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Link analysis

The existence of hyperlinks between documents adds
information to the collection
The relevance (absolute or related to a query) of a document
can be estimated by considering its relation with other
documents
Assumption 1: A hyperlink is a quality signal.

The hyperlink d1 → d2 indicates that d1’s author deems d2
high-quality and relevant.
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Anchor text

page d1 anchor text page d2
hyperlink

Assumption 2: The anchor text describes the content of d2.
We use anchor text somewhat loosely here for: the text
surrounding the hyperlink.
Example: “You can find cheap cars <a
href=http://...>here</a>.”
Anchor text: “You can find cheap cars here”
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[text of d2] only vs. [text of d2] + [anchor text → d2]

Searching on [text of d2] + [anchor text → d2] is often more
effective than searching on [text of d2] only.
Example: Query IBM

Matches IBM’s copyright page
Matches many spam pages
Matches IBM wikipedia article
May not match IBM home page!
…if IBM home page is mostly graphics

Searching on [anchor text → d2] is better for the query IBM.
In this representation, the page with the most occurrences of
IBM is www.ibm.com.
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Anchor text containing IBM pointing to www.ibm.com

www.nytimes.com: “IBM acquires Webify”

www.slashdot.org: “New IBM optical chip”

www.stanford.edu: “IBM faculty award recipients”

wwww.ibm.com
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Indexing anchor text

Thus: Anchor text is often a better description of a page’s
content than the page itself.
Anchor text can be weighted more highly than document text.
(based on Assumptions 1&2)
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Origins of PageRank: Citation analysis

Citation analysis: analysis of citations in the scientific
literature
Example citation: “Miller (2001) has shown that physical
activity alters the metabolism of estrogens.”
We can view “Miller (2001)” as a hyperlink linking two
scientific articles.
One application of these “hyperlinks” in the scientific
literature:

Measure the similarity of two articles by the overlap of other
articles citing them.
This is called cocitation similarity.
Cocitation similarity on the web: Google’s “find pages like
this” or “Similar” feature
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Origins of PageRank: Citation analysis

Another application: Citation frequency can be used to
measure the impact of an article.

Simplest measure: Each article gets one vote – not very
accurate.

On the web: citation frequency = inlink count
A high inlink count does not necessarily mean high quality …
…mainly because of link spam.

Better measure: weighted citation frequency or citation rank
Technique introduced by Pinsker and Narin in the 1960s.

An article’s vote is weighted according to its citation impact.
Circular? No: can be formalized in a well-defined way.
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Origins of PageRank: Citation analysis

Citation system = weighted directed graph
nodes = papers
edges = there is an edge from paper i to paper j if i cites j
Let ci,j = 1 if there exists and edge from i to j
Let ci =

∑
j ci,j (total number of references from i)
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Origins of PageRank: Citation analysis

Citation matrix H such that hi,j = ci,j/ci (fraction of
references to j among all the ones declared in i)

hi,j = 1/ci if i cites j
hi,j = 0 otherwise

Influence score measures the relevance of i in terms of the
number of paper citing it, the number of their references, and
their relevance

πj =
∑

i
πihi,j =

∑
i
πici,j/ci

πici,j/ci is the amount of influence score of i received by j∑
i πici,j/ci is the overall amount of influence score received by

j

in matrix notation: π = πH
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Origins of PageRank: Citation analysis

The influence of all papers is given by the vector π solution of the
matrix equation

π = πH

that is, π is the left eigenvector of H associated to eigenvalue λ = 1
Problem: does such a vector exist for all H?
Does it exist for some special H?
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Origins of PageRank: Citation analysis

The same holds for journals:
Let T1,T2 time intervals
ci,j number of references from papers edited by journal i in T1
to papers edited by journal j in T2

ci total number of references from papers edited by i in T1

again, π = πH
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Origins of PageRank: Sociometry

Measuring people prestige through endorsements.
Hubble (1965):

set of members of a social context
matrix W, where wi,j is the strength at which i endorses j (wi,j
possibly negative)
prestige πi of member i defined in terms of the prestige of the
endorsers and of their endorsement strengths
some prestige vi can be pre-assigned
in matrix form:

π = πW + v
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Origins of PageRank: Sociometry

Ranking football teams
Keener (1993):

set of football teams
aij ≥ 0 score depending on the result of match i vs. j (for
example, 1 i won, 1/2 tie, 0 i lost)
matrix A, where ai,j is the score of i vs. j
rank ρi of team i defined in terms of the rank of the
opponents and of the match result
ρi =

