KERNEL-BASED LEARNING

WM&R a.a. 2022/23

D. Croce, R. Basili Università di Roma "Tor Vergata" basili@info.uniroma2.it

Outline

- Metodi Kernel
 - Motivazioni
 - Esempio
- Kernel standard
 - Polynomial kernel
 - String Kernel
- Introduzione a metodi Kernel avanzati
 - Tree kernels

Support Vector Machines

- Support Vector Machines (SVMs) are a machine learning paradigm based on the statistical learning theory [Vapnik, 1995]
 - No need to remember everything, just the discriminating instances (i.e. the support vectors, SV)
 - The classifier corresponds to the linear combination of SVs

Linear classifiers and separability

- In a R² space, 3 point can always be separable by a linear classifier
 - but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]
- One solution could be a more complex classifier

Linear classifiers and separability (2)

- ... but things change when projecting instances in a higher dimension feature space through a function ϕ
- **IDEA**: It is better to have a more complex feature space instead a more complex function (i.e. learning algorithm)

The kernel function

- In perceptrons and SVMs the learning algorithm only depends on the scalar product over pairs of example instance vectors
- Basically only the Gram-matrix is involved. In general, we call kernel the following function:

 $K(\vec{x},\vec{z}) = \Phi(\vec{x}) \cdot \Phi(\vec{z})$

- The kernel corresponds to a scalar product over the transformed of initial objects x and z
- Notice that the training in most learning machines (such as the perceptron) makes use of instances only through the kernel

First Advantage: making instances linearly separable

An example: a mapping function

- Two masses m_1 and m_2 , one is constrained
- A force f_a is applied to the mass m_1
- Instead of applying an analyitical law we want to experiment
 - The Features of individual experiments are masses m_1 , m_2 and the appropriate force f_a
- It is clear that the Newton law of gravity is involved:

$$f(m_1, m_2, r) = C \frac{m_1 m_2}{r^2}$$

The task corresponds to determine if

$$f(m_1, m_2, r) < f_a$$

An example: a mapping function (2)

$$\vec{x} = (x_1, \dots, x_n) \rightarrow \Phi(\vec{x}) = (\Phi_1(\vec{x}), \dots, \Phi_k(\vec{x}))$$

This law cannot be expressed linearly. A change of space:

$$(f_a, m_1, m_2, r) \to (k, x, y, z) = (\ln f_a, \ln m_1, \ln m_2, \ln r)$$

holds as:

 $\ln f(m_1, m_2, r) = \ln C + \ln m_1 + \ln m_2 - 2\ln r = c + x + y - 2z$

The following hyperplane is the requested function h(): $\ln f_a - \ln m_1 - \ln m_2 + 2 \ln r - \ln C = 0$

 $(1, 1, -2, -1) \cdot (\ln m_1, \ln m_2, \ln r, \ln f_a) + \ln C = 0,$

We can decide with no error if masses m_1, m_2 get closer or not

Feature Spaces and Kernels

Feature Space

• The input space is mapped into a new space *F* with scalar product (called *feature space*) through a (non linear) trasformation ϕ

$$\phi = R^N \to F$$

The kernel function

٠

The evaluation require the computation of the scalar product over the trasformed vectors $\phi(x)$ but not the feature vectors themselves

The scalr product is computed by a specialized function called kernel

 $k(x, y) = (\phi(x) \cdot \phi(y))$

Classification function: the dual form

$$h(x) = sgn(\vec{w} \cdot \vec{x} + b) = sgn(\sum_{J=1}^{l} \alpha_{j} y_{j} \vec{x_{j}} \cdot \vec{x} + b)$$

On the right form, instances only appear in the scalar product

The ony thing that is needed is the Gram matrix,

$$G = \left(\left\langle \mathbf{x}_i \cdot \mathbf{x}_j \right\rangle \right)_{i, j=1}^{l}$$

i.e. the explicit computation of the scalar product over any pair of training instances $x_1 \dots x_l$

A kernelized perceptron

We can rewrite the decision function of a perceptron by taking into account a kernel:

$$h(x) = sgn(\vec{w} \cdot \Phi(\vec{x}) + b) = sgn(\sum_{j=1}^{l} \alpha_j y_j \Phi(\vec{x}_j) \cdot \Phi(\vec{x}) + b)$$
$$= sgn(\sum_{j=1}^{l} \alpha_j y_j k(\vec{x}_j, \vec{x}) + b)$$

and during training the on-line adjustment steps become:

$$y_i(\sum_{j=1}^l \alpha_j y_j \Phi(\overrightarrow{x_j}) \cdot) \Phi(\overrightarrow{x_i}) + b) = \sum_{j=1}^l \alpha_j y_i y_j k(\overrightarrow{x_j}, \overrightarrow{x_i}) + b)$$

