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Why ranked retrieval?



Ranked retrieval

• Boolean queries.
◦ Documents either match or don’t.

• Good for expert users with precise understanding of their needs
and of the collection.

• Also good for applications: Applications can easily consume
1000s of results.

• Not good for the majority of users
◦ Most users are not capable of writing Boolean queries . . .

◦ . . . or they are, but they think it’s too much work.

◦ Most users don’t want to wade through 1000s of results.
◦ This is particularly true of web search.



Problem with Boolean search: Feast or famine

• Boolean queries often result in either too few (=0) or too many
(1000s) results.

• Query 1 (boolean conjunction): “standard user dlink 650”
◦ → 200,000 hits – feast

• Query 2 (boolean conjunction): “standard user dlink 650 no card
found”

◦ → 0 hits – famine

• In Boolean retrieval, it takes a lot of skill to come up with a query
that produces a manageable number of hits.

◦ AND gives too few; OR gives too many

• Suggested solution:
◦ Rank documents by goodness a sort of clever soft AND



Feast or famine: No problem in ranked retrieval

• With ranking, large result sets are not an issue.
• Just show the top 10 results
• Doesn’t overwhelm the user
• Premise: the ranking algorithm works, that is, more relevant

results are ranked higher than less relevant results.



Scoring as the basis of ranked retrieval

• How can we accomplish a relevance ranking of the documents
with respect to a query?

• Assign a score to each query-document pair, say in [0, 1].
• This score measures how well document and query “match”.
• Sort documents according to scores



Query-document matching scores

• How do we compute the score of a query-document pair?
• If no query term occurs in the document: score should be 0.
• The more frequent a query term in the document, the higher the

score
• The more query terms occur in the document, the higher the

score



Jaccard coefficient

• A commonly used measure of overlap of two sets
• Let A and B be two sets
• Jaccard coefficient:

jaccard(A, B) � |A ∩ B|
|A ∪ B|

(A , ∅ or B , ∅)
• jaccard(A,A) � 1
• jaccard(A, B) � 0 if A ∩ B � 0
• A and B don’t have to be the same size.
• Always assigns a number between 0 and 1.



Jaccard coefficient: Example

• What is the query-document match score that the Jaccard
coefficient computes for:

◦ Query: “ides of March”
◦ Document “Caesar died in March”
◦ jaccard(q, d) � 1/6



What’s wrong with Jaccard?

• It doesn’t consider term frequency (how many occurrences a
term has).

• Rare terms are more informative than frequent terms. Jaccard
does not consider this information.

• Is the overall number of terms the best way to normalize wrt
document lenght?

• Usually, |A ∩ B|√
|A ∪ B|

(cosine) seems better than |A ∩ B|
|A ∪ B| (Jaccard) for

length normalization.



Query-document matching scores

• We need a way of assigning a score to a query/document pair
• Lets start with a one-term query
• If the query term does not occur in the document: score should

be 0
• The more frequent the query term in the document, the higher

the score should be



Term frequency



Binary incidence matrix

Consider the occurrence of a term in a document:

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1} |V | .



Count matrix

Consider the number of occurrences of a term in a document:

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V | .



Bag of words model

• We do not consider the order of words in a document.
• John is quicker than Mary and Mary is quicker than John are

represented the same way.
• This is called a bag of words model.
• Information loss, but simplification of the problem: the

positional index was able to distinguish these two documents.



Term frequency tf

• The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d.

• How can we use tf to compute query-document match scores?
• Raw term frequency is not what we want because:

◦ A document withtf � 10 occurrences of the term is clearly more
relevant than a document with tf � 1 occurrence of the term.

◦ But not 10 times more relevant.

• Relevance does not increase proportionally with term frequency.