∑n
j=1 ai,jρj (assume ai,i = 0

in matrix form:
ρ = ρA
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Origins of PageRank: Econometrics

economy divided in a number of sectors (industries) producing
different goods
an industry requires a certain amount of inputs to produce a
unit of goods
an industry sells the produced goods to other industries at a
certain prize
equilibrium: each industry balances the costs of production
(buying goods) to its revenues (selling products)
which product prizes guarantee equilibrium (if any)?
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Origins of PageRank: Econometrics

qi,j: quantity produced by industry i and used by industry j
qi =

∑n
i=1 qi,j: total quantity produced by industry i

matrix A, where ai,j = qi,j/qj: amount of i’s product necessary
for a unit of j’s product
πj: price per unit of the product produced by j
cj =

∑n
i=1 πiqi,j total cost for j

rj =
∑n

i=1 πjqj,i = πj
∑n

i=1 qj,i = πjqj total revenue for j
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Origins of PageRank: Econometrics

equilibrium: costs=revenues

cj =
n∑

i=1
πiqi,j = πjqj = rj

divide both sides by qj

πj =
n∑

i=1
πi

qi,j
qj

=
n∑

i=1
πjai,j

in matrix notation: π = πA
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Idea of Pagerank

Set of hyperlinked documents
ai,j = 1 if there exists a hyperlink from document i to
document j (seen as declaration of interest of j)
ai,j = 0 otherwise
matrix A: incidence matrix of the web graph
ai =

∑n
j=1 ai,j number of documents hyperlinked from i

(outdegree in the graph)
ai,j/ai fraction of i expressed judgement of relevant documents
assigned to j
πi: relevance of document i (assumed also as relevance judge)
πiai,j/ai fraction of i authority assigned to j
πj =

∑n
i=1 πiai,j/ai total relevance obtained by j from other

documents hyperlinking it
in matrix form: π = πA
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Idea of Pagerank

So, a document is relevant if:
it is linked (voted) by many documents
these documents cast few votes
these documents are relevant
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A bit of history
introduced by S. Brin, L. Page (Ph.D. students), R. Motwani
and T. Winograd (professors), at Stanford University

S. Brin, L. Page ”The Anatomy of a Large-Scale Hypertextual Web
Search Engine.” Proceedings of the 7th international conference on
World Wide Web (1998)
S. Brin, L. Page„ R. Motwani and T. Winograd“The PageRank
Citation Ranking: Bringing Order to the Web.” Technical Report.
Stanford InfoLab (1999)

made it possible to automatically rank web pages
previously, human-based cathegorization (Yahoo!, Altavista)
IR techniques alone were not satisfactory
other papers considering citation analysis techniques as a
reference for web ranking appeared in the same period

M. Marchiori “The Quest for Correct Information on the Web:
Hyper Search Engines.” Proceedings of the 6th international
conference on World Wide Web (1997)
J. Kleinberg ”Authoritative sources in a hyperlinked environment”
Journal of the ACM 46 (5). (1999)

Pagerank was the basis for the development of GoogleG.Gambosi: Link analysis 22 / 97
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Pagerank

Basic Pagerank formula

π(v) = (1− δ) + δ

n∑
i=1

π(vi)

o(vi)

v is the page of interest
v1, v2, . . . , vn pages with a hyperlink to v
π(vi) Pagerank value of page vi

o(vi) overall number of hyperlinks from vi

δ, thedamping factor, controls the amount of Pagerank
deriving from hyperlinks (usually δ = 0.85)
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Pagerank

Each page vi distributes only a fraction δ of its Pagerank,
divided by the number of exit hyperlinks.
The term (1− δ) can be seen as the Pagerank assigned to a
page even if it is not referenced by any other page.
Recursive formula: iterative update

convergence?
initial values?
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Pagerank computing example

BA

C D

Assuming δ = 0.85, the following holds for all pageranks:
πA = 0.15 + 0.85πC

πB = 0.15 + 0.85
πA
3

πC = 0.15 + 0.85(
πA
3

+ πB + πD)

πD = 0.15 + 0.85
πA
3
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Pagerank computing example

In matrix form: π = d + 0.85 ∗ πA, where

π = [πA, πB, πC, πD]

d = [0.15, 0.15, 0.15, 0.15]

A =


0 1/3 1/3 1/3
0 0 1 0
1 0 0 0
0 0 1 0
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Pagerank computing example
Assume an initial pagerank π = 0 for all nodes.

BA

C D

00

0 0
We have:

πA = 0.15 + 0.85 ∗ 0 = 0.15

πB = 0.15 + 0.85
0
3

= 0.15

πC = 0.15 + 0.85
( 0

3
+ 0 + 0

)
= 0.15

πD = 0.15 + 0.85
0
3

= 0.15
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Pagerank computing example
After 1 step.

