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The Sparse Data Problem

There is a major problem with the maximum likelihood estimation (MLE)
process for training the parameters of an N-gram model.
But because any corpus is limited, some perfectly acceptable English word
sequences are bound to be missing from it.

Under Markov assumption

P(W) = P(w1) ·P(w2,w1) · . . . ·P(wi+1,wi)

But what if we have never before seen wiwi+1 in string W?
The MLE estimate P(wi+1|wi) is:

C(wi,wi+1)
C(wi)

=
0

C(wi)
= 0 So P(W) = 0

Solution
Develop a model which decreases probability of seen events and allows the
occurrence of previously unseen n-grams (a.k.a. Discounting methods)
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Add-One Smooting (Laplace Estimator)

Estimate probabilities P assuming that each unseen word type actually
occurred once.

Then if we have N events and V possible words instead of

P(w) =
occ(w)

N

we estimate:

Paddone(w) =
occ(w)+1

N +V
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Add-One Smooting (Laplace Estimator)

What about bigram?

MLE:

P(wi+1|wi) =
C(wi,wi+1)

C(wi)

Laplace Smooting:

P∗(wi+1|wi) =
C(wi,wi+1)+1

C(wi)+V
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Example of bigram count

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Total word occurrence:

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
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Example of bigram probabilities

i want to eat chinese food lunch spend
i .002 .33 0 .0036 0 0 0 .00079
want .0022 0 .66 .0011 .0065 .0065 .0054 .0011
to .00083 0 .0017 .28 .00083 0 .0025 .087
eat 0 0 .0027 0 .021 .0027 .056 0
chinese .0063 0 0 0 0 .52 .0063 0
food .014 0 .014 0 .00092 .0037 0 0
lunch .0059 0 0 0 0 .0029 0 0
spend .0036 0 .0036 0 0 0 0 0
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Example of bigram count - Laplace smooting

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
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Example of bigram probabilities - Laplace smooting

i want to eat chinese food lunch spend
i .0015 .21 .00025 .0025 .00025 .00025 .00025 .00075
want .0013 .00042 .26 .00084 .0029 .0029 .0025 .00084
to .00078 .00026 .0013 .18 .00078 .00026 .0018 .055
eat .00046 .00046 .0014 .00046 .0078 .0014 .02 .00046
chinese .0012 .00062 .00062 .00062 .00062 .052 .0012 .00062
food .0063 .00039 .0063 .00039 .00079 .002 .00039 .00039
lunch .0017 .00056 .00056 .00056 .00056 .0011 .00056 .00056
spend .0012 .00058 .0012 .00058 .00058 .00058 .00058 .00058
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Consideration

Pro:
Very simple technique

Cons:
Probability of frequent n-grams is underestimated
Probability of rare (or unseen) n-grams is overestimated
Therefore, too much probability mass is shifted towards unseen n-grams
All unseen n-grams are smoothed in the same way

Using a smaller added-count improves things but only some
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Good-Turing smoothing

The Good-Turing formula provides another way to smooth probabilities.

Basic idea:
use the count of things you’ve seen once to help estimate the count of things
you’ve never seen. Word or N -gram (or any event) that occurs once is called
a singleton. In order to compute the frequency of singletons, we’ll need to
compute Nc , the number of event that occur c times. (Assumes that all item
are binomially distributed.)

Let Nr the number of items that occur r times.
Nr can be used to provide a better estimate of r, given the binomial
distribution.
the adjusted frequency r∗ is than:

r∗ = (r +1)
Nr+1

Nr
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Good-Turing smoothing

bigram

In case of bigram events Good-Turing assumes we know N0, the number of
bigrams we haven’t seen.

We know this because given a vocabulary size of
V , the total number of bigrams is V2, hence N0 is V2 minus all the bigrams
we have seen.

revisited Good-Turing

In practice, the general discounted estimate c∗ is not used for all counts c.
First, large counts (where c > k for some threshold k) are assumed to be
reliable. Katz (1987) suggests setting k at 5.
Thus we define:

c∗ = c for c > k

c∗ =
(c+1)Nc+1

Nc
− c (k+1)Nk+1

N1

1− (k+1)Nk+1
N1
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Good-Turing smoothing - Example

AP Newswire Berkeley Restaurant
c (MLE) Nc c (GT) c (MLE) Nc c (GT)
0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Bigram frequencies and Good-Turing re-estimations from the 22 million AP
bigrams from Church and Gale (1991), and from the Berkeley Restaurant

corpus of 9332 sentences
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Backoff - Key idea

Why are we treating all novel events as the same?

p(zygote | see the) vs. p(baby | see the)
Suppose both trigrams have zero count

baby beats zygote as a unigram
the baby beats the zygote as a bigram
Shouldn’t see the baby beat see the zygote?
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Backoff smoothing

Key idea

If a n-gram wi−n, . . .wi is not in the training data, combine different order
N-gram by linearly interpolating all the models.

In trigram

Estimate the trigram probability as P(wi|wi−1wi−2) by mixing together the
unigram, bigram, and trigram probabilities, each weighted by a λ :

P̂(wi|wi−1wi−2) = λ1P(wi|wi−1wi−2)+λ2P(wi|wi−1)+λ3(wi)

such that the λ s sum to 1:
∑

i
λi = 1

λ is the confidence weight for the longer n-gram.
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Backoff smoothing

How estimate λ?

In general λ s are learned from a held-out corpus.
We can do this choosing the λ values which maximize the likelihood of
the held-out corpus.
One way is to use the Expectation Maximization (EM) algorithm.
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Backoff smoothing - Katz backoff

Katz backoff variant

It is a version of backoff algorithm that uses Good-Turing discounting as
well.

In this model, if the N-gram we need has zero counts, we approximate it by
baking off to the (N−1)-gram. We continue baking off until we reach a
history that has some counts:

Pkatz(wi|wi−1
i−(N−1))=

{
P∗(wi|wi−1

i−(N−1)) if C(wi−1
i−(N−1)) > 0

α(wi−1
i−(N−1)1)Pkatz(wi|wi−1

i−(N−2)) otherwise

trigram version of Katz backoff

Pkatz(wi|wi−2wi−1) =

 P∗(wi|wi−2wi−1) if C(wi−2wi−1wi) > 0
α(wi−1wi)P∗(wi|wi−1) else if C(wi−1wi) > 0
α(wi)P∗(wi) otherwise
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Katz backoff variant

It is a version of backoff algorithm that uses Good-Turing discounting as
well.
In this model, if the N-gram we need has zero counts, we approximate it by
baking off to the (N−1)-gram. We continue baking off until we reach a
history that has some counts:

Pkatz(wi|wi−1
i−(N−1))=

{
P∗(wi|wi−1

i−(N−1)) if C(wi−1
i−(N−1)) > 0

α(wi−1
i−(N−1)1)Pkatz(wi|wi−1

i−(N−2)) otherwise

trigram version of Katz backoff

Pkatz(wi|wi−2wi−1) =

 P∗(wi|wi−2wi−1) if C(wi−2wi−1wi) > 0
α(wi−1wi)P∗(wi|wi−1) else if C(wi−1wi) > 0
α(wi)P∗(wi) otherwise
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Katz backoff

Consideration
Katz backoff gives us a better way to distribute the probability mass
among unseen trigram events, by relying on information from unigram
and bigram

We use discounting to tell us how much total probability mass to set
aside for all the events we haven’t seen, and backoff to tell us how to
distribute this probability.
Why do we need α values? Because without α weights, the result of
equation would not be a true probability!

∑
i

P(wi|wjwk) = 1
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