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Last lecture – index construction
§ Sort-based indexing

§ Naïve in-memory inversion
§ Blocked Sort-Based Indexing (BSBI)

§ Merge sort is effective for hard disk–based sorting (avoid seeks!)

§ Single-Pass In-Memory Indexing (SPIMI)
§ No global dictionary

§ Generate separate dictionary for each block

§ Don’t sort postings
§ Accumulate postings in postings lists as they occur

§ Distributed indexing using MapReduce
§ Dynamic indexing: Multiple indices, logarithmic merge
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Today

§ Collection statistics in more detail (with RCV1)
§ How big will the dictionary and postings be?

§ Dictionary compression
§ Postings compression

Ch. 5
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Why compression (in general)?
§ Use less disk space

§ Save a little money; give users more space
§ Keep more stuff in memory

§ Increases speed
§ Increase speed of data transfer from disk to memory

§ [read compressed data | decompress] is faster than     
[read uncompressed data]

§ Premise: Decompression algorithms are fast
§ True of the decompression algorithms we use

Ch. 5
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Why compression for inverted indexes?
§ Dictionary

§ Make it small enough to keep in main memory
§ Make it so small that you can keep some postings lists in 

main memory too
§ Postings file(s)

§ Reduce disk space needed
§ Decrease time needed to read postings lists from disk
§ Large search engines keep a significant part of the postings 

in memory.
§ Compression lets you keep more in memory

§ We will devise various IR-specific compression schemes

Ch. 5
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Recall Reuters RCV1
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) ~400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

Sec. 5.1
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Index parameters vs. what we index 
(details IIR Table 5.1, p.80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size 
(K)

∆% cumul 
%

Size (K) ∆ 
%

cumul 
%

Size (K) ∆ 
%

cumul 
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some 
zero entries correspond to big deltas in other columns? 

Sec. 5.1
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Lossless vs. lossy compression
§ Lossless compression: All information is preserved.

§ What we mostly do in IR.
§ Lossy compression: Discard some information
§ Several of the preprocessing steps can be viewed as 

lossy compression: case folding, stop words, 
stemming, number elimination.

§ Chapter 7: Prune postings entries that are unlikely to 
turn up in the top k list for any query.
§ Almost no loss of quality in top k list.

Sec. 5.1
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Vocabulary size vs. collection size
§ How big is the term vocabulary?

§ That is, how many distinct words are there?

§ Can we assume an upper bound?
§ Not really: At least 7020 = 1037 different words of length 20

§ In practice, the vocabulary will keep growing with the 
collection size
§ Especially with Unicode J

Sec. 5.1
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Vocabulary size vs. collection size
§ Heaps’ law: M = kTb

§ M is the size of the vocabulary, T is the number of 
tokens in the collection

§ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
§ In a log-log plot of vocabulary size M vs. T, Heaps’ 

law predicts a line with slope about ½
§ It is the simplest possible (linear) relationship between the 

two in log-log space
§ log M = log k + b log T

§ An empirical finding (“empirical law”)

Sec. 5.1
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Heaps’ Law

For RCV1, the dashed line

log10M = 0.49 log10T + 1.64

is the best least squares fit.

Thus, M = 101.64T0.49 so k = 

101.64 ≈ 44 and b = 0.49.

Good empirical fit for 

Reuters RCV1 !

For first 1,000,020 tokens,

law predicts 38,323 terms;

actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1
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Exercises
§ What is the effect of including spelling errors, vs. 

automatically correcting spelling errors on Heaps’ 
law?

§ Compute the vocabulary size M for this scenario:
§ Looking at a collection of web pages, you find that there 

are 3000 different terms in the first 10,000 tokens and 
30,000 different terms in the first 1,000,000 tokens.

§ Assume a search engine indexes a total of 20,000,000,000 
(2 � 1010) pages, containing 200 tokens on average

§ What is the size of the vocabulary of the indexed collection 
as predicted by Heaps’ law?