BA

C D

0.150.15

0.15 0.15
We have:

πA = 0.15 + 0.85 ∗ 0.15 = 0.2775

πB = 0.15 + 0.85
0.15

3
= 0.1925

πC = 0.15 + 0.85
( 0.15

3
+ 0.15 + 0.15

)
= 0.4475

πD = 0.15 + 0.85
0.15

3
= 0.1925
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Pagerank computing example
After 2 steps.

BA

C D

0.2775 0.1925

0.4475 0.1925
We have:

πA = 0.15 + 0.85 ∗ 0.4475 = 0.530375

πB = 0.15 + 0.85
0.2775

3
= 0.228625

πC = 0.15 + 0.85
( 0.2775

3
+ 0.1925 + 0.1925

)
= 0.555875

πD = 0.15 + 0.85
0.2775

3
= 0228625
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Pagerank computing example
After 3 steps.

BA

C D

0.530375 0.228625

0.555875 0.228625
We have:

πA = 0.15 + 0.85 ∗ 0.555875 ≃ 0.6

πB = 0.15 + 0.85
0.530375

3
≃ 0, 31

πC = 0.15 + 0.85
( 0.530375

3
+ 0, 228625 + 0, 228625

)
≃ 0.7

πD = 0.15 + 0.85
0.530375

3
≃ 0, 31
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Pagerank computing example
After 4 steps.

BA

C D

0.6 0.31

0.7 0.31
We have:

πA = 0.15 + 0.85 ∗ 0.7 ≃ 0.75

πB = 0.15 + 0.85
0.6
3

≃ 0, 32

πC = 0.15 + 0.85
( 0.6

3
+ 0, 31 + 0, 31

)
≃ 0.85

πD = 0.15 + 0.85
0.6
3

≃ 0, 32
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Pagerank computing example

After 100 steps.

BA

C D

0.41 0.55

1.49 0.55
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Pagerank computing example

After 200 steps.

BA

C D

1.41 0.55

1.49 0.55

It converged. Does it always happen?
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Pagerank computing example

Different initialization
# iterations πA πB πC πD

0 1 0.4 0.8 1.5
1 0.83 0.43 2.05 0.43
2 1.89 0.39 1.12 0.39
3 1.1 0.69 1.34 0.69
4 1.29 0.46 1.63 0.46
... ... ... ... ...

100 1.41 0.55 1.49 0.55
... ... ... ... ...

200 1.41 0.55 1.49 0.55
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Pagerank computing example

One more initialization
# iterations πA πB πC πD

0 0.1 4 0 30
1 0.15 0.18 29.08 0.18
2 24.87 0.19 0.5 0.19
3 0.57 7.2 7.52 7.2
4 6.54 0.31 12.54 0.31
... ... ... ... ...

100 1.41 0.55 1.49 0.55
... ... ... ... ...

200 1.41 0.55 1.49 0.55
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A different example

A B C

D E

Assuming δ = 0.85, the following holds for all pageranks:
πA = 0.15

πB = 0.15 + 0.85
(

πA
2

+ πD

)
πC = 0.15 + 0.85

πB
3

πD = 0.15 + 0.85
(

πA
2

+
πB
3

+
πC
2

)
πE = 0.15 + 0.85

(
πB
3

+
πC
2

)
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New pagerank computing example

# iterations πA πB πC πD πE
0 0 0.4 0.2 1.6 2.1
1 0.15 1.51 0.26 0.35 0.35
2 0.15 0.51 0.58 0.75 0.69
3 0.15 0.85 0.29 0.6 0.54
4 0.15 0.73 0.39 0.58 0.52
... ... ... ... ... ...

100 0.15 0.68 0.34 0.55 0.49
... ... ... ... ... ...

200 0.15 0.68 0.34 0.55 0.49
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The importance of δ

Let δ = 0.2
# iterations πA πB πC πD πE

0 0 0.4 0.2 1.6 2.1
1 0.8 1.12 0.83 0.85 0.85
2 0.8 1.05 0.87 1.04 0.96
3 0.8 1.09 0.87 1.04 0.96
4 0.8 1.09 0.87 1.04 0.96
... ... ... ... ... ...

100 0.8 1.09 0.87 1.04 0.96
... ... ... ... ... ...