Instead of raw frequency: log frequency weighting

• The log frequency weight of term t in d is defined as

wt,d �

{
1 + log10 tft,d if tft,d > 0
0 otherwise

• tft,d → wt,d:
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

• Score for a document-query pair: sum over terms t in both q and
d:

tf-matching-score(q, d) �
∑

t∈q∩d
(1 + log tft,d)

• The score is 0 if q ∩ d � ∅, that is none of the query terms is
present in the document.



Exercise

Compute the Jaccard matching score and the tf matching score for the
following query-document pairs.

• q: [information on cars] d: “all you’ve ever wanted to know
about cars”

• q: [information on cars] d: “information on trucks, information
on planes, information on trains”

• q: [red cars and red trucks] d: “cops stop red cars more often”



tf-idf weighting



Frequency in document vs. frequency in collection

• In addition, to term frequency (the frequency of the term in the
document) . . .

• . . . we also want to use the frequency of the term in the collection
for weighting and ranking.



Desired weight for rare terms

• Rare terms are more informative than frequent terms.
• Consider a term in the query that is rare in the collection (e.g.,

Phenethylamine).
• A document containing this term is very likely to be relevant.
• We want high weights for rare terms like Phenethylamine.



Desired weight for frequent terms

• Frequent terms are less informative than rare terms.
• Consider a term in the query that is frequent in the collection

(e.g., good, increase, line).
• A document containing this term is more likely to be relevant

than a document that doesn’t
• But words like good, increase and line are not sure indicators of

relevance.
• As a consequence, for frequent terms like good, increase, and

line, we want positive weights,
• but lower weights than for rare terms.



Document frequency

• We want high weights for rare terms like Phenethylamine.
• We want low (positive) weights for frequent words like good,

increase, and line.
• We will use document frequency to factor this into computing

the matching score.
• The document frequency is the number of documents in the

collection that the term occurs in.



idf weight

• dft is the document frequency, the number of documents that t
occurs in.

• dft is an inverse measure of the informativeness of term t.
• We define the idf weight of term t as follows:

idft � log10
N
dft

(N is the number of documents in the collection.)
• idft is a measure of the informativeness of the term.

• log N
dft

instead of N
dft

to “dampen” the effect of idf

• Note that we use the log transformation for both term frequency
and document frequency.



idf weight

• N
dft

• log N
dft



Examples for idf

Compute idft using the formula: idft � log10
1,000,000

dft

term dft idft

calpurnia 1
animal 100
sunday 1000
fly 10,000
under 100,000
the 1,000,000



Examples for idf

Compute idft using the formula: idft � log10
1,000,000

dft

term dft idft

calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0



Effect of idf on ranking

• idf affects the ranking of documents for queries with at least two
terms.

• For example, in the query “Phenethylamine shape”, idf
weighting increases the relative weight of Phenethylamine and
decreases the relative weight of shape.

• idf has little effect on ranking for one-term queries.



Collection frequency vs. Document frequency

word collection frequency document frequency
insurance 10440 3997
try 10422 8760

• Collection frequency of t: number of tokens of t in the collection
• Document frequency of t: number of documents t occurs in
• Which word is a better search term (and should get a higher

weight)?
• This example suggests that df (and idf) is better for weighting

than cf (and “icf”).



tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight and its
idf weight.

wt,d � (1 + log tft,d) · log N
dft

• tf-weight+idf-weight
• Best known weighting scheme in information retrieval
• Alternative names: tf.idf, tf x idf



Summary: tf-idf

• Assign a tf-idf weight for each term t in each document d:
wt,d � (1 + log tft,d) · log N

dft

• The tf-idf weight . . .
◦ . . . increases with the number of occurrences within a document.

(term frequency)
◦ . . . increases with the rarity of the term in the collection. (inverse

document frequency)



Exercise: Term, collection and document frequency

Quantity Symbol Definition
term frequency tft,d number of occurrences of t in d
document frequency dft number of documents in the

collection that t occurs in
collection frequency cft total number of occurrences of t

in the collection

• Relationship between df and cf?
• Relationship between tf and cf?
• Relationship between tf and df?



