
Introduction to Information Retrieval

Introduction to
Information Retrieval

CS276: Information Retrieval and Web Search
Christopher Manning and Pandu Nayak

Lecture 4: Index Compression

Introduction to Information Retrieval

Last lecture – index construction
§ Sort-based indexing

§ Naïve in-memory inversion
§ Blocked Sort-Based Indexing (BSBI)

§ Merge sort is effective for hard disk–based sorting (avoid seeks!)

§ Single-Pass In-Memory Indexing (SPIMI)
§ No global dictionary

§ Generate separate dictionary for each block

§ Don’t sort postings
§ Accumulate postings in postings lists as they occur

§ Distributed indexing using MapReduce
§ Dynamic indexing: Multiple indices, logarithmic merge

2

Introduction to Information Retrieval

Today

§ Collection statistics in more detail (with RCV1)
§ How big will the dictionary and postings be?

§ Dictionary compression
§ Postings compression

Ch. 5

3

Introduction to Information Retrieval

Why compression (in general)?
§ Use less disk space

§ Save a little money; give users more space
§ Keep more stuff in memory

§ Increases speed
§ Increase speed of data transfer from disk to memory

§ [read compressed data | decompress] is faster than
[read uncompressed data]

§ Premise: Decompression algorithms are fast
§ True of the decompression algorithms we use

Ch. 5

4

Introduction to Information Retrieval

Why compression for inverted indexes?
§ Dictionary

§ Make it small enough to keep in main memory
§ Make it so small that you can keep some postings lists in

main memory too
§ Postings file(s)

§ Reduce disk space needed
§ Decrease time needed to read postings lists from disk
§ Large search engines keep a significant part of the postings

in memory.
§ Compression lets you keep more in memory

§ We will devise various IR-specific compression schemes

Ch. 5

5

Introduction to Information Retrieval

Recall Reuters RCV1
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) ~400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

Sec. 5.1

6

Introduction to Information Retrieval

Index parameters vs. what we index
(details IIR Table 5.1, p.80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size
(K)

∆% cumul
%

Size (K) ∆
%

cumul
%

Size (K) ∆
%

cumul
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some
zero entries correspond to big deltas in other columns?

Sec. 5.1

7

Introduction to Information Retrieval

Lossless vs. lossy compression
§ Lossless compression: All information is preserved.

§ What we mostly do in IR.
§ Lossy compression: Discard some information
§ Several of the preprocessing steps can be viewed as

lossy compression: case folding, stop words,
stemming, number elimination.

§ Chapter 7: Prune postings entries that are unlikely to
turn up in the top k list for any query.
§ Almost no loss of quality in top k list.

Sec. 5.1

8

Introduction to Information Retrieval

Vocabulary size vs. collection size
§ How big is the term vocabulary?

§ That is, how many distinct words are there?

§ Can we assume an upper bound?
§ Not really: At least 7020 = 1037 different words of length 20

§ In practice, the vocabulary will keep growing with the
collection size
§ Especially with Unicode J

Sec. 5.1

9

Introduction to Information Retrieval

Vocabulary size vs. collection size
§ Heaps’ law: M = kTb

§ M is the size of the vocabulary, T is the number of
tokens in the collection

§ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
§ In a log-log plot of vocabulary size M vs. T, Heaps’

law predicts a line with slope about ½
§ It is the simplest possible (linear) relationship between the

two in log-log space
§ log M = log k + b log T

§ An empirical finding (“empirical law”)

Sec. 5.1

10

Introduction to Information Retrieval

Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64

is the best least squares fit.

Thus, M = 101.64T0.49 so k =

101.64 ≈ 44 and b = 0.49.

Good empirical fit for

Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1

11

Introduction to Information Retrieval

Exercises
§ What is the effect of including spelling errors, vs.

automatically correcting spelling errors on Heaps’
law?

§ Compute the vocabulary size M for this scenario:
§ Looking at a collection of web pages, you find that there

are 3000 different terms in the first 10,000 tokens and
30,000 different terms in the first 1,000,000 tokens.

§ Assume a search engine indexes a total of 20,000,000,000
(2 � 1010) pages, containing 200 tokens on average

§ What is the size of the vocabulary of the indexed collection
as predicted by Heaps’ law?

