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Applications of NDD

Many problems in data mining can be seen as searching in sets of
similar items:

Pages with similar words, for classification on topics.
Topic suggestion to Twitter users with similar profiles
(recommendation systems).
Dual problem: identifying communities of users with similar
interests
Identifying same user in different contexts (e.g. social media
platforms)
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On the web

The web is full of duplicated content.
More so than many other collections
Exact duplicates

Easy to eliminate
E.g., use hash/fingerprint

Near-duplicates
Abundant on the web
Difficult to eliminate

For the user, it’s annoying to get a search result with
near-identical documents.
Marginal relevance is zero: even a highly relevant document
becomes nonrelevant if it appears below a (near-)duplicate.
We need to eliminate near-duplicates.

G.Gambosi: Near duplicate detection 3 / 49



Near-duplicates: Example
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Similar documents

Finding sets of documents (web pages) with much text in
common:  

Mirror or quasi-mirror sites  
Application: elimination of duplicates.

Plagiarism, inclusion of extensive citations .  
Articles with similar content in different news sites .  

Application: grouping articles as a “common history”.
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Detecting near-duplicates

Compute similarity with an edit-distance measure
We want “syntactic” (as opposed to semantic) similarity.

True semantic similarity (similarity in content) is too difficult
to compute.

We do not consider documents near-duplicates if they have
the same content, but express it with different words.
Use similarity threshold θ to make the call “is/isn’t a
near-duplicate”.
E.g., two documents are near-duplicates if similarity
> θ = 80%.
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Three techniques useful for NDD

 
Shingling: convert documents, e-mail, ecc, in sets of items.
Minhashing: convert large sets in short sketches (or
signatures), preserving similarity.
Locality Sensitive Hashing (LSH): consider pairs of signature
that could be similar with at least a given probability.
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Architecture

Document Sketch pairs to test
for similarity

Shingles: Word
sequences of length
k occurring in the
document

Sketches: short
vectors of integers
representing
shingles, and
preserving their
similarity
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Represent each document as set of shingles

Shingles are used as features to measure syntactic similarity of
documents.

A shingle is just a word k-gram.
A document is represented as a set of shingles
For n = 5, “In a hole in the ground there lived a hobbit”
would be represented as this set of shingles:

{In a hole in the, a hole in the ground, hole in the ground
there, in the ground there lived, the ground there lived a,
ground there lived a hobbit }

Similar documents will have many shingles in common
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Represent each document as set of shingles

Modifying a word affects only k shingles (the ones at distance
at most k from the word)
Moving a paragraph affects 2k shingles (the ones at distance
at most k from the paragraph borders)
For n = 3, changing “In a hole in the ground there lived a
hobbit” to “In a hole in the ground there was a hobbit” only
changes shingles { ground there lived, there lived a, lived a
hobbit}
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Documents as sets of shingles

In general, different documents should have few shingles in
common, especially for higher k  
 We define the similarity of two documents as the Jaccard
coefficient of their shingle sets.
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Recall: Jaccard coefficient

A commonly used measure of overlap of two sets
Let A and B be two sets: their Jaccard coefficient is defined
as:

J(A,B) = |A ∩ B|
|A ∪ B|

(A ̸= ∅ or B ̸= ∅)
J(A,A) = 1
J(A,B) = 0 if A ∩ B = 0
A and B don’t have to be the same size.
Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

Three documents:
d1: “Jack London traveled to Oakland”
d2: “Jack London traveled to the city of Oakland”
d3: “Jack traveled from Oakland to London”
Based on shingles of size 2 (2-grams or bigrams), what are the
Jaccard coefficients J(d1, d2) and J(d1, d3)?

1 s(d1)={“Jack London”, “London traveled”, “traveled to”, “to
Oakland”}

2 s(d2)={“Jack London”, “London traveled”, “traveled to”, “to
the”, “the city”, “city of”, “of Oakland”}

3 s(d3)={“Jack traveled”, “traveled from”, “from Oakland”,
“Oakland to”, “to London’}

there are
J(d1, d2) = 3/8 = 0.375
J(d1, d3) = J(d2, d3) = 0
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Represent each document as a sketch

The number of shingles per document is large: computing
Jaccard directly from M is expensive
To increase efficiency, we will represent documents by means
of sketches, cleverly chosen subsets of their shingles.
Let k be a predefined sketch size and let S be the overall set
of shingles: document sketches are derived by means of a set
of k different random permutations π1 . . . πk of S
Each πi maps a shingle to a different integer in {1, . . . , |S|}
The sketch of a document d is defined as:(

min
s∈d

π1(s),min
s∈d

π2(s), . . . ,min
s∈d

πk(s)
)