Kernels in Support Vector Machines

• In Soft Margin SVMs we need to maximize :

$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x_i} \cdot \vec{x_j} + \frac{1}{2C} \vec{\alpha} \cdot \vec{\alpha} - \frac{1}{C} \vec{\alpha} \cdot \vec{\alpha}$$

By using kernel functions we rewrite the problem as:

$$\begin{aligned} \max & \max i m i z e \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \left(\frac{k(o_i, o_j)}{C} + \frac{1}{C} \delta_{ij} \right) \\ \alpha_i &\geq 0, \quad \forall i = 1, ..., m \\ \sum_{i=1}^{m} y_i \alpha_i &= 0 \end{aligned}$$

What makes a function a kernel function?

Def. 2.26 A kernel is a function k, such that $\forall \vec{x}, \vec{z} \in X$

 $k(\vec{x}, \vec{z}) = \phi(\vec{x}) \cdot \phi(\vec{z})$

where ϕ is a mapping from X to an (inner product) feature space.

Only such type of functions support implicit mappings such as

$$\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \rightarrow \Phi(\vec{x}) = (\Phi_1(\vec{x}), \dots, \Phi_m(\vec{x})) \in \mathbb{R}^m$$

What makes a function a kernel function? (2)

Def. B.11 Eigen Values Given a matrix $\mathbf{A} \in \mathbb{R}^m \times \mathbb{R}^n$, an egeinvalue λ and an egeinvector $\vec{x} \in \mathbb{R}^n - {\vec{0}}$ are such that

$$A\vec{x} = \lambda\vec{x}$$

Def. B.12 Symmetric Matrix A square matrix $A \in \mathbb{R}^n \times \mathbb{R}^n$ is symmetric iff $A_{ij} = A_{ji}$ for $i \neq j$ i = 1, ..., mand j = 1, ..., n, i.e. iff A = A'.

Def. B.13 Positive (Semi-) definite Matrix A square matrix $A \in \mathbb{R}^n \times \mathbb{R}^n$ is said to be positive (semi-) definite if its eigenvalues are all positive (non-negative).

What makes a function a kernel function? (3)

Proposition 2.27 (Mercer's conditions) Let X be a finite input space with $K(\vec{x}, \vec{z})$ a symmetric function on X. Then $K(\vec{x}, \vec{z})$ is a kernel function if and only if the matrix

 $k(\vec{x}, \vec{z}) = \underline{\phi}(\vec{x}) \cdot \underline{\phi}(\vec{z})$

is positive semi-definite (has non-negative eigenvalues).

- IDEA: If the Gram matrix is positive semi-definite then the mapping φ, such that F is an inner-product space whose scalar product corresponds to the kernel k(.,.), exists
- In F the separability should be easier

Feature Spaces and Kernels

- An example of Kernel
 - The Polynomial kernel

If d=2 and
$$k(x, y) = (x \cdot y)^d$$

 $x, y \in \mathbb{R}^2$

$$(\boldsymbol{x} \cdot \boldsymbol{y})^2 = \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right)^2 = \left(\begin{bmatrix} x_1^2 \\ \sqrt{2}x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1 y_2 \\ y_2^2 \end{bmatrix} \right)$$
$$= (\varphi(\boldsymbol{x}) \cdot \varphi(\boldsymbol{y})) = k(\boldsymbol{x}, \boldsymbol{y})$$

Polynomial kernel

https://www.youtube.com/watch?v=3liCbRZPrZA

18

SVM with polynomial kernel visualization

Exit full screen (f)

\$

CC

╬

19

L)

Polynomial Kernel (*n* dimensions)

General Polynomial Kernel (*n* dimensions)

$$(\vec{x} \cdot \vec{z} + c)^2 = \left(\sum_{i=1}^n x_i z_i + c\right)^2 = \left(\sum_{i=1}^n x_i z_i + c\right) \left(\sum_{j=1}^n x_i z_i + c\right) =$$
$$= \sum_{i=1}^n \sum_{j=1}^n x_i x_j z_i z_j + 2c \sum_{i=1}^n x_i z_i + c^2 =$$
$$= \sum_{i,j \in \{1,..,n\}} (x_i x_j) (z_i z_j) + \sum_{i=1}^n \left(\sqrt{2c} x_i\right) \left(\sqrt{2c} z_i\right) + c^2$$

Polynomial kernel and the conjunction of features

• The initial vectors can be mapped into a higher dimensional space (*c*=1) $\Phi(\langle x_1, x_2 \rangle) \rightarrow (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$