Sec. 5.1

12

Introduction to Information Retrieval

Zipf’s law

§ Heaps’ law gives the vocabulary size in collections.
§ We also study the relative frequencies of terms.
§ In natural language, there are a few very frequent

terms and very many very rare terms.
§ Zipf’s law: The ith most frequent term has frequency

proportional to 1/i .
§ cfi ∝ 1/i = K/i where K is a normalizing constant
§ cfi is collection frequency: the number of

occurrences of the term ti in the collection.

Sec. 5.1

13

Introduction to Information Retrieval

Zipf consequences
§ If the most frequent term (the) occurs cf1 times

§ then the second most frequent term (of) occurs cf1/2 times
§ the third most frequent term (and) occurs cf1/3 times …

§ Equivalent: cfi = K/i where K is a normalizing factor,
so
§ log cfi = log K - log i
§ Linear relationship between log cfi and log i

§ Another power law relationship

Sec. 5.1

14

Introduction to Information Retrieval

Zipf’s law for Reuters RCV1

15

Sec. 5.1

Introduction to Information Retrieval

Compression
§ Now, we will consider compressing the space

for the dictionary and postings. We’ll do:
§ Basic Boolean index only
§ No study of positional indexes, etc.

§ But these ideas can be extended

§ We will consider compression schemes

Ch. 5

16

Introduction to Information Retrieval

DICTIONARY COMPRESSION

Sec. 5.2

17

Introduction to Information Retrieval

Why compress the dictionary?
§ Search begins with the dictionary
§ We want to keep it in memory
§ Memory footprint competition with other

applications
§ Embedded/mobile devices may have very little

memory
§ Even if the dictionary isn’t in memory, we want it to

be small for a fast search startup time
§ So, compressing the dictionary is important

Sec. 5.2

18

Introduction to Information Retrieval

Dictionary storage – naïve version
§ Array of fixed-width entries

§ ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2

19

Introduction to Information Retrieval

Fixed-width terms are wasteful

§ Most of the bytes in the Term column are wasted –
we allot 20 bytes for 1 letter terms.
§ And we still can’t handle supercalifragilisticexpialidocious or

hydrochlorofluorocarbons.

§ Written English averages ~4.5 characters/word.
§ Exercise: Why is/isn’t this the number to use for estimating

the dictionary size?

§ Ave. dictionary word in English: ~8 characters
§ How do we use ~8 characters per dictionary term?

§ Short words dominate token counts but not type
average.

Sec. 5.2

20

Introduction to Information Retrieval

Compressing the term list:
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space

Sec. 5.2

21

Introduction to Information Retrieval

Space for dictionary as a string
§ 4 bytes per term for Freq.
§ 4 bytes per term for pointer to Postings.
§ 3 bytes per term pointer
§ Avg. 8 bytes per term in term string
§ 400K terms x 19 Þ 7.6 MB (against 11.2MB for fixed

width)

ü Now avg. 11
ý bytes/term,
þ not 20.

Sec. 5.2

22

Introduction to Information Retrieval

Blocking
§ Store pointers to every kth term string.

§ Example below: k=4.
§ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

ü Save 9 bytes
ý on 3
þ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2

23

Introduction to Information Retrieval

Blocking Net Gains
§ Example for block size k = 4
§ Where we used 3 bytes/pointer without blocking

§ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Question: Why not go with larger k?

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Sec. 5.2

24

Introduction to Information Retrieval

Dictionary search without blocking

§ Assuming each
dictionary term equally
likely in query (not really
so in practice!), average
number of comparisons
= (1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: what if the frequencies
of query terms were non-uniform
but known, how would you
structure the dictionary search
tree?

25

Introduction to Information Retrieval

Dictionary search with blocking

§ Binary search down to 4-term block;
§ Then linear search through terms in block.

§ Blocks of 4 (binary tree), avg. =
(1+2·2+2·3+2·4+5)/8 = 3 compares

Sec. 5.2

26

Introduction to Information Retrieval

Exercises
§ Estimate the space usage (and savings compared to

7.6 MB) with blocking, for block sizes of k = 4, 8 and
16.

§ Estimate the impact on search performance (and
slowdown compared to k=1) with blocking, for block
sizes of k = 4, 8 and 16.