Sec. 5.1
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Zipf’s law

§ Heaps’ law gives the vocabulary size in collections.
§ We also study the relative frequencies of terms.
§ In natural language, there are a few very frequent 

terms and very many very rare terms.
§ Zipf’s law: The ith most frequent term has frequency 

proportional to 1/i .
§ cfi ∝ 1/i = K/i where K is a normalizing constant
§ cfi is collection frequency: the number of 

occurrences of the term ti in the collection.

Sec. 5.1
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Zipf consequences
§ If the most frequent term (the) occurs cf1 times 

§ then the second most frequent term (of) occurs cf1/2 times
§ the third most frequent term (and) occurs cf1/3 times … 

§ Equivalent: cfi = K/i where K is a normalizing factor, 
so
§ log cfi = log K - log i
§ Linear relationship between log cfi and log i

§ Another power law relationship

Sec. 5.1
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Zipf’s law for Reuters RCV1

15
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Compression
§ Now, we will consider compressing the space 

for the dictionary and postings. We’ll do:
§ Basic Boolean index only
§ No study of positional indexes, etc.

§ But these ideas can be extended

§ We will consider compression schemes

Ch. 5
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DICTIONARY COMPRESSION

Sec. 5.2
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Why compress the dictionary?
§ Search begins with the dictionary
§ We want to keep it in memory
§ Memory footprint competition with other 

applications
§ Embedded/mobile devices may have very little 

memory
§ Even if the dictionary isn’t in memory, we want it to 

be small for a fast search startup time
§ So, compressing the dictionary is important

Sec. 5.2
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Dictionary storage – naïve version
§ Array of fixed-width entries

§ ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2

19



Introduction to Information Retrieval

Fixed-width terms are wasteful

§ Most of the bytes in the Term column are wasted –
we allot 20 bytes for 1 letter terms.
§ And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons.

§ Written English averages ~4.5 characters/word.
§ Exercise: Why is/isn’t this the number to use for estimating 

the dictionary size?

§ Ave. dictionary word in English: ~8 characters
§ How do we use ~8 characters per dictionary term?

§ Short words dominate token counts but not type 
average.

Sec. 5.2
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Compressing the term list: 
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space

Sec. 5.2
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Space for dictionary as a string
§ 4 bytes per term for Freq.
§ 4 bytes per term for pointer to Postings.
§ 3 bytes per term pointer
§ Avg. 8 bytes per term in term string
§ 400K terms x 19 Þ 7.6 MB (against 11.2MB for fixed 

width)

ü Now avg. 11
ý bytes/term,
þ not 20.

Sec. 5.2
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Blocking
§ Store pointers to every kth term string.

§ Example below: k=4.
§ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

ü Save 9 bytes
ý on 3
þ pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2
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Blocking Net Gains
§ Example for block size k = 4
§ Where we used 3 bytes/pointer without blocking

§ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Question: Why not go with larger k?

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Sec. 5.2
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Dictionary search without blocking

§ Assuming each 
dictionary term equally 
likely in query (not really 
so in practice!), average 
number of comparisons 
= (1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: what if the frequencies 
of query terms were non-uniform 
but known, how would you 
structure the dictionary search 
tree?
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Dictionary search with blocking

§ Binary search down to 4-term block;
§ Then linear search through terms in block.

§ Blocks of 4 (binary tree), avg. = 
(1+2·2+2·3+2·4+5)/8 = 3 compares

Sec. 5.2
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Exercises
§ Estimate the space usage (and savings compared to 

7.6 MB) with blocking, for block sizes of k = 4, 8 and
16.

§ Estimate the impact on search performance (and 
slowdown compared to k=1) with blocking, for block 
sizes of k = 4, 8 and 16.