The vector space model



Binary incidence matrix

Consider the occurrence of a term in a document:

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1} |V | .



Count matrix

Consider the number of occurrences of a term in a document:

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V | .



Binary → count → weight matrix

Consider the tf-idf score of a term in a document

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights ∈ R|V |



Documents as vectors

• Each document is now represented as a real-valued vector of
tf-idf weights ∈ R|V | .

• So we have a | V |-dimensional real-valued vector space.
• Terms are axes of the space.
• Documents are points or vectors in this space.
• Very high-dimensional: tens of millions of dimensions when you

apply this to web search engines
• Each vector is very sparse - most entries are zero.



Queries as vectors

• Key idea 1: do the same for queries: represent them as vectors in
the high-dimensional space

• Key idea 2: Rank documents according to their proximity to the
query

• proximity = similarity ≈ negative distance
• Rank documents in inverse order wrt the distance of its vector

from the query vector
• How to define a distance between vectors of terms?



How do we formalize vector space similarity?

• First approach: distance of vectors � distance between their
endpoints

• For example, euclidean distance
• Endpoint distance is a bad idea: it is heavily affected by vector

lengths
• It may be large for vectors of different lengths



Why distance is a bad idea

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ®q and ®d2 is large although the distribution
of terms in the query q and the distribution of terms in the document
d2 are very similar.



Why distance is a bad idea

• Thought experiment: take a document d and append it to itself.
Call this document d′. d′ is twice as long as d.

• “Semantically” d and d′ have the same content.
• The angle between the two documents is 0, corresponding to

maximal similarity
• The Euclidean distance between the two documents can be quite

large.

Better approach: rank documents according to angle with query



Cosine function

The cosine function is monotonically decreasing in [0, 2π]



From angles to cosines

• The following two notions are equivalent.
◦ Rank documents according to the angle between query and

document in decreasing order
◦ Rank documents according to cosine(query, document) in

increasing order



Cosine distance and length normalization

• A vector can be normalized by dividing each of its components
by its length (norm)

• here we use the L2 (euclidean) norm: ∥x∥2 �
√∑

i x2
i

• This maps vectors onto the unit sphere, since after normalization:
∥x∥2 �

√∑
i x2

i � 1
• As a result, longer documents and shorter documents have

weights of the same order of magnitude.
• Effect on the two documents d and d′ (d appended to itself) from

earlier slide: they have identical vectors after length
normalization.



Cosine for normalized vectors

• For normalized vectors, the cosine is equivalent to the dot (or
scalar) product.

• cos(®q, ®d) � ®q · ®d �
∑

i qi · di

◦ (if ®q and ®d are length-normalized).

• this result in an approach to compute cosine similarity:
◦ normalize vectors
◦ sum of products for all components different from 0 in both vectors

(terms appearing in both documents or in both document and
query)



Cosine similarity between query and document

cos(®q, ®d) � sim(®q, ®d) �
®q
|®q| ·

®d
|®d|

�
®q · ®d
|®q| |®d|

�

∑|V |
i�1 qidi√∑|V |

i�1 q2
i

√∑|V |
i�1 d2

i

• qi is the tf-idf weight of term i in the query.
• di is the tf-idf weight of term i in the document.
• |®q| and |®d| are the lengths of ®q and ®d.
• This is the cosine similarity of ®q and ®d . . . . . . or, equivalently, the

cosine of the angle between ®q and ®d.



Cosine similarity illustrated

rich

poor

®v(q)

®v(d1)

®v(d2)

®v(d3)

θ



Cosine: Example

How similar are
these novels?
SaS: Sense and
Sensibility
PaP: Pride and
Prejudice
WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

(To simplify this example, we do not consider idf weighting)



Cosine: Example

term frequencies (counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58



Cosine: Example

log frequency weighting

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

• cos(SaS,PaP) ≈ 0.789 ∗ 0.832 + 0.515 ∗ 0.555 ≈ 0.94.
• cos(SaS,WH) ≈ 0.789 ∗ 0.524 + 0.515 ∗ 0.465 + 0.335 ∗ 0.405 ≈ 0.79
• cos(PaP,WH) ≈ 0.832 ∗ 0.524 + 0.555 ∗ 0.465 ≈ 0.69
• Why do we have cos(SaS,PaP) > cos(SAS,WH)?