Sec. 5.2

27

Introduction to Information Retrieval

Front coding
§ Front-coding:

§ Sorted words commonly have long common prefix – store
differences only

§ (for last k-1 in a block of k)
8automata8automate9automatic10automation

®8automat*a1àe2àic3àion

Encodes prefix automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2

28

Introduction to Information Retrieval

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

+ blocking, k = 4 7.1

+ blocking + front coding 5.9

Sec. 5.2

29

Introduction to Information Retrieval

POSTINGS COMPRESSION

Sec. 5.3

30

Introduction to Information Retrieval

Postings compression
§ The postings file is much larger than the dictionary,

factor of at least 10, often over 100 times larger
§ Key desideratum: store each posting compactly.
§ A posting for our purposes is a docID.
§ For Reuters (800,000 documents), we would use 32

bits per docID when using 4-byte integers.
§ Alternatively, we can use log2 800,000 ≈ 20 bits per

docID.
§ Our goal: use far fewer than 20 bits per docID.

Sec. 5.3

31

Introduction to Information Retrieval

Postings: two conflicting forces
§ A term like arachnocentric occurs in maybe one doc

out of a million – we would like to store this posting
using log2 1M ≈ 20 bits.

§ A term like the occurs in virtually every doc, so 20
bits/posting ≈ 2MB is too expensive.
§ Prefer 0/1 bitmap vector in this case (≈100K)

Sec. 5.3

32

Introduction to Information Retrieval

Gap encoding of postings file entries

§ We store the list of docs containing a term in
increasing order of docID.
§ computer: 33,47,154,159,202 …

§ Consequence: it suffices to store gaps.
§ 33,14,107,5,43 …

§ Hope: most gaps can be encoded/stored with far
fewer than 20 bits.
§ Especially for common words

Sec. 5.3

33

Introduction to Information Retrieval

Three postings entries

Sec. 5.3

34

Introduction to Information Retrieval

Variable length encoding
§ Aim:

§ For arachnocentric, we will use ~20 bits/gap entry.
§ For the, we will use ~1 bit/gap entry.

§ If the average gap for a term is G, we want to use
~log2G bits/gap entry.

§ Key challenge: encode every integer (gap) with about
as few bits as needed for that integer.

§ This requires a variable length encoding
§ Variable length codes achieve this by using short

codes for small numbers

Sec. 5.3

35

Introduction to Information Retrieval

Unary code

§ Represent n as n 1s with a final 0.

§ Unary code for 3 is 1110.

§ Unary code for 40 is

110 .

§ Unary code for 80 is:

11
1111111111111111111111111111111111110

§ This doesn’t look promising, but….
§ Optimal if P(n) = 2–n

§ We can use it as part of our solution 36

Introduction to Information Retrieval

Gamma codes
§ We can compress better with bit-level codes

§ The Gamma code is the best known of these.

§ Represent a gap G as a pair length and offset
§ offset is G in binary, with the leading bit cut off

§ For example 13 → 1101 → 101

§ length is the length of offset
§ For 13 (offset 101), this is 3.

§ We encode length with unary code: 1110.
§ Gamma code of 13 is the concatenation of length

and offset: 1110101

Sec. 5.3

37

Introduction to Information Retrieval

Gamma code examples
number length offset g-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3

38

Introduction to Information Retrieval

Reminder: bitwise operations
§ For compression, you need to use bitwise operators

§ Python (and most everything else):
§ & bitwise and; | bitwise or; ^ bitwise xor; ~ ones complement
§ << left shift bits, >> right shift; LACKS >>> zero fill right shift
§ Recipes:

§ Extract 7 bits: a & 0x7f00 >> 8 ; if take high-order bit add: & 0x7f
§ Combine 3 5-bit numbers: a | (b << 5) | (c << 10)
§ Lookup tables rather than decoding can be faster, yet still small

39

Introduction to Information Retrieval

Gamma code properties
§ G is encoded using 2 ëlog Gû + 1 bits

§ Length of offset is ëlog Gû bits
§ Length of length is ëlog Gû + 1 bits

§ All gamma codes have an odd number of bits
§ Almost within a factor of 2 of best possible, log2 G

§ Gamma code is uniquely prefix-decodable, like VB
§ Gamma code can be used for any distribution

§ Optimal for P(n) » 1/(2n2)
§ Gamma code is parameter-free

Sec. 5.3

40

Introduction to Information Retrieval

Gamma seldom used in practice
§ Machines have word boundaries – 8, 16, 32, 64 bits