(a vector of s integers).
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From sets of documents+shingles to boolean matrices

A set of documents can be represented as a boolean matrix M,
where

columns are associated to documents
rows correspond to all shingles appearing in any document  
M(i, j) = 1 iff the i-th shingle appear in the j-th document
The matrix is usually sparse

The Jaccard similarity of two documents can be derived from the
corresponding columns
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Four types of rows

For any pair of columns S1,S2, rows can be classified in four
types according to the values of the corresponding values in
the matrix: each type has a different effect on numerator N
and denominator D of J(S1,S2)

S1 S2 effect on N effect on D
a 1 1 increase increase
b 1 0 same increase
c 0 1 same increase
d 0 0 same same

In fact, J(S1,S2) =
#a

#a +#b +#c
Many rows are of type d
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Minhashing

Permutations of shingles correspond here to permutations of rows
of M. The above considerations can be accordingly translated as
follows.

Given a row permutation π, for any document d
corresponding to a column ci in M, let us define as the
Minhash of d under permutation π, denoted as MHπ(d) the
index j of the first row (according to π) such that M(j, i) = 1.
As an extension, given a set Πk of k permutations, for any
document d corresponding to a column ci in M, MHΠk(d) is
defined as the vector of integers (j1, . . . , jk) such that jr is the
index of the first row (according to permutation πr) such that
M(jr, i) = 1.
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Minhashing

The sketch vector MHΠk(d) can be interpreted as a signature
of d
Signatures can be visualized as columns in a new matrix M′,
where columns correspond to documents while rows
correspond to hash functions. The values in column ci are
then defined as MHΠk(di), where di is the document
corresponding to ci
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Minhashing example

Shingle/document
matrix M

d1 d2 d3 d4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
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Minhashing example

Permutations

1
3
7
6
2
5
4

M

d1 d2 d3 d4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix M′

S1 S2 S3 S4

1 2 1 2
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Minhashing example

Permutations

1 4
3 2
7 1
6 3
2 6
5 7
4 5

M

d1 d2 d3 d4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix M′

S1 S2 S3 S4

2 1 4 1
1 2 1 2
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Minhashing example

Permutations

1 4 3
3 2 4
7 1 7
6 3 6
2 6 1
5 7 2
4 5 5

M

d1 d2 d3 d4
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0

Signature matrix M′

S1 S2 S3 S4
2 1 2 1
2 1 4 1
1 2 1 2
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Detecting near-duplicates from sketches

Assume a single permutation π. Check is performed as follows:
If MHπ(d1) = MHπ(d2) then d1 and d2 probably are
near-duplicates.
If MHπ(d1) ̸= MHπ(d2) then d1 and d2 are probably not
near-duplicates.
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Detecting near-duplicates from sketches
Why does it work? Let us estimate the probability that, by
randomly choosing π, we get MHπ(d1) = MHπ(d2).

MHπ(d1) can be, with equal probability, any shingle occurring
in d1 (that is, each item in c1 with value 1, they are
#a+#b); the same for MHπ(d2) (that is, any item in c2 with
value 1, they are #a +#c)
the number of possible pairs (MHπ(d1),MHπ(d2)) (that is of
pairs of rows with values 1 in c1 and c2) is
(#a +#b)(#a +#c)−#b#c
the number of possible pairs with MHπ(d1) = MHπ(d2) (that
is of rows with values 1 both in c1 and in c2) is #a2

the probability that MHπ(d1) = MHπ(d2) is then given by

ph(d1, d2) =
#a2

(#a +#b)(#a +#c)−#b#c =
#a

#a +#b +#c
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Detecting near-duplicates from sketches

But

#a2

(#a +#b)(#a +#c)−#b#c =
#a

#a +#b +#c

is the Jaccard coefficient J(d1, d2), that is our similarity
measure between d1 and d2. So, estimating pπ(d1, d2)
corresponds to estimating the similarity between d1 and d2

How can we get a good estimate of pπ(d1, d2) more efficiently
than computing J(d1, d2) (which implies taking into account
all their shingles?)
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Detecting near-duplicates from sketches