200 0.8 1.09 0.87 1.04 0.96

Different score, same ranking
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The importance of δ

Let δ = 1
# iterations πA πB πC πD πE

0 0 0.4 0.2 1.6 2.1
1 0 1.6 0.13 0.23 0.23
2 0 0.23 0.53 0.6 0.6
3 0 0.6 0.08 0.34 0.34
4 0 0.34 0.2 0.24 0.24
5 0 0.24 0.11 0.21 0.21
6 0 0.21 0.08 0.14 0.14
7 0 0.14 0.07 0.11 0.11
8 0 0.11 0.05 0.08 0.08
9 0 0.08 0.04 0.06 0.06
10 0 0.06 0.03 0.05 0.05
11 0 0.05 0.02 0.03 0.03
12 0 0.03 0.02 0.03 0.03
13 0 0.03 0.01 0.02 0.02
14 0 0.02 0.01 0.01 0.01
15 0 0.01 0.01 0.01 0.01
16 0 0.01 0 0.01 0.01
17 0 0.01 0 0.01 0.01
18 0 0.01 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
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Markov chains

A stochastic process is a set X of random variables defined on
the same domain S (state space)
Can be interpreted as a single r.v. evolving on time
We are interested in the case X = {X0,X1,X2, . . .} (discrete
stochastic process) and S = {s1, s2, . . . , sn} (finite state
space)
A Markov chain is a discrete stochastic process on a finite
space such that for all n = 0, 1, 2, . . .

p(Xn = sn|Xn−1 = sn−1, . . . ,X0 = s0) = p(Xn = sn|Xn−1 = sn−1)

In a Markov chain Xn depends only on Xn−1 (memoryless)
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Stationary markov chains

If p(Xn|Xn−1) does not depend on n (the probability
distribution of states is the same for each transition), the
chain is stationary
transition matrix M, with Mi,j = p(Xn = si|Xn−1 = sj)

equivalent, weighted directed graph

N = S
E = {< si, sj|p(Xn = si|Xn−1 = sj) > 0}

w(< si, sj >) = p(Xn = si|Xn−1 = sj)
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MC example: weather in Oz

In the Land of Oz day can be nice (n), rainy (r), snowy (s)
Tuesday’s weather depends (in probability) only on Monday’s
one according to the following transition matrix

M =


r n s

r .5 .25 .25
n .5 0 .5
s .25 .25 .5


That is, for example,

p(T = r|M = n) = .5
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MC example: marginal probabilities

Clearly,

p(T = r) = p(T = r|M = r)p(M = r)+
p(T = r|M = n)p(M = n)+
p(T = r|M = s)p(M = s)

That is, if π(0) = [p(M = r), p(M = n), p(M = s)] and
π(1) = π(0)M, then we have

p(T = r|M = n) = π
(1)
1
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MC example: deriving probabilities

Note that Wednesday’s weather indirectly depends on Monday’s
one. In fact,

p(W = r|M = n) = p(W = r|T = r)p(T = r|M = n)+
p(W = r|T = n)p(T = n|M = n)+
p(W = r|T = s)p(T = s|M = n)
= M11M12 + M12M22 + M13M32

= M2
12

In general, p(Xn = si|Xn−2 = sj) = M2
ij
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MC example: deriving probabilities

The same holds for any probability p(Xn|Xn−k)

p(Xn = si|Xn−k = sj) = Mk
ij

Given an initial probability distribution π(0), it results that the
probability distribution after k transitions is

π(k) = π(0)Mk
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MC example: deriving probabilities

For example, if π(0) = [.5, .25, .25]

π(1) = π(0)M = [.5, .25, .25]

 .5 .25 .25
.5 0 .5
.25 .25 .5

 = [.4375, .1875, .375]

π(2) = π(0)M2 = [.5, .25, .25]

 .4375 .1875 .375
.375 .25 .375
.375 .1875 .4375

 = [.40, .21, .39]

π(3) = π(0)M3 = [.5, .25, .25]

 .4 .2 .4
.4 .2 .4
.4 .2 .4

 = [.4, .2, .4]
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MC example: deriving probabilities

Since  .4 .2 .4
.4 .2 .4
.4 .2 .4

 .5 .25 .25
.5 0 .5
.25 .25 .5

 =

 .4 .2 .4
.4 .2 .4
.4 .2 .4


we have that

[.5, .25, .25]

 .4 .2 .4
.4 .2 .4
.4 .2 .4

 = [.4, .2, .4] = [.4, .2, .4]

 .5 .25 .25
.5 0 .5
.25 .25 .5


that is, after a certain number of transition, the resulting
probability distribution [.4, .2, .4] is stationary (remains
unchanged). This the long term probability of all states.
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Stationary distribution

Given a Markov chain on n states, with transition matrix M, and
given an initial distribution π(0), the stationary distribution (or
steady state) π of the MC (if it exists) is given by

lim
k→∞

π(k) = π(0) lim
k→∞

Mk

equivalently,
π = πM

Open problems:
does the stationary distribution always exist?
if not, when does it exist?
if it exists, how to compute it?
does it depends on π(0)?
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Usefulness of MC