Sec. 5.2
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Front coding
§ Front-coding:

§ Sorted words commonly have long common prefix – store 
differences only

§ (for last k-1 in a block of k)
8automata8automate9automatic10automation

®8automat*a1àe2àic3àion

Encodes prefix automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2
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RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

+ blocking, k = 4 7.1

+ blocking + front coding 5.9

Sec. 5.2
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POSTINGS COMPRESSION

Sec. 5.3
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Postings compression
§ The postings file is much larger than the dictionary, 

factor of at least 10, often over 100 times larger
§ Key desideratum: store each posting compactly.
§ A posting for our purposes is a docID.
§ For Reuters (800,000 documents), we would use 32 

bits per docID when using 4-byte integers.
§ Alternatively, we can use log2 800,000 ≈ 20 bits per 

docID.
§ Our goal: use far fewer than 20 bits per docID.

Sec. 5.3
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Postings: two conflicting forces
§ A term like arachnocentric occurs in maybe one doc 

out of a million – we would like to store this posting 
using log2 1M ≈ 20 bits.

§ A term like the occurs in virtually every doc, so 20 
bits/posting ≈ 2MB is too expensive.
§ Prefer 0/1 bitmap vector in this case (≈100K)

Sec. 5.3
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Gap encoding of postings file entries

§ We store the list of docs containing a term in 
increasing order of docID.
§ computer: 33,47,154,159,202 …

§ Consequence: it suffices to store gaps.
§ 33,14,107,5,43 …

§ Hope: most gaps can be encoded/stored with far 
fewer than 20 bits.
§ Especially for common words

Sec. 5.3
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Three postings entries

Sec. 5.3
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Variable length encoding
§ Aim:

§ For arachnocentric, we will use ~20 bits/gap entry.
§ For the, we will use ~1 bit/gap entry.

§ If the average gap for a term is G, we want to use 
~log2G bits/gap entry.

§ Key challenge: encode every integer (gap) with about 
as few bits as needed for that integer.

§ This requires a variable length encoding
§ Variable length codes achieve this by using short 

codes for small numbers

Sec. 5.3
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Unary code

§ Represent n as n 1s with a final 0.

§ Unary code for 3 is 1110.

§ Unary code for 40 is

11111111111111111111111111111111111111110 .

§ Unary code for 80 is:

11111111111111111111111111111111111111111111
1111111111111111111111111111111111110

§ This doesn’t look promising, but….
§ Optimal if P(n) = 2–n

§ We can use it as part of our solution 36
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Gamma codes
§ We can compress better with bit-level codes

§ The Gamma code is the best known of these.

§ Represent a gap G as a pair length and offset
§ offset is G in binary, with the leading bit cut off

§ For example 13 → 1101 → 101

§ length is the length of offset
§ For 13 (offset 101), this is 3.

§ We encode length with unary code: 1110.
§ Gamma code of 13 is the concatenation of length

and offset: 1110101

Sec. 5.3
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Gamma code examples
number length offset g-code

0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3
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Reminder: bitwise operations
§ For compression, you need to use bitwise operators

§ Python (and most everything else):
§ & bitwise and; | bitwise or; ^ bitwise xor; ~ ones complement
§ << left shift bits, >> right shift; LACKS >>> zero fill right shift
§ Recipes:

§ Extract 7 bits:   a & 0x7f00 >> 8 ; if take high-order bit add: & 0x7f
§ Combine 3 5-bit numbers:   a | (b << 5) | (c << 10)
§ Lookup tables rather than decoding can be faster, yet still small

39



Introduction to Information Retrieval

Gamma code properties
§ G is encoded using 2 ëlog Gû + 1 bits

§ Length of offset is ëlog Gû bits
§ Length of length is ëlog Gû + 1 bits

§ All gamma codes have an odd number of bits
§ Almost within a factor of 2 of best possible, log2 G

§ Gamma code is uniquely prefix-decodable, like VB
§ Gamma code can be used for any distribution

§ Optimal for P(n) » 1/(2n2)
§ Gamma code is parameter-free

Sec. 5.3
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Gamma seldom used in practice
§ Machines have word boundaries – 8, 16, 32, 64 bits

