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Using language models (LMs) for IR

• We view the document in terms of as a generative model that
generates the query

• What we need to do:
◦ Define the precise generative model we want to use
◦ Estimate parameters (different parameters for each document’s

model)
◦ Smooth to avoid zeros
◦ Apply to query and find document most likely to have generated

the query
◦ Present most likely document(s) to user



What is a language model?

• Assume we are reading (or generating) a document d term by
term

• We can view a language model Md for d as a way to determine
the next term which will be read (generated)

We can view the language model as a finite state automaton, where
the transitions between states are associated to terms

me
me me me me . . .

wish

I

I wish I wish . . .

Cannot generate: “I I”, “ wish wish wish” or “wish I wish”: history
counts



Probabilistic language models

Each document was generated by a different automaton like this,
except that these automata are probabilistic.

• For each node, a probability distribution is defined on all
transitions

• A document corresponds to (is generated as) a sequence of
random sample on such distributions



A probabilistic language model

0 1 2

3

Frodo, Sam

I

you saw

am, see

P(term|state)

t p(t|0) p(t|1) p(t|2) p(t|3)
I 0.4
you 0.4
am 0.5
see 0.5
saw 1
Frodo 0.8
Sam 0.2
STOP 0.2

• This is a probabilistic finite-state automaton and the transition
distribution for its states 0, 1, 2, 3.

• STOP is not a word, but a special symbol indicating that the
automaton stops.



A probabilistic language model

0 1 2

3

Frodo, Sam

I

you saw

am, see

P(term|state)

t p(t|0) p(t|1) p(t|2) p(t|3)
I 0.4
you 0.4
am 0.5
see 0.5
saw 1
Frodo 0.8
Sam 0.2
STOP 0.2

• possible sequence generated:
w I am Frodo you saw Sam STOP
P(t|s) 0.4 0.5 0.8 0.4 1 0.2 0.2

Total sequence probability � 0.00256



A probabilistic unigram language model

A simple version of language models, that we will consider here, is
provided by the case when there is a unique state, hence p(t|s) � p(t)
for each term

∗

P(term)
t p(t)
I 0.1
you 0.05
am 0.1
see 0.15
saw 0.1
Frodo 0.3
Sam 0.1
STOP 0.1

• possible sequence generated:
w Frodo I Sam Sam saw see Frodo STOP
P(t|s) 0.3 0.1 0.1 0.1 0.15 0.2 0.3 0.1

Total sequence probability � 2.7 · 10−7



A different language model for each document

Md1 : language model of d1
t p(t) t p(t)
STOP .1 I .15
you .2 am .05
see .05 saw .05
Frodo .2 Sam .2

Md1 : language model of d1
t p(t) t p(t)
STOP .2 I .1
you .1 am .05
see .15 saw .2
Frodo .15 Sam .05

query: Frodo saw Sam STOP

p(query|Md1) � 0.2 · 0.05 · 0.2 · 0.1 � 2 · 10−4

p(query|Md2) � 0.15 · 0.2 · 0.05 · 0.2 � 3 · 10−4

p(query|Md1) < p(query|Md2): thus, document d2 is “more relevant”
to the query “Frodo saw Sam STOP ” than d1 is.



Using language models in IR

• Each document is treated as (the basis for) a language model.
• Given a query q:

◦ We wish to rank documents by

p(d|q) � p(q|d)p(d)
p(q)

◦ p(q) is the same for all documents, so ignore
◦ p(d) is the prior – often treated as the same for all d

◦ But we could give a higher prior to documents which are relevant wrt
some other measure, e.g., those with high PageRank.

◦ p(q|d) is the probability of q given d
◦ For uniform prior: ranking documents according to p(q|d) and

p(d|q) is equivalent.



Where we are

We may see p(q|d) as the probability that the document the user had
in mind when she was formulating the query was in fact this one.

• In the LM approach to IR, we attempt to model the query
generation process.

• Then we rank documents by the probability that a query would
be observed as a random sample from their respective document
models (probability distributions)

• That is, we rank according to P(q|d).
• In general, a document model structure (type of probability

distribution) is assumed and its parameters values are derived,
for each document, from its content



How to compute P(q|d)

• We make the Naive Bayes conditional independence assumption:

p(q|Md) � p(< w1 , . . . ,w|q| > |Md) �
|q|∏
i�1

p(wk |Md)

|q|: length of q; wk: token t occurring at position k in q



How to compute P(q|d)

Where do the parameters p(wk |Md) come from?