Observe that pπ(d1, d2) is independent from the particular
hash function h applied (our only requirement is that h
induces a permutation of the matrix rows, which we assume
true with high probability): by randomly selecting h and
applying it to (d1, d2) we know that the probability that the
event MHπ(d1) = MHπ(d2) occurs is pπ(d1, d2) = p(d1, d2).
Selecting π and observing whether MHπ(d1) = MHπ(d2) can
be seen as sampling a stone from an urn containing #a red
stones and #b +#c black stones and checking whether the
sampled stone is red
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Detecting near-duplicates from sketches

Performing a random sample of k independent permutations
π1, . . . , πk and observing whether MHπi(d1) = MHπi(d2) for
each πi corresponds to sampling k stones from the urn (with
replacement) and checking how many sampled stoned are red
This is a sequence of Bernoulli trials with probability
p(d1, d2). In this case, the number of red stones (functions
such that MHπi(d1) = MHπi(d2)) is distributed according to a
binomial distribution

p(MHπi(d1) = MHπi(d2) for exactly r functions) =(
r
k

)
p(d1, d2)

r(1 − p(d1, d2))
k−r

which has mean kp(d1, d2)
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Detecting near-duplicates from sketches

J(d1, d2) can be estimated by estimating p(d1, d2) from the
sample of size k provided by the set functions Πk.
by standard statistics, an unbiased estimator of p is p̂ = r

k ,
where r is the number of functions h ∈ Πk such that
MHπ(d1) = MHπ(d2)

the corresponding standard error is given by the sample
standard deviation ŝ =

√
p̂(1−p̂)

k : this makes it possible to a
define confidence interval on J(d1, d2) at any given confidence
level θ as [p̂ − Zθ ŝ, p̂ + Zθ ŝ], where Zθ is the Z-score at
probability θ (number of standard deviation from the man of a
gaussian such that the tail probability is 1 − θ)
the precision of the estimation improves as k increases

G.Gambosi: Near duplicate detection 28 / 49



Random hash functions as permutations

Sketches can be efficiently computed by means of random hash
functions.

We can map shingles in S to integers by fingerprinting, that is
by applying a given hash function h which maps any sequence
of unigrams to a sequence of (say) m bytes, that is to an
integer interval 0..2m − 1
For suitably large m, with high probability there is no collision
between pairs of shingles in S, that is h(s1) ̸= h(s2) for all
s1, s2 ∈ S.
Then, for suitably large m, h defines a permutation of shingles
with high probability
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Implementing Minhashing
 

Let k be the number of hash functions.
To each column dj (document) and function hi, a slot si,j is
associated.
Iteratively compute, for each r = 0, . . . up to the number of
rows minus 1, all values hi(r)
At the end of the k-th iteration, si,j stores the minimum value
minr, for all 0 ≤ r ≤ k − 1 and M(j, hi(r)) = 1
That is, si,j stores the minimum index, in the permutation of
rows induced by hi, of a row with value 1 in correspondence to
document dj (the index of the first shingle of dj)
This is the current MinHash (for all considered shingles) of
document dj when function hi is applied

At the end, si,j will store MinHash for dj and hi.
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Example
i d1 d2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

h1(x) = x mod 5
h2(x) = (2x + 1) mod 5

h1 d1 d2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

h2 d1 d2
0 0 0
1 1 0
2 1 1
3 1 1
4 0 1

min(h1(d1))=0=0=min(h1(d2))

min(h2(d1))=1 ̸=2=min(h2(d2))

Ĵ(d1, d2) =
1
2 = .5

J(d1, d2) =
2
5 = .4
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Example

i d1 d2
0 1 1
1 0 0
2 1 1
3 1 0
4 0 1

M(hi(r),1) M(hi(r),2) s1,i s2,i

h1 ∞ ∞
h2 ∞ ∞
h1(0) = 0 1 1 0 0
h2(0) = 1 0 0 ∞ ∞
h1(1) = 1 0 0 0 0
h2(1) = 3 1 0 1 ∞
h1(2) = 2 1 1 0 0
h2(2) = 0 1 1 1 2
h1(3) = 3 1 0 0 0
h2(3) = 2 1 1 1 2
h1(4) = 4 0 1 0 0
h2(4) = 4 0 1 1 2

final sketches
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Exercise

d1 d2 d3
s1 0 1 1
s2 1 0 1
s3 0 1 0
s4 1 0 0

h(x) = 5x + 5 mod 4
g(x) = (3x + 1) mod 4

Estimate Ĵ(d1, d2), Ĵ(d1, d3), Ĵ(d2, d3)
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Efficient near-duplicate detection