22

More expressive, as (x₁x₂) encodes original feature pairs, e.g. *stock+market* vs. *downtown+market* are contributing (when occurring) togheter
We can smartly compute the scalar product as

$$\Phi(\vec{x}) \times \Phi(\vec{z}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1) \times (z_1^2, z_2^2, \sqrt{2}z_1z_2, \sqrt{2}z_1, \sqrt{2}z_2, 1) =$$

= $x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2 + 2x_1 z_1 + 2x_2 z_2 + 1 =$
= $(x_1 z_1 + x_2 z_2 + 1)^2 = (\vec{x} \times \vec{z} + 1)^2 = K_{p2}(\vec{x}, \vec{z})$

The Architecture of an SVM

- It is a non linear classifier (based on a kernel)
- Decision function:

estimation

$$f(x) = \operatorname{sgn}(\sum_{i=1}^{l} v_i(\phi(x) \cdot \phi(x_i)) + b)$$

$$= \operatorname{sgn}(\sum_{i=1}^{l} v_i k(x, x_i) + b)$$

$$\phi(x_i) \text{ substitutes every}$$

$$training \text{ instamce } x_i$$

$$v_i = \alpha_i y_i$$

$$v_i \text{ are the solutions}$$

$$of \text{ the optimization problem}$$

The mapping function is never
computed, but is implict in the kernel

Esempi di Funzioni Kernel

• Lineare:
$$k(\vec{x}_i, \vec{x}_j) = \vec{x}_i \cdot \vec{x}_j$$

• Polinomiale potenza di p: $k(\vec{x}_i, \vec{x}_j) = (1 + \vec{x}_i \cdot \vec{x}_j)^p$

• Gaussiana (radial-basis function network): $k(\vec{x}_i, \vec{x}_j) = e^{\frac{\|\vec{x}_i - \vec{x}_j\|^2}{2\sigma^2}}$

Percettrone a due stadi:

$$k(\vec{x}_i, \vec{x}_j) = \tanh(\beta_1 + \beta_0 \vec{x}_i \cdot \vec{x}_j)^p$$

String Kernel

- Given two strings, the number of matches between their substrings is computed
- E.g. Bank and Rank
 - B, a, n, k, Ba, Ban, Bank, an, ank, nk
 - R, a, n, k, Ra, Ran, Rank, an, ank, nk
- String kernel over sentences and texts
- Huge space but there are efficient algorithms
 - Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). "*Text classification using string kernels*". Journal of Machine Learning Research: 419–444.

String kernel

- A function that give two strings s and t is able to compute a real number k(s,t) such that
 - two vectors exist \vec{s} and \vec{t}
 - \vec{s} and \vec{t} are unique for s and t
 - (the vectors represents strings by embedding their crucial properties!!)
 - $k(s,t) = \vec{s} \times \vec{t}$
- We will see how vectors \vec{s} and \vec{t} are defined in \mathbb{R}^{∞} , as the numer of strings of arbitrary length over an alphabet is infinite
- IDEA: Define a space whereas each substring is a dimension

Kernel tra Bank e Rank

B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the substrings of *Bank*.

R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the substrings of *Rank*.

 $\phi(\text{Bank}) = (\lambda , 0, \lambda, \lambda, \lambda, \lambda, \lambda^2, \lambda^2, \lambda^3, 0, \lambda^4, 0, \lambda^2, \lambda^3, \lambda^3, \dots \\ \phi(\text{Rank}) = (0, \lambda, \lambda, \lambda, \lambda, \lambda, 0, 0, 0, \lambda^3, 0, \lambda^4, \lambda^2, \lambda^3, \lambda^3, \dots \\ B, R, a, n, k, Ba, Ra, Ban, Ran, Bank, Rank, an, ank, ak \dots$

Common substrings:

a, n, k, an, ank, nk, ak

Notice how these are the same subsequences as between

Schrianak and Rank

Formally ...

Sottosequenza di indici ordinati e
non contigui di
$$(I, ..., |s|)$$

 $\vec{I} = (i_1, ..., i_{|u|})$
 $u = s[\vec{I}]$, substring of s defined by \vec{I}
 $\phi_u(s) = \sum_{\vec{I}:u=s[\vec{I}]} \lambda^{l(\vec{I})}$, con $l(\vec{I}) = i_{|u|} - i_1 + 1$
 $K(s,t) = \sum_{u \in \Sigma^*} \phi_u(s) \cdot \phi_u(t) = \sum_{u \in \Sigma^*} \sum_{\vec{I}:u=s[\vec{I}]} \lambda^{l(\vec{I})} \sum_{\vec{J}:u=t[\vec{J}]} \lambda^{l(\vec{J})} =$
 $= \sum_{u \in \Sigma^*} \sum_{\vec{I}:u=s[\vec{I}]} \sum_{\vec{J}:u=t[\vec{J}]} \lambda^{l(\vec{I})+l(\vec{J})}$, con $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$