Computing the cosine score

CosineScore(q)
1 float Scores[N] � 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d]+ � wt,d × wt,q
7 Read the array Length
8 for each d
9 do Scores[d] � Scores[d]/Length[d]

10 return Top K components of Scores[]



Computing the cosine score

• The previous algorithm scores term-at-a-time (TAAT)
• Algorithm can be adapted to scoring document-at-a-time (DAAT)

Storing wt,d in each posting could be expensive

• because wed have to store a floating point number
• For tf-idf scoring, it suffices to store tft,d in the posting and idft in

the head of the postings list

Extracting the top K items can be done with a priority queue (e.g., a
heap)



Variants of tf weighting

natural TFtotal(t, d) n(t, d)

boolean TFbool(t, d)
{
1 if n(t, d) > 0
0 otherwise

sum TFsum(t, d)
n(t, d)
N(d)

max TFmax(t, d)
n(t, d)

maxt′ n(t′, d)
augmented TFaug(t, d) 0.5 +

0.5 · n(t, d)
maxt′ n(t′, d)

log TFlog(t, d) log(1 + n(t, d))

log avg TFlogavg(t, d)
log(1 + n(t, d))
log(1 + na(d))

frac TFfrac(t, d; k) n(t, d)
n(t, d) + k

BM25 TFBM25(t, d, c; k, b)
n(t, d)

n(t, d) + k(b · ndl(d, c) + (1 − b))

• |d|: number of distinct terms in document d
• |c|: number of documents in collection c
• n(t, d): number of occurrences of term t in document d
• N(d) � ∑

t n(t, d): length (overall number of occurrences of all terms) in document d
• na(d) � 1

|d|
∑

t n(t, d): average number of occurrences of terms in document d

• ndl(d, c) � N(d)
adl(c) : length of document d normalized wrt collection c

• adl(d, c) � 1
|c|

∑
d∈c

N(d): average length of documents in collection c



Variants of tf weighting

• TFtotal, TFsum, TFmax all correspond to assuming “independence”
of occurrences: tf increases by a same amount for each successive
occurrence (independently from the number of occurrences
already observed)

• TFtotal has no normalization wrt document length: biased toward
longer documents

• assume a set of documents of different length with the same
fraction of occurrences of a certain term t: how do we want
documents scored wrt t?



Variants of tf weighting

• TFtotal has no normalization wrt document length: longer
documents receive higher score (this could happen even for a
lower fraction of occurrences, since only the absolute amount of
occurrences is considered)

• TFsum normalizes wrt document length: all documents receive
the same score, but perhaps we would prefer longer documents
to be preferred in a certain amount, even if the fraction of term
occurrences is the same

• TFmax is an intermediate approach: for a same fraction of
occurrences, longer documents are preferred, but not as much as
in TFtotal



Variants of tf weighting

• TFfrac introduces a decreasing marginal gain wrt the number of
occurrences: its increase deriving from the n-th occurrence of a
term is smaller for larger n

• the same holds for TFlog



Variants of tf weighting

total idftotal(t, c) − log n(t, c)
sum idfsum(t, c) − log n(t, c)

|c|
smooth sum idfsmooth(t, c) − log

n(t, c) + 0.5
|c| + 1

prob idfprob(t, c) max
(
0,− log n(t, c)

|c| − n(t, c)

)
smooth prob idfsmoothprob(t, c) max

(
0,− log

n(t, c) + 0.5
|c| − n(t, c) + 0.5

)
• |c|: number of documents in collection c
• n(t, c): number of documents in collection c in which term t occurs
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