§ Operations that cross word boundaries are slower
§ Compressing and manipulating at the granularity of

bits can be too slow

§ All modern practice is to use byte or word aligned
codes
§ Variable byte encoding is a faster, conceptually simpler

compression scheme, with decent compression

Sec. 5.3

41

Introduction to Information Retrieval

Variable Byte (VB) codes
§ For a gap value G, we want to use close to the fewest

bytes needed to hold log2 G bits
§ Begin with one byte to store G and dedicate 1 bit in it

to be a continuation bit c
§ If G ≤127, binary-encode it in the 7 available bits and

set c =1
§ Else encode G’s lower-order 7 bits and then use

additional bytes to encode the higher order bits
using the same algorithm

§ At the end set the continuation bit of the last byte to
1 (c =1) – and for the other bytes c = 0.

Sec. 5.3

42

Introduction to Information Retrieval

Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101

00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Sec. 5.3

43

Introduction to Information Retrieval

RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, g-encoded 101.0

Sec. 5.3

44

Introduction to Information Retrieval

Other variable unit codes

§ Variable byte codes are used by many real systems
§ Good low-tech blend of variable-length coding and

sensitivity to computer memory alignment matches

§ Byte alignment wastes space if you have many small
gaps – as gap encoding often makes

§ More modern work mainly uses the ideas:
§ Be word aligned (32 or 64 bits; even faster)

§ Encode several gaps at the same time

§ Often assume a maximum gap size, perhaps with an
escape

Sec. 5.3

45

Introduction to Information Retrieval

Group Variable Integer code

§ Used by Google around turn of millennium….

§ Jeff Dean, keynote at WSDM 2009 and presentations at CS276

§ Encodes 4 integers in blocks of size 5–17 bytes

§ First byte: four 2-bit binary length fields

§ , LjÎ{1,2,3,4}

§ Then, L1+L2+L3+L4 bytes (between 4–16) hold 4 numbers
§ Each number can use 8/16/24/32 bits. Max gap length ~4 billion

§ It was suggested that this was about twice as fast as VB

encoding

§ Decoding gaps is much simpler – no bit masking

§ First byte can be decoded with lookup table or switch

46

L1 L2 L3 L4

Introduction to Information Retrieval

28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)
“selectors”

A word-aligned, multiple number encoding scheme
How can we store several numbers in 32 bits with a format selector?

Simple-9 [Anh & Moffat, 2004]

Introduction to Information Retrieval

Simple9 Encoding Scheme [Anh & Moffat, 2004]

§ Encoding block: 4 bytes (32 bits)

§ Most significant nibble (4 bits) describe the layout of the 28
other bits as follows:
§ 0: a single 28-bit number

§ 1: two 14-bit numbers

§ 2: three 9-bit numbers (and one spare bit)

§ 3: four 7-bit numbers

§ 4: five 5-bit numbers (and three spare bits)

§ 5: seven 4-bit numbers

§ 6: nine 3-bit numbers (and one spare bit)

§ 7: fourteen two-bit numbers

§ 8: twenty-eight one-bit numbers

§ Simple16 is a variant with 5 additional (uneven) configurations

§ Efficiently decoded with hand-coded decoder, using bit masks

§ Extended Simple Family – idea applies to 64-bit words, etc.
48

Layout
(4 bits)

n numbers of b bits each
n * b £ 28

Introduction to Information Retrieval

Index compression summary
§ We can now create an index for highly efficient

Boolean retrieval that is very space efficient
§ Only 4% of the total size of the collection
§ Only 10-15% of the total size of the text in the

collection

§ We’ve ignored positional information
§ Hence, space savings are less for indexes used in

practice
§ But techniques substantially the same

Sec. 5.3

49

Introduction to Information Retrieval

Resources for today’s lecture

§ IIR 5

§ MG 3.3, 3.4.

§ F. Scholer, H.E. Williams and J. Zobel. 2002.

Compression of Inverted Indexes For Fast Query

Evaluation. Proc. ACM-SIGIR 2002.

§ Variable byte codes

§ V. N. Anh and A. Moffat. 2005. Inverted Index

Compression Using Word-Aligned Binary Codes.

Information Retrieval 8: 151–166.

§ Word aligned codes

Ch. 5

50

