / 46

Locality-Sensitive Hashing (LSH) for signatures

⊚ Idea: Hash columns of signatures matrix 𝑀 to a predefined set of buckets in such a
way that similar columns are likely to be hashed to the same bucket, with high
probability

⊚ A pair of columns hashed to the same bucket is a candidate pair for similarity, to be
verified more accurately

⊚ False positives (dissimilar pairs hashed to same bucket); false negatives (similar pairs
hashed to different buckets)

a.a. 2021-2022 35 / 46

Partition in bands

a.a. 2021-2022 36 / 46

Partition in bands

⊚ Divide the signature matrix 𝑆 into 𝑏 bands, each of 𝑟 rows.

⊚ For each band 𝐵𝑖, a hash function ℎ𝑖 is defined which maps vectors of 𝑟 integers to 𝑘
buckets, with 𝑘 large enough

⊚ We could use the same hash functions for all bands, but different bucket arrays

⊚ A pair of columns is a candidate pair if they are hashed to the same bucket for at
least 1 band

⊚ Tune 𝑏 (and correspondingly 𝑟) to catch most similar pairs, but few not similar ones.

a.a. 2021-2022 37 / 46

Band hashing

⊚ Columns 2 and 6 are
probably identical
(candidate pair)

⊚ Columns 6 and 7 are
different (wrt to this band,
they could be declared
candidate pairs by
hashing the other bands)

a.a. 2021-2022 38 / 46

Example

⊚ Assume we have 105 columns (documents).

⊚ Each signature is a vector of length 100 (100 hash functions applied).

⊚ Each signature element is an integer 4 bytes long.

⊚ Then all signatures are 40MB long.

⊚ The naive approach requires 105 × (105 − 1) × .5 ≃ 5 × 109 pairs of signatures to be
compared: could take months

⊚ Let us apply LSH: choose, for example, 𝑏 = 20, 𝑟 = 5

a.a. 2021-2022 39 / 46

False negatives

Assume we wish all document pairs with similarity at least .8

⊚ Let columns 𝐶1, 𝐶2 be signatures of similar documents: that is, they have equal values
in at least a .8 fraction of their rows

⊚ The probability that columns 𝐶1, 𝐶2 collide in a given band is then (0.8)5 = 0.328.
⊚ The probability that 𝐶1, 𝐶2 do not collide in any of the 20 bands is then

(1 − 0.328)20 ≃ 0.00035.
• that is, there is a chance of 1 over about 3000 that two 0.8 similar columns do not collide

anywhere, and are declared not similar (false negative)
• we would find 99.965% pairs of truly similar documents: very few false negatives

a.a. 2021-2022 40 / 46

False positives

⊚ Assume columns 𝐶1, 𝐶2 are signatures of not similar documents: they have equal
values in a .3 fraction of their rows

⊚ The probability that columns 𝐶1, 𝐶2 collide in a given band is then (0.3)5 = 0.00243.
⊚ The probability that 𝐶1, 𝐶2 collide in at least one of the 20 bands is then

1 − (1 − 0.00243)20 ≃ 0.0474.
• that is, approximately 4.74% pairs of docs with similarity 0.3% end up becoming

candidate pairs (false positive)
• they will be checked more precisely and it will turn out they are not similar (at .8

threshold)

a.a. 2021-2022 41 / 46

Collision probability in a band

⊚ The probability that two given columns 𝐶1, 𝐶2 have equal rows in a certain band is 𝜃 𝑟
⊚ The probability that two given columns 𝐶1, 𝐶2 differ in at least one row in a certain

band is 1 − 𝜃 𝑟
⊚ The probability that two given columns 𝐶1, 𝐶2 differ in at least one row in all bands is

(1 − 𝜃 𝑟)𝑏
⊚ The probability that two given columns 𝐶1, 𝐶2 have equal rows in at least one band

(they are a candidate pair) is 1 − (1 − 𝜃 𝑟)𝑏

a.a. 2021-2022 42 / 46

LSH Involves a Tradeoff

⊚ Pick
• The number of MinHashes (rows of 𝑆)
• The number of bands 𝑏
• The number of rows 𝑟 per band

⊚ to balance false positives/negatives

⊚ Example: If we had only 15 bands of 5 rows, the number of false positives would go
down, but the number of false negatives would go up

a.a. 2021-2022 43 / 46

Example: 𝑏 = 20, 𝑟 = 5

⊚ Similarity threshold 𝜃

⊚ Probability that at least 1 band is identical (collision)

𝜃 1 − (1 − 𝜃 𝑟)𝑏
.2 .006
.3 .047
.4 .186
.5 .47
.6 .802
.7 .975
.8 .9996

a.a. 2021-2022 44 / 46

Picking the S-curve

⊚ Picking 𝑟 and 𝑏 to get the best curve

⊚ 50 hash-functions (𝑟 = 5, 𝑏 = 10)

• Blue area: False Negative rate

• Green area: False Positive rate

a.a. 2021-2022 45 / 46

LSH summary

⊚ Tune 𝑆, 𝑏, 𝑟 to get almost all pairs with similar signatures, but eliminate most pairs
that do not have similar signatures

⊚ Check in main memory that candidate pairs really do have similar signatures

a.a. 2021-2022 46 / 46