• Likelihood: this is the probability of data given a model, in this
case p(q|Md)

◦ For fixed data, this provides a measure associated to each model
instance (parameter values): the probability that such data are
generated in the probabilistic framework defined by the model
instance (for example, probability distribution)

◦ This can be seen as “how much” a model instance explains the
given data



How to compute P(q|d)

An hypothesis on the model structure (and the generation process)
must be assumed.

• hypothesis: all terms have an associated probability to be the
next word generated; this probability is independent from
previous occurrences

• the probability of observing k occurrences of term t in the query q
is given by the binomial distribution

p(tft,q � k) � |q|!
k!(|q| − k)!p

k(1 − p)|q|−k

• the probability of observing k1 , k2 , . . . , km occurrences of all terms
t1 , . . . , tm in the query q is given by the multinomial distribution

p(tfti ,q � ki , i � 1, . . . ,m) � |q|!∏m
i�1 ki!

m∏
i�1

pki
i



How to compute P(q|d)

• That is, for each document d,

p(tfti ,q � ki , i � 1, . . . ,m|Md) ≈
∏
t∈q

p(t|Md)tft,q

since the multiplying factor

|q|!∏m
i�1 tfti ,q!

is independent from the document
• here Md is an m-dimensional array

Md �
[
p1 , p2 , . . . pm

]
with

∑m
i�1 pi � 1 and p(ti |Md) � pi



Parameter estimation

• The probability of the term in the document model, estimated by
maximum likelihood is

p̂i � p̂(ti |Md) �
tfti ,d

|d|

• |d|: length of d
• tfti ,d: #occurrences of ti in d



Different models

Different hypotheses on the distribution (generative process) provide
different estimations.

• Multiple Poisson: we assume a dependancy exists between
occurrences of a term. This is formalized by a Poisson
distribution

p(tft,q � k) � e−λ |q|(λ |q|)k
k!

where λ |q| is the expected number of occurrences of t in q
• for the whole query

p(tfti ,q � ki , i � 1, . . . ,m|Md) �
m∏

i�1

e−λi |q|(λi |q|)ki

ki!

• here Md is an m-dimensional array

Md � [λ1 , λ2 , . . . λm]



Smoothing in the multinomial model

• We have a problem with zeros: a single t with p(t|Md) � 0 will
make p(q|Md) �

∏
p(t|Md) � 0

• We would give a single term “veto power”.
• For example, for query [Frodo goes to mount Doom] a document

about “Frodo Sam Doom” would have p(q|Md) � 0
• We need to smooth the estimates to avoid zeros.



Laplace smoothing

• Key intuition: A nonoccurring term is possible (even though it
didn’t occur), so we don’t want to assign 0 probability to it

• We may avoid the zero probability case by adding a constant
value, such as 1, to the count tft,d in the maximum likelihood
estimation: the numerator of the estimation ratio is now tft,d + 1

• This eliminates the zero probability case, but makes the
normalization wrong, that is

∑
t tft,d > |d|. This can be avoided by

summing M, the overall number of terms to |d| at the
denominator

p̂(t|Md) �
tft,d + 1
|d| + M



Smoothing through collection model

• We may estimate its probability of a term in a document model
by looking at the whole collection

• Let us consider the collection model Mc the collection model: we
may estimate

• The maximum likelihood estimate of the probability of the term
in the whole collection is given by

p̂(t|Mc) �
cft
T

where cft is the number of occurrences of t in the collection and
T �

∑
t cft is the total number of tokens in the collection.

• We will use (the estimate of) p̂(t|Mc) to “smooth” (the estimate of)
p(t|d) away from zero.



Jelinek-Mercer smoothing

The estimated probability of the term wrt the document is defined as
a linear combination of the probability according to the document
model and the probability according to the collection model

p(t|d) � λp(t|Md) + (1 − λ)p(t|Mc)

λ is a hyper-parameter which tunes the relevance of the document
model wrt the collection model

• Mixtures of two distributions
• Correctly setting λ is very important for good performance



Jelinek-Mercer smoothing

Assuming the conditional independence of terms,

p(q|d) �
∏

1≤k≤|q|

(
λp(tk |Md) + (1 − λ)p(tk |Mc)

)

• Basic idea: we model the case that the user has a document in
mind and generates the query from this document.