Why are we interested in Markov chains?
Imagine a web surfer doing a random walk on the web

Start at a random page
At each step, go out of the current page along one of the links
on that page, equiprobably

In the steady state, each page has a long-term visit rate.
This long-term visit rate is the page’s PageRank.
PageRank = long-term visit rate = steady state probability

But we would like that
the steady state indeed exists
it is independent from the initial page
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Perron Frobenius theory

Developed 1 century ago (1907, 1912) by Oskar Perron and
Georg Frobenius

applied to positive and non negative square matrices
spectral (eigenvalues, eigenvectors) characterization of the
matrices
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Perron theorem
For any An×n > 0, we have that:

1 the (right) spectral radius is positive, ρ(A) = maxλi |λ| > 0,
where λi is a (right) eigenvalue of A (Awi = λiwi for some wi)

2 r = ρ(A) is a (right) eigenvalue of A, denoted as (right)Perron
root

3 r is a simple (right) eigenvalue, that is, it is a simple root of
the characteristic polynomial |λI− A|: this implies that there
exists only one (right) eigenvector associated to r

4 as a consequence, there exists a unique vector p (named right
Perron vector) such that

Ap = rp
p > 0
|p|1 =

∑n
i=1 pi = 1

5 r is the only (right) eigenvalue on the spectral circle (such
that |r| = ρ(A))
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Perron theorem: left eigenspace case
The same properties hold also for left eigenvalues/eigenvectors:
recall that for a left eigenvalue/eigenvector pair (λ,w) we have

wA = λw =⇒ ATwT = λwT

Then, for any An×n > 0, we have that:
1 ρ(AT) = maxλi |λ| > 0, where λi is a (left) eigenvalue of A
2 r′ = ρ(AT) is an eigenvalue of AT, (left) Perron root
3 r′ is a simple eigenvalue, that is, it is a simple root of the

characteristic polynomial |λI− AT|
4 there is a unique vector p (named left Perron vector) such

that
ATp = r′p
p > 0
|p|1 =

∑n
i=1 pi = 1

and there exist no other eigenvector w ≥ 0 of AT (except cp)
5 r′ is the only eigenvector such that |r| = ρ(AT)

G.Gambosi: Link analysis 54 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

Why is Perron theorem interesting?

Let us return to Markov chains:
the i-th row of M lists the probabilities p(Xn+1 = sj|Xn = si),
then

Mij ≥ 0 for all i, j∑n
j=1 Mij = 1 for all i

the matrix is said (row) stochastic; observe that in general, it
is not column stochastic
then we could prove that ρ(M) = 1 and that eT = [1, . . . , 1] is
the corresponding (right) eigenvector, that is Me = e

G.Gambosi: Link analysis 55 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

So what?

Perron theorem is not applicable to M, since M is just non
negative (it should be positive)
Even if we could apply it, it would result that r = 1 is a simple
(right) eigenvalue with Perron vector e/n: in fact,
Me/n = e/n, with |e/n|1 = 1
But we are interested in finding π such that π = πM, that is,
MTπT = πT

that is, we are interested in the left Perron vector (the steady
state distribution)
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We need something more

Under some conditions (to be stated later) the following holds

lim
k→∞

(
A
r

)k
=

pqT

qpT

where
A is a square matrix
r = ρ(A)
p is the right Perron vector of A: p ∈ Rn×1

q is the left Perron vector of A: q ∈ R1×n
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Exploiting the new property

Since, for a stochastic matrix M, (1, e) is a right Perron pair and
(1, π) is a left Perron pair, it would result

lim
k→∞

(
M
1

)k
=

eπ
πTeT = eπ =


π1 π2 · · · πn
π1 π2 · · · πn
... ... . . . ...
π1 π2 · · · πn


For the steady state distribution we would get

lim
k→∞

π(k) = π(0) lim
k→∞

Mk = π(0)eπ = π

that is, independent from the initial distribution π(0)
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Exploiting the new property

We also obtain an indication on how to compute π

choose any initial distribution π0 (for example [1/n, . . . , 1/n])
set M′ ← M
iterate

M← M′

M′ ← M2

until dist(M,M′) < ϵ

set π = π0M
This is called power method
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What conditions we need?

lim
k→∞

(
A
r

)k
=

pqT

qpT

holds iff:
1 A is non negative (holds)
2 A has exactly one eigenvalue λ on the spectral circle (that is

s.t |λ| = ρ(A)) (holds)
3 A is irreducible

If this case the matrix is said primitive.

