
Language models
a.a. 2020-2021
Course of Information Retrieval
CdLM in Computer Science
University of Rome Tor Vergata

Prof. Giorgio Gambosi
Derived from slides produced by C. Manning and by H. Schütze

Using language models (LMs) for IR

• We view the document in terms of as a generative model that
generates the query

• What we need to do:
◦ Define the precise generative model we want to use
◦ Estimate parameters (different parameters for each document’s

model)
◦ Smooth to avoid zeros
◦ Apply to query and find document most likely to have generated

the query
◦ Present most likely document(s) to user

What is a language model?

• Assume we are reading (or generating) a document d term by
term

• We can view a language model Md for d as a way to determine
the next term which will be read (generated)

We can view the language model as a finite state automaton, where
the transitions between states are associated to terms

me
me me me me . . .

wish

I

I wish I wish . . .

Cannot generate: “I I”, “ wish wish wish” or “wish I wish”: history
counts

Probabilistic language models

Each document was generated by a different automaton like this,
except that these automata are probabilistic.

• For each node, a probability distribution is defined on all
transitions

• A document corresponds to (is generated as) a sequence of
random sample on such distributions

A probabilistic language model

0 1 2

3

Frodo, Sam

I

you saw

am, see

P(term|state)

t p(t|0) p(t|1) p(t|2) p(t|3)
I 0.4
you 0.4
am 0.5
see 0.5
saw 1
Frodo 0.8
Sam 0.2
STOP 0.2

• This is a probabilistic finite-state automaton and the transition
distribution for its states 0, 1, 2, 3.

• STOP is not a word, but a special symbol indicating that the
automaton stops.

A probabilistic language model

0 1 2

3

Frodo, Sam

I

you saw

am, see

P(term|state)

t p(t|0) p(t|1) p(t|2) p(t|3)
I 0.4
you 0.4
am 0.5
see 0.5
saw 1
Frodo 0.8
Sam 0.2
STOP 0.2

• possible sequence generated:
w I am Frodo you saw Sam STOP
P(t|s) 0.4 0.5 0.8 0.4 1 0.2 0.2

Total sequence probability � 0.00256

A probabilistic unigram language model

A simple version of language models, that we will consider here, is
provided by the case when there is a unique state, hence p(t|s) � p(t)
for each term

∗

P(term)
t p(t)
I 0.1
you 0.05
am 0.1
see 0.15
saw 0.1
Frodo 0.3
Sam 0.1
STOP 0.1

• possible sequence generated:
w Frodo I Sam Sam saw see Frodo STOP
P(t|s) 0.3 0.1 0.1 0.1 0.15 0.2 0.3 0.1

Total sequence probability � 2.7 · 10−7

A different language model for each document

Md1 : language model of d1
t p(t) t p(t)
STOP .1 I .15
you .2 am .05
see .05 saw .05
Frodo .2 Sam .2

Md1 : language model of d1
t p(t) t p(t)
STOP .2 I .1
you .1 am .05
see .15 saw .2
Frodo .15 Sam .05

query: Frodo saw Sam STOP

p(query|Md1) � 0.2 · 0.05 · 0.2 · 0.1 � 2 · 10−4

p(query|Md2) � 0.15 · 0.2 · 0.05 · 0.2 � 3 · 10−4

p(query|Md1) < p(query|Md2): thus, document d2 is “more relevant”
to the query “Frodo saw Sam STOP ” than d1 is.

Using language models in IR

• Each document is treated as (the basis for) a language model.
• Given a query q:

◦ We wish to rank documents by

p(d|q) � p(q|d)p(d)
p(q)

◦ p(q) is the same for all documents, so ignore
◦ p(d) is the prior – often treated as the same for all d

◦ But we could give a higher prior to documents which are relevant wrt
some other measure, e.g., those with high PageRank.

◦ p(q|d) is the probability of q given d
◦ For uniform prior: ranking documents according to p(q|d) and

p(d|q) is equivalent.

Where we are

We may see p(q|d) as the probability that the document the user had
in mind when she was formulating the query was in fact this one.

• In the LM approach to IR, we attempt to model the query
generation process.