• ◦ High value of λ: “conjunctive-like” search – tends to retrieve
documents containing all query words.

◦ Low value of λ: more disjunctive, suitable for long queries



Example

Collection:

• d1: “Frodo and Sam reached mount Doom with the help of
Gollum”

• d2: “Gollum was attracted by the One Ring”

Query q: “Gollum Ring”

• Use mixture model with λ � 1/2
• |d1 | � 11, |d2 | � 7, T � 18
• P(q|d1) � [(1/11 + 2/18)/2] · [(0/11 + 1/18)/2] �≈ 0.0028
• P(q|d2) � [(1/7 + 2/18)/2] · [(1/7 + 1/18)/2] ≈ 0.0125
• Ranking: d2 > d1



Exercise: Compute ranking

• Collection: d1 and d2

• d1: Frodo had a small sword and a coat
• d2: The Shire was a small region in the west of Middle Earth
• Query q: west small
• Use mixture model with λ � 1/2
• |d1 | � 8, |d2 | � 12, T � 20

t tft,d1 tft,d2 cft

west 0 1 1
small 1 1 2

• . . .



Dirichlet smoothing

This is a bayesian approach: Md is a random variable, with an
associated distribution.

• a prior distribution p(Md) is defined from the collection model
Mc: it is a distribution of probabilities of m-dimensional vectors
(summing to 1) with expected value Mc and other parameters
predefined

• by observing the document d content, a posterior distribution
p(Md |d) is derived by applying Bayes rule

p(Md |d) �
p(d|Md)p(Md)

p(d)

• p(d|Md) is a multinomial distribution, by hypothesis
• p(Md) is chosen in such a way that p(Md) and p(Md |d) are of the

same type (conjugate to the multinomial)
• typical choice, Dirichlet distribution



Dirichlet smoothing

• Dirichlet distribution

Dir(p1 , . . . , pm |α1 , . . . , αm) �
Γ(∑m

i�1)αi)∏m
i�1 Γ(αi)

m∏
i�1

pαi−1
i

• assume the prior distribution is defined as αi � µ · p(ti |Mc),
where p(ti |Mc) is estimated as before

• under this hypothesis, it can be proved that the posterior
distribution is then

p(Md |d) � p(p(t1 |Md), . . . , p(tm |Md)|d,Mc , µ)

≃
m∏
i1

p(ti |Md)tft,d+µ·p(ti |Mc)−1

a Dirichlet with parameters αi � tfti ,d + µ · p(ti |Mc)



Dirichlet smoothing

The resulting document model Md is the expectation of the posterior
distribution

• in general, in a Dirichlet distribution the expectation is the
m-dimensional array with components

αi∑m
k�1 αk

• as a consequence, Md is the m-dimensional array with
components

tfti ,d + µ · p(ti |Mc)∑m
k�1(tftk ,d + µ · p(tk |Mc))

�
tfti ,d + µ · p(ti |Mc)

|d| + µ



Dirichlet smoothing

• Intuition: Before having seen any part of the document we start
with the background distribution as our estimate.

• As we read the document and count terms we update the
background distribution.

• The weighting factor µ determines how strong an effect the prior
has.



Jelinek-Mercer or Dirichlet?

• Dirichlet performs better for keyword queries, Jelinek-Mercer
performs better for verbose queries.

• Both models are sensitive to the smoothing parameters – you
shouldn’t use these models without parameter tuning.



Vector space vs BM25 vs LM

• BM25/LM: based on probability theory
• Vector space: based on similarity, a geometric/linear algebra

notion
• Term frequency is directly used in all three models.

◦ LMs: raw term frequency, BM25/Vector space: more complex
• Length normalization

◦ Vector space: document vectors normalized
◦ LMs: probabilities are inherently length normalized
◦ BM25: tuning parameters for optimizing length normalization

• idf: BM25/vector space use it directly.
• LMs: Mixing term and collection frequencies has an effect similar

to idf.
◦ Terms rare in the general collection, but common in some

documents will have a greater influence on the ranking.

• Collection frequency (LMs) vs. document frequency (BM25,
vector space) □
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