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Support Vector Machines
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• Support Vector Machines (SVMs) are a machine learning 

paradigm based on the statistical learning theory [Vapnik, 1995]

• No need to remember everything, just the discriminating instances (i.e. 

the support vectors, SV)

• The classifier corresponds to the linear combination of SVs
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Only the dot product is required
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Linear classifiers and separability

• In a R2 space, 3 point can always be separable by a linear classifier

• but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]

• One solution could be a more complex classifier

Risk of over-fitting

?



Linear classifiers and separability (2)

• … but things change when projecting instances in a higher 

dimension feature space through a function 

• IDEA: It is better to have a more complex feature space 

instead a more complex function (i.e. learning algorithm)



The kernel function

• In perceptrons and SVMs the learning algorithm only depends 

on the scalar product over pairs of example instance vectors

• Basically only the Gram-matrix is involved. In general, we call 

kernel the following function:

𝐾 Ԧ𝑥, Ԧ𝑧 =  Ԧ𝑥) ∙  ( Ԧ𝑧

• The kernel corresponds to a scalar product over the 

transformed of initial objects x and z

• If the mapping  corresponds to the identity then the kernel is 

equal to the standard scalar product.

• Notice that the training in most learning machines (such as the 

perceptron) makes use of instances only through the kernel
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First Advantage: 

making instances linearly separable
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• Two masses m1 and m2 , one is constrained

• A force fa is applied to the mass m1

• Instead of applying an analyitical law we want to experiment 

• The Features of individual experiments are masses  m1, m2 and the 

appropriate force  fa

• It is clear that the Newton law of gravity is involved:

• The task corresponds to determine if    f(m1, m2, r) < fa

An example: a mapping function
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An example: a mapping function (2)
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This  law cannot be expressed linearly. A change of space:

)ln,ln,ln,(ln),,,(),,,( 2121 rmmfzyxkrmmf aa =→

zyxcrmmCrmmf 2ln2lnlnln),,(ln 2121 −++=−++=

(1,1,-2,-1)(ln m1,ln m2,ln r, ln fa)+ ln C = 0, 

We can decide with no error if masses             get closer or not

holds as:

0lnln2lnlnln 21 =−+−− Crmmfa

The following hyperplane is the requested function h():

Ԧ𝑥 = 𝑥1, … , 𝑥𝑛 →  Ԧ𝑥) = (1 Ԧ𝑥 , … ,𝑘 ( Ԧ𝑥)

21,mm



Feature Spaces and Kernels
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• Feature Space
• The input space is mapped into a new 

space F with scalar product (called 

feature space) through a (non linear) 

trasformation 

• The kernel function 
• The evaluation require the computation 

of the scalar product over the 

trasformed vectors          but not the 

feature vectors themselves 

• The scalr product is computed by a 

specialized function called kernel

FRN →=
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Classification function: the dual form
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On the right form, instances only appear in the scalar 
product

The ony thing that is needed is the Gram matrix, 

i.e. the explicit computation of the scalar product over 
any pair of training instances 
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ℎ 𝑥 = 𝑠𝑔𝑛 𝑤 ∙ 𝑥 + 𝑏 = 𝑠𝑔𝑛(෍
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We can rewrite the decision function of a perceptron by 
taking into account a kernel:

… and during training the on-line adjustment steps become:

A kernelized perceptron

ℎ 𝑥 = 𝑠𝑔𝑛 𝑤 ∙ ( Ԧ𝑥) + 𝑏 = 𝑠𝑔𝑛(෍
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Kernels in Support Vector Machines 

• In Soft Margin SVMs we need to maximize :
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• By using kernel functions we rewrite the problem as:



What makes a function a kernel function?