G.Gambosi: Link analysis 60 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

Reducible matrices

A square matrix A is reducible if it is possible to permutate its
rows to obtain a new matrix

A′ =

(
X Y
0 Z

)
where

X and Z are m×m and (n−m)× (n−m) matrices, with
0 < m < n
0 is the null matrix
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Reducible Markov chains

If A is the transition matrix of a Markov chain, reducibility
means that there exists a subset of states (corresponding to
the rows in Z) from which the chain cannot exit

A B C

D E

A markov chain is irreducible if it is always possible to go from
each state to any other state

G.Gambosi: Link analysis 62 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

Primitivity

A simple condition:
A matrix A is primitive iff there exists m > 0 such that Am > 0
Corollary: a positive matrix is primitive
A Markov chain with primitive transition matrix is said ergodic
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Where are we now?

Everything ok if we had a positive stochastic matrix
Perron theorem: there exists a unique left Perron vector,
corresponding to the greatest eigenvalue, equal to 1
Convergence condition: the left Perron vector can be
computed by the power method
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But. . .
Let A be the matrix of the web graph.

A B C

D E


0 1 0 1 0
0 0 1 1 1
0 0 0 1 1
0 1 0 0 0
0 0 0 0 0


It has some drawbacks:

1 A has elements equal to 0
2 A cannot even be made stochastic: rows with some 1 can be

transformed to sum 1 by scaling its values by the number of
1s, but there may exist rows with no 1 (dangling nodes)

G.Gambosi: Link analysis 65 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

Getting a stochastic matrix

We modify A to obtain a new stochastic positive matrix.
Null rows, corresponding to dangling nodes are modified from

[0, 0, . . . , 0]

to [
1
n ,

1
n , . . . ,

1
n

]
A uniform teleportation probability to any node is introduced.

P =


0 .5 0 .5 0
0 0 .33 .33 .33
0 0 0 .5 .5
0 1 0 0 0
.2 .2 .2 .2 .2
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Getting a positive matrix
The application of the idea is extended: a teleportation probability
is introduced for all nodes.
This can be done introducing a teleportation matrix T

T =
1
neeT =


1/n 1/n · · · 1/n
1/n 1/n · · · 1/n

... ... . . . ...
1/n 1/n · · · 1/n


with eT = [1, 1, . . . , 1]
A linear combination of A and T is then performed

H = αP + (1− α)T

α is the damping factor
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Getting a positive matrix

Let α = .8, then

H =


0 .4 0 .4 0
0 0 .266 .266 .266
0 0 0 .4 .4
0 .8 0 0 0
.16 .16 .16 .16 .216

+


.04 .04 .04 .04 .04
.04 .04 .04 .04 .04
.04 .04 .04 .04 .04
.04 .04 .04 .04 .04
.04 .04 .04 .04 .04



=


.04 .44 .04 .44 .04
.04 .04 .306 .306 .306
.04 .04 .04 .44 .44
.04 .84 .04 .04 .04
.2 .2 .2 .2 .2
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In terms of Markov chain

According to H the random surfer, at each node, chooses the next
node as follows:

if the current node vi is dangling, apply teleporting: the next
node is chosen with uniform probability 1/n
otherwise, flip a α-biased coin.

with probability α, follow an outlink chosen with uniform
probability 1/oi, where oi is the number of outlinks of vi
with probability 1− α, apply teleporting: the next node is
chosen with uniform probability 1/n
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Computing Pagerank

H =


.04 .44 .04 .44 .04
.04 .04 .306 .306 .306
.04 .04 .04 .44 .44
.04 .84 .04 .04 .04
.2 .2 .2 .2 .2

 H2 =


.0464 .4144 .1634 .1954 .1794
.0888 .03496 .0995 .2379 .2219
.1104 .4784 .121 .153 .137
.0464 .0944 .2698 .3018 .2858
.072 .312 .1252 .2852 .2052



H4 =


.079 .3167 .1438 .2428 .2153
.0732 .2984 .1533 .2509 .2207
.0779 .3281 .1387 .2391 .2144
.0749 .299 .1668 .2454 .2111
.0729 .2897 .1606 .252 .2229

 H256 =


.0641 .259 .133 .212 .186
.0641 .259 .133 .212 .186
.0641 .259 .133 .212 .186
.0641 .259 .133 .212 .186
.0641 .259 .133 .212 .186



The resulting pagerank vector is then

[.0641, .259, .133, .212, .186]
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Efficiency and sparsity

H is a dense matrix
this is bad in terms of efficiency
but observe that

H = αP + (1− α)
1
neeT

= α(A +
1
ndeT) + (1− α)

1
neeT

= αA + (αd + (1− α)e)1
neT

where d ∈ {0, 1}n has di = 1 if vi is a dangling node and
di = 0 otherwise.
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Efficiency and sparsity

One step of the power method

π(k+1) = π(k)H

= απ(k)P +
1− α

n π(k)eeT

= απ(k)A + (απ(k)d + 1− α)eT

π(k)H is the product of an n-dimensional vector with a very
sparse n× n matrix (this may require O(n) steps)
π(k)d =

∑
vidangling π

(k)
i clearly requires O(n) steps
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Convergence

Question: how fast (how may iterations) does the power method
converge to the stationary distribution?