• Then we rank documents by the probability that a query would
be observed as a random sample from their respective document
models (probability distributions)

• That is, we rank according to P(q|d).
• In general, a document model structure (type of probability

distribution) is assumed and its parameters values are derived,
for each document, from its content

How to compute P(q|d)

• We make the Naive Bayes conditional independence assumption:

p(q|Md) � p(< w1 , . . . ,w|q| > |Md) �
|q|∏
i�1

p(wk |Md)

|q|: length of q; wk: token t occurring at position k in q

How to compute P(q|d)

Where do the parameters p(wk |Md) come from?

• Likelihood: this is the probability of data given a model, in this
case p(q|Md)

◦ For fixed data, this provides a measure associated to each model
instance (parameter values): the probability that such data are
generated in the probabilistic framework defined by the model
instance (for example, probability distribution)

◦ This can be seen as “how much” a model instance explains the
given data

How to compute P(q|d)

An hypothesis on the model structure (and the generation process)
must be assumed.

• hypothesis: all terms have an associated probability to be the
next word generated; this probability is independent from
previous occurrences

• the probability of observing k occurrences of term t in the query q
is given by the binomial distribution

p(tft,q � k) � |q|!
k!(|q| − k)!p

k(1 − p)|q|−k

• the probability of observing k1 , k2 , . . . , km occurrences of all terms
t1 , . . . , tm in the query q is given by the multinomial distribution

p(tfti ,q � ki , i � 1, . . . ,m) � |q|!∏m
i�1 ki!

m∏
i�1

pki
i

How to compute P(q|d)

• That is, for each document d,

p(tfti ,q � ki , i � 1, . . . ,m|Md) ≈
∏
t∈q

p(t|Md)tft,q

since the multiplying factor

|q|!∏m
i�1 tfti ,q!

is independent from the document
• here Md is an m-dimensional array

Md �
[
p1 , p2 , . . . pm

]
with

∑m
i�1 pi � 1 and p(ti |Md) � pi

Parameter estimation

• The probability of the term in the document model, estimated by
maximum likelihood is

p̂i � p̂(ti |Md) �
tfti ,d

|d|

• |d|: length of d
• tfti ,d: #occurrences of ti in d

Different models

Different hypotheses on the distribution (generative process) provide
different estimations.

• Multiple Poisson: we assume a dependancy exists between
occurrences of a term. This is formalized by a Poisson
distribution

p(tft,q � k) � e−λ |q|(λ |q|)k
k!

where λ |q| is the expected number of occurrences of t in q
• for the whole query

p(tfti ,q � ki , i � 1, . . . ,m|Md) �
m∏

i�1

e−λi |q|(λi |q|)ki

ki!

• here Md is an m-dimensional array

Md � [λ1 , λ2 , . . . λm]

Smoothing in the multinomial model

• We have a problem with zeros: a single t with p(t|Md) � 0 will
make p(q|Md) �

∏
p(t|Md) � 0

• We would give a single term “veto power”.
• For example, for query [Frodo goes to mount Doom] a document

about “Frodo Sam Doom” would have p(q|Md) � 0
• We need to smooth the estimates to avoid zeros.

Laplace smoothing

• Key intuition: A nonoccurring term is possible (even though it
didn’t occur), so we don’t want to assign 0 probability to it

• We may avoid the zero probability case by adding a constant
value, such as 1, to the count tft,d in the maximum likelihood
estimation: the numerator of the estimation ratio is now tft,d + 1

• This eliminates the zero probability case, but makes the
normalization wrong, that is

∑
t tft,d > |d|. This can be avoided by

summing M, the overall number of terms to |d| at the
denominator

p̂(t|Md) �
tft,d + 1
|d| + M

Smoothing through collection model

• We may estimate its probability of a term in a document model
by looking at the whole collection

• Let us consider the collection model Mc the collection model: we
may estimate

• The maximum likelihood estimate of the probability of the term
in the whole collection is given by

p̂(t|Mc) �
cft
T

where cft is the number of occurrences of t in the collection and
T �

∑
t cft is the total number of tokens in the collection.

• We will use (the estimate of) p̂(t|Mc) to “smooth” (the estimate of)
p(t|d) away from zero.

Jelinek-Mercer smoothing

The estimated probability of the term wrt the document is defined as
a linear combination of the probability according to the document
model and the probability according to the collection model

p(t|d) � λp(t|Md) + (1 − λ)p(t|Mc)

λ is a hyper-parameter which tunes the relevance of the document
model wrt the collection model

• Mixtures of two distributions
• Correctly setting λ is very important for good performance

Jelinek-Mercer smoothing

Assuming the conditional independence of terms,

p(q|d) �
∏

1≤k≤|q|

(
λp(tk |Md) + (1 − λ)p(tk |Mc)

)

• Basic idea: we model the case that the user has a document in
mind and generates the query from this document.