Only such type of functions support implicit mappings such 

as
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Ԧ𝑥 = 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑛 →  Ԧ𝑥) = (1 Ԧ𝑥 , … ,𝑚 ( Ԧ𝑥) ∈ 𝑅𝑚



What makes a function a kernel function? (2)
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What makes a function a kernel function? (3)

• IDEA: If the Gram matrix is positive semi-definite then the 

mapping , such that F is an inner-product space whose 

scalar product corresponds to the kernel k(.,.), exists

• In F the separability should be easier
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Feature Spaces and Kernels

• An example of Kernel

• The Polynomial kernel

• If   d=2 and 
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Polynomial kernel 
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https://www.youtube.com/watch?v=3liCbRZPrZA
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Polynomial Kernel (n dimensions)
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General Polynomial Kernel (n dimensions)
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Polynomial kernel and 

the conjunction of features 
• The initial vectors can be mapped into a higher dimensional 

space (c=1)

• More expressive, as            encodes original feature pairs, e.g. 

stock+market vs. downtown+market

are contributing (when occurring) togheter

• We can smartly compute the scalar product as
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The Architecture of an SVM
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• It is a non linear classifier (based on a kernel)

• Decision function:
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Esempi di Funzioni Kernel

• Lineare: 

• Polinomiale potenza di p: 

•

• Gaussiana (radial-basis function network):

• Percettrone a due stadi: 
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String Kernel

• Given two strings, the number of matches between their 

substrings is computed

• E.g. Bank and Rank

• B, a, n, k, Ba, Ban, Bank, an, ank, nk

• R, a , n , k, Ra, Ran, Rank, an, ank, nk

• String kernel over sentences and texts

• Huge space but there are efficient algorithms

• Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; 

Watkins, Chris (2002). "Text classification using string kernels". Journal of 

Machine Learning Research: 419–444.
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String kernel

• A function that give two strings s and t is able to compute a real 

number k(s,t) such that 

• two vectors exist  Ԧ𝑠 and   Ԧ𝑡

• Ԧ𝑠 and Ԧ𝑡 are unique for s and t

• (the vectors represents strings by embedding their crucial properties!!)

• k(s,t) = Ԧ𝑠 × Ԧ𝑡

• We will see how vectors Ԧ𝑠 and Ԧ𝑡 are defined in ℝ∞, as the 

numer of strings of arbitrary length over an alphabet is infinite

• IDEA: Define a space whereas each substring is a dimension 
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Kernel tra Bank e Rank
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•Common substrings:
– a, n, k, an, ank, nk, ak

▪Notice how these are the same subsequences as between 
▪Schrianak and Rank

B , R, a, n , k, Ba, Ra, Ban, Ran, Bank, Rank, an, ank , ak ...

ϕ(Bank)= ( λ ,  0,   λ ,  λ ,  λ ,  λ2 ,   λ2,   λ3   ,   0   ,    λ4     ,    0     ,    λ2 ,    λ3  , λ3  , ...

ϕ(Rank)= ( 0  ,  λ,   λ ,  λ ,  λ ,  0   ,   0 ,   0   ,    λ3  ,    0     ,    λ4 ,    λ2 ,    λ3  ,   λ3  ,  …





Formally …
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,  con 1

,  con

, substring of s defined by I

Sottosequenza di indici ordinati e 
non contigui di (1, … |s|)



An example of string kernel computation
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Kernel Combination and normalization

• Kernels can be easily combined so that the evidences 

captured by several kernel functions can contribute to the 

learning algorithm

• The sum of kernels is a valid kernel

• The product of kernels is a valid kernel

• We can also Normalize the implicit space operating directly 

only the kernel function 



Summary

• The dual form of the SVM optimization problem ONLY depends 

on the scalar product between training examples and NOT from 

their explicit vector representation (likewise the perceptron)

• This suggests to exploit this property in order to:

• Define efficient functions able to compute the scalar product out from the 

original representation (i.e. from the input space)

• Exploit more complex representations (i.e. more expressive feature 

spaces) in implicit way

• This corresponds to search the model in feature spaces able to:

• Preserve the mathematical properties sufficient to guarantee convergence 

(i.e. the minimization of the expected error)

• Support training and classification by a limited complexity (e.g. no need to 

build large dimensional representations of input instances)
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Summary (2)

• In order for a function k(.,.) to be a valid kernel, its 

correspondin Gram matrix mast be positive semi-definite

• In practice, such property is verified empirically over the 

training datasets

• In this unit, the following kernel funcrion have been introduced 

as they can be very effective in Web Mining problems: 

• Base kernels (for example, polynomial kernel polinomiali of degree 2)

• Task dependent kernels that dipenden on the structura of a learning task:

• String (Sequence) kernels

• Tree kernels

• We will explore semantic kernels (e.g. latent semantic kernels) 

later in the course
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