A matrix A ∈ Rn×n has n independent unitary (left)
eigenvectors u1, . . . , un

u1, . . . , un form a basis of Rn, then π(0) =
∑n

i=1 aiui for
suitable reals a1, . . . , an
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Convergence

let λ1, . . . λn be the left eigenvalues of A (assume
|λ1| ≥ . . . ≥ |λn|)
then, since for any eigenvector ui,
uiAk = uiAAk−1 = λiuiAk−1 = λk

i ui

π(0)Ak =

( n∑
i=1

aiui

)
Ak =

n∑
i=1

aiuiAk

=
n∑

i=1
aiuiλ

k
i = a1λ

k
1

(
u1 +

n∑
i=2

ai
a1

(
λi
λ1

)k
ui

)
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Convergence

Then,
π(0)Ak → a1λk

1u1

the difference

|a1λ
k
1u1 − π(0)Ak| =

∣∣∣∣∣a1λ1

n∑
i=2

ai
a1

(
λi
λ1

)k
ui

∣∣∣∣∣
goes to 0 as k increases
the slowest decreasing term is the largest one λ2/λ1

since in our case λ1 = 1, the convergence rate is determined
by λ2

smaller λ2: faster convergence

G.Gambosi: Link analysis 75 / 97



Link analysis Citation analysis Markov chains Perron Frobenius theory

Convergence

In the case of the Google matrix

H = αP + (1− α)T

it is possible to prove that λ2 = α
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Hubs and authorities: Definition

A good hub page for a topic links to many authority pages for
that topic.
A good authority page for a topic is linked to by many hub
pages for that topic.
Circular definition – we will turn this into an iterative
computation.
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Example for hubs and authorities

hubs authorities

www.bestfares.com

www.airlinesquality.com

blogs.usatoday.com/sky

aviationblog.dallasnews.com

www.aa.com

www.delta.com

www.united.com
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How to compute hub and authority scores

Do a regular web search first
Call the search result the root set
Find all pages that are linked to or link to pages in the root set
Call this larger set the base set
Finally, compute hubs and authorities for the base set (which
we’ll view as a small web graph)
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Root set and base set (1)

base set

root set

The root set Nodes that root set nodes link to Nodes that link to
root set nodes The base set
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Root set and base set (2)

Root set typically has 200–1000 nodes.
Base set may have up to 5000 nodes.
Computation of base set, as shown on previous slide:

Follow outlinks by parsing the pages in the root set
Find d’s inlinks by searching for all pages containing a link to d
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Hub and authority scores

Compute for each page d in the base set a hub score h(d) and
an authority score a(d)
Initialization: for all d: h(d) = 1, a(d) = 1
Iteratively update all h(d), a(d)
After convergence:

Output pages with highest h scores as top hubs
Output pages with highest a scores as top authorities
So we output two ranked lists
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Iterative update

For all d: h(d) =
∑

d7→y a(y)

d

y1

y2

y3

For all d: a(d) =
∑

y7→d h(y)

d

y1

y2

y3

Iterate these two steps until convergence
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Details

Scaling
To prevent the a() and h() values from getting too big, can
scale down after each iteration
Scaling factor doesn’t really matter.
We care about the relative (as opposed to absolute) values of
the scores.

In most cases, the algorithm converges after a few iterations.
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Authorities for query [Chicago Bulls]

0.85 www.nba.com/bulls
0.25 www.essex1.com/people/jmiller/bulls.htm

“da Bulls”
0.20 www.nando.net/SportServer/basketball/nba/chi.html

“The Chicago Bulls”
0.15 users.aol.com/rynocub/bulls.htm

“The Chicago Bulls Home Page”
0.13 www.geocities.com/Colosseum/6095

“Chicago Bulls”

(Ben-Shaul et al, WWW8)
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The authority page for [Chicago Bulls]
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Hubs for query [Chicago Bulls]

1.62 www.geocities.com/Colosseum/1778
“Unbelieveabulls!!!!!”