§ Operations that cross word boundaries are slower
§ Compressing and manipulating at the granularity of 

bits can be too slow

§ All modern practice is to use byte or word aligned 
codes
§ Variable byte encoding is a faster, conceptually simpler 

compression scheme, with decent compression

Sec. 5.3
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Variable Byte (VB) codes
§ For a gap value G, we want to use close to the fewest 

bytes needed to hold log2 G bits
§ Begin with one byte to store G and dedicate 1 bit in it 

to be a continuation bit c
§ If G ≤127, binary-encode it in the 7 available bits and 

set c =1
§ Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 
using the same algorithm

§ At the end set the continuation bit of the last byte to 
1 (c =1) – and for the other bytes c = 0.

Sec. 5.3
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Example
docIDs 824 829 215406
gaps 5 214577
VB code 00000110 

10111000 
10000101 00001101 

00001100 
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Sec. 5.3
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RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, g-encoded 101.0

Sec. 5.3
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Other variable unit codes

§ Variable byte codes are used by many real systems
§ Good low-tech blend of variable-length coding and 

sensitivity to computer memory alignment matches

§ Byte alignment wastes space if you have many small 
gaps – as gap encoding often makes

§ More modern work mainly uses the ideas:
§ Be word aligned (32 or 64 bits; even faster)

§ Encode several gaps at the same time

§ Often assume a maximum gap size, perhaps with an 
escape

Sec. 5.3
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Group Variable Integer code

§ Used by Google around turn of millennium….

§ Jeff Dean, keynote at WSDM 2009 and presentations at CS276

§ Encodes 4 integers in blocks of size 5–17 bytes

§ First byte: four 2-bit binary length fields

§ , LjÎ{1,2,3,4}

§ Then, L1+L2+L3+L4 bytes (between 4–16) hold 4 numbers
§ Each number can use 8/16/24/32 bits.  Max gap length ~4 billion

§ It was suggested that this was about twice as fast as VB 

encoding

§ Decoding gaps is much simpler – no bit masking

§ First byte can be decoded with lookup table or switch

46
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28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)
“selectors”

A word-aligned, multiple number encoding scheme
How can we store several numbers in 32 bits with a format selector? 

Simple-9 [Anh & Moffat, 2004]
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Simple9 Encoding Scheme [Anh & Moffat, 2004]

§ Encoding block: 4 bytes (32 bits)

§ Most significant nibble (4 bits) describe the layout of the 28 
other bits as follows:
§ 0: a single 28-bit number

§ 1: two 14-bit numbers

§ 2: three 9-bit numbers (and one spare bit)

§ 3: four 7-bit numbers

§ 4: five 5-bit numbers (and three spare bits)

§ 5: seven 4-bit numbers

§ 6: nine 3-bit numbers (and one spare bit)

§ 7: fourteen two-bit numbers

§ 8: twenty-eight one-bit numbers

§ Simple16 is a variant with 5 additional (uneven) configurations

§ Efficiently decoded with hand-coded decoder, using bit masks

§ Extended Simple Family – idea applies to 64-bit words, etc.
48

Layout
(4 bits)

n numbers of b bits each
n * b £ 28
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Index compression summary
§ We can now create an index for highly efficient 

Boolean retrieval that is very space efficient
§ Only 4% of the total size of the collection
§ Only 10-15% of the total size of the text in the 

collection

§ We’ve ignored positional information
§ Hence, space savings are less for indexes used in 

practice
§ But techniques substantially the same

Sec. 5.3
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Resources for today’s lecture

§ IIR 5

§ MG 3.3, 3.4.

§ F. Scholer, H.E. Williams and J. Zobel. 2002. 

Compression of Inverted Indexes For Fast Query 

Evaluation. Proc. ACM-SIGIR 2002.

§ Variable byte codes

§ V. N. Anh and A. Moffat. 2005. Inverted Index 

Compression Using Word-Aligned Binary Codes. 

Information Retrieval 8: 151–166.  

§ Word aligned codes

Ch. 5

50