• ◦ High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

◦ Low value of λ: more disjunctive, suitable for long queries

Example

Collection:

• d1: “Frodo and Sam reached mount Doom with the help of
Gollum”

• d2: “Gollum was attracted by the One Ring”

Query q: “Gollum Ring”

• Use mixture model with λ � 1/2
• |d1 | � 11, |d2 | � 7, T � 18
• P(q|d1) � [(1/11 + 2/18)/2] · [(0/11 + 1/18)/2] �≈ 0.0028
• P(q|d2) � [(1/7 + 2/18)/2] · [(1/7 + 1/18)/2] ≈ 0.0125
• Ranking: d2 > d1

Exercise: Compute ranking

• Collection: d1 and d2

• d1: Frodo had a small sword and a coat
• d2: The Shire was a small region in the west of Middle Earth
• Query q: west small
• Use mixture model with λ � 1/2
• |d1 | � 8, |d2 | � 12, T � 20

t tft,d1 tft,d2 cft

west 0 1 1
small 1 1 2

• . . .

Dirichlet smoothing

This is a bayesian approach: Md is a random variable, with an
associated distribution.

• a prior distribution p(Md) is defined from the collection model
Mc: it is a distribution of probabilities of m-dimensional vectors
(summing to 1) with expected value Mc and other parameters
predefined

• by observing the document d content, a posterior distribution
p(Md |d) is derived by applying Bayes rule

p(Md |d) �
p(d|Md)p(Md)

p(d)

• p(d|Md) is a multinomial distribution, by hypothesis
• p(Md) is chosen in such a way that p(Md) and p(Md |d) are of the

same type (conjugate to the multinomial)
• typical choice, Dirichlet distribution

Dirichlet smoothing

• Dirichlet distribution

Dir(p1 , . . . , pm |α1 , . . . , αm) �
Γ(∑m

i�1)αi)∏m
i�1 Γ(αi)

m∏
i�1

pαi−1
i

• assume the prior distribution is defined as αi � µ · p(ti |Mc),
where p(ti |Mc) is estimated as before

• under this hypothesis, it can be proved that the posterior
distribution is then

p(Md |d) � p(p(t1 |Md), . . . , p(tm |Md)|d,Mc , µ)

≃
m∏
i1

p(ti |Md)tft,d+µ·p(ti |Mc)−1

a Dirichlet with parameters αi � tfti ,d + µ · p(ti |Mc)

Dirichlet smoothing

The resulting document model Md is the expectation of the posterior
distribution

• in general, in a Dirichlet distribution the expectation is the
m-dimensional array with components

αi∑m
k�1 αk

• as a consequence, Md is the m-dimensional array with
components

tfti ,d + µ · p(ti |Mc)∑m
k�1(tftk ,d + µ · p(tk |Mc))

�
tfti ,d + µ · p(ti |Mc)

|d| + µ

Dirichlet smoothing

• Intuition: Before having seen any part of the document we start
with the background distribution as our estimate.

• As we read the document and count terms we update the
background distribution.

• The weighting factor µ determines how strong an effect the prior
has.

Jelinek-Mercer or Dirichlet?

• Dirichlet performs better for keyword queries, Jelinek-Mercer
performs better for verbose queries.

• Both models are sensitive to the smoothing parameters – you
shouldn’t use these models without parameter tuning.

Vector space vs BM25 vs LM

• BM25/LM: based on probability theory
• Vector space: based on similarity, a geometric/linear algebra

notion
• Term frequency is directly used in all three models.

◦ LMs: raw term frequency, BM25/Vector space: more complex
• Length normalization

◦ Vector space: document vectors normalized
◦ LMs: probabilities are inherently length normalized
◦ BM25: tuning parameters for optimizing length normalization

• idf: BM25/vector space use it directly.
• LMs: Mixing term and collection frequencies has an effect similar

to idf.
◦ Terms rare in the general collection, but common in some

documents will have a greater influence on the ranking.

• Collection frequency (LMs) vs. document frequency (BM25,
vector space) □

	Language models
	Language Models for IR