1.24 www.webring.org/cgi-bin/webring?ring=chbulls
“Erin’s Chicago Bulls Page”

0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html
“Chicago Bulls”

0.52 www.nobull.net/web_position/kw-search-15-M2.htm
“Excite Search Results: bulls”

0.52 www.halcyon.com/wordsltd/bball/bulls.htm
“Chicago Bulls Links”

(Ben-Shaul et al, WWW8)
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A hub page for [Chicago Bulls]
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Hubs & Authorities: Comments

HITS can pull together good pages regardless of page content.
Once the base set is assembled, we only do link analysis, no
text matching.
Pages in the base set often do not contain any of the query
words.
In theory, an English query can retrieve Japanese-language
pages!

If supported by the link structure between English and
Japanese pages

Danger: topic drift – the pages found by following links may
not be related to the original query.
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Proof of convergence

We define an N× N adjacency matrix A. (We called this the
link matrix earlier.
For 1 ≤ i, j ≤ N, the matrix entry Aij tells us whether there is
a link from page i to page j (Aij = 1) or not (Aij = 0).
Example:

d3

d1 d2

d1 d2 d3
d1 0 1 0
d2 1 1 1
d3 1 0 0
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Write update rules as matrix operations

Define the hub vector h⃗ = (h1, . . . , hN) as the vector of hub
scores. hi is the hub score of page di.
Similarly for a⃗, the vector of authority scores
Now we can write h(d) =

∑
d 7→y a(y) as a matrix operation:

h⃗ = Aa⃗ …
…and we can write a(d) =

∑
y 7→d h(y) as a⃗ = ATh⃗

HITS algorithm in matrix notation:
Compute h⃗ = Aa⃗
Compute a⃗ = ATh⃗
Iterate until convergence
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HITS as eigenvector problem

HITS algorithm in matrix notation. Iterate:
Compute h⃗ = Aa⃗
Compute a⃗ = ATh⃗

By substitution we get: h⃗ = AATh⃗ and a⃗ = ATAa⃗
Thus, h⃗ is an eigenvector of AAT and a⃗ is an eigenvector of
ATA.
So the HITS algorithm is actually a special case of the power
method and hub and authority scores are eigenvector values.
HITS and PageRank both formalize link analysis as
eigenvector problems.
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Raw matrix A for HITS

d0 d1 d2 d3 d4 d5 d6
d0 0 0 1 0 0 0 0
d1 0 1 1 0 0 0 0
d2 1 0 1 2 0 0 0
d3 0 0 0 1 1 0 0
d4 0 0 0 0 0 0 1
d5 0 0 0 0 0 1 1
d6 0 0 0 2 1 0 1
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Hub vectors h0,⃗hi =
1
di

A · a⃗i, i ≥ 1

h⃗0 h⃗1 h⃗2 h⃗3 h⃗4 h⃗5
d0 0.14 0.06 0.04 0.04 0.03 0.03
d1 0.14 0.08 0.05 0.04 0.04 0.04
d2 0.14 0.28 0.32 0.33 0.33 0.33
d3 0.14 0.14 0.17 0.18 0.18 0.18
d4 0.14 0.06 0.04 0.04 0.04 0.04
d5 0.14 0.08 0.05 0.04 0.04 0.04
d6 0.14 0.30 0.33 0.34 0.35 0.35
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Authority vectors a⃗i =
1
ci
AT · h⃗i−1, i ≥ 1

a⃗1 a⃗2 a⃗3 a⃗4 a⃗5 a⃗6 a⃗7
d0 0.06 0.09 0.10 0.10 0.10 0.10 0.10
d1 0.06 0.03 0.01 0.01 0.01 0.01 0.01
d2 0.19 0.14 0.13 0.12 0.12 0.12 0.12
d3 0.31 0.43 0.46 0.46 0.46 0.47 0.47
d4 0.13 0.14 0.16 0.16 0.16 0.16 0.16
d5 0.06 0.03 0.02 0.01 0.01 0.01 0.01
d6 0.19 0.14 0.13 0.13 0.13 0.13 0.13
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Top-ranked pages

Pages with highest in-degree: d2, d3, d6

Pages with highest out-degree: d2, d6

Pages with highest PageRank: d6

Pages with highest hub score: d6 (close: d2)
Pages with highest authority score: d3
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PageRank vs. HITS: Discussion

PageRank can be precomputed, HITS has to be computed at
query time.

HITS is too expensive in most application scenarios.

PageRank and HITS make two different design choices
concerning (i) the eigenproblem formalization (ii) the set of
pages to apply the formalization to.
These two are orthogonal.

We could also apply HITS to the entire web and PageRank to
a small base set.

Claim: On the web, a good hub almost always is also a good
authority.
The actual difference between PageRank ranking and HITS
ranking is therefore not as large as one might expect.
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