An example of string kernel computation

- $\phi_{a}(\operatorname{Bank}) = \phi_{a}(\operatorname{Rank}) = \lambda^{(i_{1}-i_{1}+1)} = \lambda^{(2-2+1)} = \lambda$,
- $\phi_n(\operatorname{Bank}) = \phi_n(\operatorname{Rank}) = \lambda^{(i_1 i_1 + 1)} = \lambda^{(3 3 + 1)} = \lambda$,
- $\phi_k(\text{Bank}) = \phi_k(\text{Rank}) = \lambda^{(i_1-i_1+1)} = \lambda^{(4-4+1)} = \lambda$,

-
$$\phi_{an}(Bank) = \phi_{an}(Rank) = \lambda^{(i_1 - i_2 + 1)} = \lambda^{(3-2+1)} = \lambda^2$$
,

- $\phi_{\mathrm{ank}}(\mathrm{Bank}) = \phi_{\mathrm{ank}}(\mathrm{Rank}) = \lambda^{(i_1 - i_3 + 1)} = \lambda^{(4-2+1)} = \lambda^3$,

$$\phi_{\rm nk}({\rm Bank}) = \phi_{\rm nk}({\rm Rank}) = \lambda^{(i_1 - i_2 + 1)} = \lambda^{(4 - 3 + 1)} = \lambda^2,$$

$$\phi_{\mathsf{ak}}(\mathsf{Bank}) = \phi_{\mathsf{ak}}(\mathsf{Rank}) = \lambda^{(i_1 - i_2 + 1)} = \lambda^{(4-2+1)} = \lambda^3.$$

It follows that $K(\text{Bank}, \text{Rank}) = (\lambda, \lambda, \lambda, \lambda^2, \lambda^3, \lambda^2, \lambda^3) \cdot (\lambda, \lambda, \lambda, \lambda^2, \lambda^3, \lambda^2, \lambda^3) = 3\lambda^2 + 2\lambda^4 + 2\lambda^6.$

Kernel Combination and normalization

- Kernels can be easily combined so that the evidences captured by several kernel functions can contribute to the learning algorithm
 - The sum of kernels is a valid kernel
 - The product of kernels is a valid kernel
- We can also Normalize the implicit space operating directly only the kernel function

$$\begin{split} \hat{K}(s,t) &= \left\langle \hat{\phi}(s) \cdot \hat{\phi}(t) \right\rangle = \left\langle \frac{\phi(s)}{\|\phi(s)\|} \cdot \frac{\phi(t)}{\|\phi(t)\|} \right\rangle \\ &= \frac{1}{\|\phi(s)\| \|\phi(t)\|} \left\langle \phi(s) \cdot \phi(t) \right\rangle = \frac{K(s,t)}{\sqrt{K(s,s)K(t,t)}} \end{split}$$

Summary

- The dual form of the SVM optimization problem ONLY depends on the scalar product between training examples and NOT from their explicit vector representation (likewise the perceptron)
- This suggests to exploit this property in order to:
 - Define efficient functions able to compute the scalar product out from the original representation (i.e. from the input space)
 - Exploit more complex representations (i.e. more expressive feature spaces) in implicit way
- This corresponds to search the model in feature spaces able to:
 - Preserve the mathematical properties sufficient to guarantee convergence (i.e. the minimization of the expected error)
 - Support training and classification by a limited complexity (e.g. no need to build large dimensional representations of input instances)

Summary (2)

- In order for a function k(.,.) to be a valid kernel, its correspondin Gram matrix mast be positive semi-definite
- In practice, such property is verified empirically over the training datasets
- In this unit, the following kernel function have been introduced as they can be very effective in Web Mining problems:
 - Base kernels (for example, polynomial kernel polinomiali of degree 2)
 - Task dependent kernels that dipenden on the structura of a learning task:
 - String (Sequence) kernels
 - Tree kernels
- We will explore semantic kernels (e.g. latent semantic kernels) later in the course

References

- Kernel Methods for Pattern Analysis, John Shawe-Taylor & Nello Cristianini
 - Cambridge University Press, 2004
- Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz
- Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). "Text classification using string kernels". Journal of Machine Learning Research: 419–444.
- Roberto Basili, Marco Cammisa and Alessandro Moschitti, Effective use of wordnet semantics via kernel-based learning. In Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL 2005), Ann Arbor(MI), USA, 2005
- Building Semantic Kernels for Text Classification using Wikipedia, Pu Wang and Carlotta Domeniconi, Department of Computer Science, George Mason University