We have an extremely efficient method for estimating
similarity for a single pair of documents
But we still have to estimate O(N2) values where N is the
number of documents: still intractable
However, often we need to derive all pairs whose similarity is
above a given threshold
One solution: locality sensitive hashing (LSH)
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Candidate pairs

pick a similarity threshold s, 0 ≤ s ≤ 1
goal: find pairs of documents with Jaccard similarity at least s
columns i and j are a candidate pair if their signatures agree
in at least a fraction s of their rows
we expect pairs of documents to have the same similarity as
their signatures
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Locality-Sensitive Hashing (LSH) for signatures

Idea: Hash columns of signatures matrix M′ to a predefined
set of buckets in such a way that similar columns are likely to
be hashed to the same bucket, with high probability
A pair of columns hashed to the same bucket is a candidate
pair for similarity, to be verified more accurately
False positives (dissimilar pairs hashed to same bucket); false
negatives (similar pairs hashed to different buckets)
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Partition in bands

G.Gambosi: Near duplicate detection 37 / 49



Partition in bands

Divide the signature matrix M into b bands, each of r rows.
For each band Bi, a hash function hi is defined which maps
vectors of r integers to k buckets, with k large enough
We could use the same hash functions for all bands, but
different bucket arrays  
 A pair of columns is a candidate pair if they are hashed to
the same bucket for at least 1 band
Tune b (and correspondingly r) to catch most similar pairs,
but few not similar ones.
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Band hashing

Columns 2 and 6 are
probably identical
(candidate pair)
Columns 6 and 7 are
different (wrt to this
band, they could be
declared candidate pairs
by hashing the other
bands)
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Example

Assume we have 105 columns (documents).
Each signature is a vector of length 100.
Each signature element is an integer 4 bytes long.
Then all signatures are 40MB long.
The naive approach requires 105 × (105 − 1)× .5 ≃ 5 × 109

pairs of signatures to be compared: could take months  
Let us apply LSH: choose, for example, b = 20, r = 5
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False negatives

Assume we wish all document pairs with similarity at least .8 
Let columns C1,C2 be signatures of similar documents: that
is, they have equal values in at least a .8 fraction of their rows
The probability that columns C1,C2 collide in a given band is
then (0.8)5 = 0.328.
 The probability that C1,C2 do not collide in any of the 20
bands is then (1 − 0.328)20 ≃ 0.00035.

 that is, there is a chance of 1 over about 3000 that two 0.8
similar columns do not collide anywhere, and are declared not
similar (false negative)
we would find 99.965% pairs of truly similar documents: very
few false negatives
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False positives

Assume columns C1,C2 are signatures of not similar
documents: they have equal values in a .3 fraction of their
rows
The probability that columns C1,C2 collide in a given band is
then (0.3)5 = 0.00243.
 The probability that C1,C2 collide in at least one of the 20
bands is then 1 − (1 − 0.00243)20 ≃ 0.0474.

 that is, approximately 4.74% pairs of docs with similarity
0.3% end up becoming candidate pairs (false positive)
they will be checked more precisely and it will turn out they
are not similar (at .8 threshold)
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Collision probability in a band

The probability that two given columns C1,C2 have equal
rows in a certain band is sr

The probability that two given columns C1,C2 differ in at
least one row in a certain band is 1 − sr

The probability that two given columns C1,C2 differ in at
least one row in all bands is (1 − sr)b

The probability that two given columns C1,C2 have equal rows
in at least one band (they are a candidate pair) is 1− (1− sr)b

La probabilità che una data
banda due colonne con indice di
similarità s abbiano tutte le r
righe uguali

⇒ sr
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LSH Involves a Tradeof

Pick
The number of MinHashes (rows of M′)
The number of bands b
The number of rows r per band

to balance false positives/negatives
Example: If we had only 15 bands of 5 rows, the number of
false positives would go down, but the number of false
negatives would go up
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What we want
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What we get with 1 row
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What we get with b bands, r rows
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Example: b = 20, r = 5

Similarity threshold s
Probability that at least 1 band is identical (collision)

s 1 − (1 − sr)b

.2 .006

.3 .047

.4 .186

.5 .47

.6 .802

.7 .975

.8 .9996
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Picking the S-curve

Picking r and b to get the best S-curve
50 hash-functions (r = 5, b = 10)

Blue area: False Negative rate
Green area: False Positive rate
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LSH summary

Tune M, b, r to get almost all pairs with similar signatures,
but eliminate most pairs that do not have similar signatures
Check in main memory that candidate pairs really do have
similar signatures
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