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 Language Processing: between knowledge and structures

 Statistical Learning Theory and SVMs

 Kernel Machines
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 Learning under knowledge constraints

 Embedding Knowledge in NNs
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LANGUAGE PROCESSING … A PROLOGUE



SEMANTICS, OPEN DATA AND NATURAL LANGUAGE

 Web contents, 
characterized  by 
rich multimedia 
information, are 
mostly opaque from 
a semantic 
standpoint



Who is
Hu Jintao?

INFORMATION, WEB AND NATURAL LANGUAGES





CONTENT SEMANTICS AND NATURAL LANGUAGE

 Human languages are the main carrier of the information involved in knowledge 
retrieval, comunication and exchange as it is associated to the open Web contents

 Words and language structures provide all we need to express concepts, activities, 
events, abstractions and conceptual relations we usually share through data

 “Language is parasitic to knowledge representation languages but the viceversa is 
not true” (Wilks, 2001)

 From Learning to Read to Knowledge Distillation and Management we perform a(n 
integrated pool of) semantic interpretation task(s) whose automation imply a crucial 
interest for Data Science.



NATURAL LANGUAGE & AMBIGUITY



NATURAL LANGUAGE & AMBIGUITY

 "Dogs must be carried on this escalator" 

can be interpreted in a number of ways:

 “All dogs should have a chance to go on this wonderful escalator ride”

 “This escalator is for dog-holders only”

 “You can't carry your pet on the other escalators”

 “When riding with a pet, carry it”



SYNTAX: GRAMMARS, PARSING & AMBIGUITY

 The parser search space is huge as for the effect
of several forms of ambiguity that interacts in a  
combinatorial way
 e.g. La vecchia porta la sbarra,      

 or   Buffalo buffalo Buffalo buffalo
buffalo buffalo Buffalo buffalo

 Notice the strong relationship with semantics
 Most of the ambiguities cannot be solved jutst at syntactic level

 Lexical information (e.g. word senses) are crucial:

 To operate in a market viz.    To operate a body part

 Operare in un mercato  Operare un paziente

Bison from Buffalo, New York who are intimidated by other 
bison in their community also happen to intimidate other bison 
in their community



(   ((                                 )          )        
( ) )



SEMANTICS

 What is the meaning of the sentence

John saw Kim?

 Desirable Properties:

 It should be derivable as  a function of the individual constituents, i.e. the 
meanings of costituents such as Kim, John and  see

 Independent from syntactic phenomena, e.g. Kim was seen by John is a 
paraphrasis with the same meaning

 It must be directy used to trigger some inferences:

 Who was seen by John?  Kim!

 John saw Kim. He started running to her.



WORD SENSES: THE WORDNET MODEL



FRAMENET: LINKING SYNTAX TO SEMANTICS

S

N

NP

Det N

VP

VPolice

for

arrested

the man

PP

IN N

shoplifting

Authority

Suspect Offense

Arrest

• Police arrested the man for shoplifting



FRAMENET LABELING: THE RELATIONAL VISION

Word Predicate Semantic Role1 Semantic Role2

Police - AUTHORITY -

arrested Target1 Arrest -

the - SUSPECT

man - SUSPECT

for - OFFENSE

shoplifting Target2 OFFENSE Theft

marchandise - OFFENSE GOODS



FROM STATISTICAL LEARNING THEORY TO SVMS



LEARNİNG A CLASS FROM EXAMPLES

 Class C of a “family car”

 Prediction: Is car x a “family car”?

 Knowledge extraction: What do people expect from a family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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CLASS C
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In general we do not know C(x).

   2121   power engine   AND  price eepp 



HYPOTHESİS CLASS H
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S, G, AND THE VERSİON SPACE
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most specific hypothesis, S

most general hypothesis, G

h  H, between S and G is consistent
and make up the version space

(Mitchell, 1997)



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, 
will probably be approximately correct?

 We want to be confident (above a level) that 

 … the error probability is bounded by some value

 A  concept  class  C is  called  PAC-learnable if  there  exists  a  PAC-learning  algorithm  such that,  
for  any ε>0  and δ>0,  there  exists  a fixed  sample  size  such  that,  for  any  concept  c C and  
for  any  probability  distribution  on  X,  the  learning  algorithm  produces  a  probably-
approximately-correct   hypothesis h

 a  (PAC) probably-approximately-correct hypothesis h is one that  has error at most  ε with  
probability  at least   1-δ.
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1-δ

ε



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 In PAC learning, given a class C and examples drawn from some unknown but fixed 
distribution p(x), we want to find the number of examples N, such that with probability at 
least 1-δ, h has error at most ε ? (Blumer et al., 1989)

 P( CDh   )  1-d

 where CDh is (area of the) “the region of difference between C and h”,  and δ>0, ε>0.
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PAC LEARNİNG How many training examples m should we 
have, such that with probability at least 1 - δ, h

has error at most ε ? (Blumer et al., 1989)

LECTURE NOTES FOR E ALPAYDIN 2004 INTRODUCTİON TO MACHİNE LEARNİNG © THE 
MIT PRESS (V1.1)

25

• Let prob. of a + ex. in each strip be at most ε/4

• Pr that a random ex. misses a strip: 1- ε/4

• Pr that m random instances miss a strip: 
(1 - ε/4)m

• Pr that m random instances instances miss 4 strips: 
4(1 - ε/4)m

• We want 1-4(1 - ε/4)m ≥ 1-δ or 4(1 - ε/4)m ≤ δ 

• Using 1-x ≤ e-x an even stronger condition is: 
[(1-ε/4) ≤ exp(-ε/4) so (1-ε/4) m≤exp(-ε/4) m = exp(-εm/4)]    

4e –εm/4≤ δ OR

• Divide by 4, take ln... and show that m ≥ (4/ε)ln(4/δ) 



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

How many training examples m should we have, such that with probability at least 1 - δ, our
hypothesis h has error at most ε ? (Blumer et al., 1989)

m ≥ (4/ε)ln(4/δ)

 m increases slowly with 1/ε and 1/δ

 Say ε=1% with confidence 95%, pick m  1752

 Say ε=10% with confidence 95%, pick m  175
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MODEL COMPLEXİTY VS. NOISE

 Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (lower variance – Occam’s 
razor)
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MULTIPLE CLASSES, Cİ İ=1,...,K
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VC (VAPNİK-CHERVONENKİS) DİMENSİON

 N points can be labeled in 2N ways as +/–

 H shatters N if there exists a set of N points such that hH is consistent with all of these possible labels: 

 Denoted as: VC(H ) = N

 Measures the capacity of H

 Any learning problem definable by N examples can be learned with no error by a hypothesis drawn 
from H
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What is the VC dimension of axis-aligned rectangles?



FORMAL DEFİNİTİON
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VC (VAPNİK-CHERVONENKİS) DİMENSİON

 H shatters N if there 

exists N points and hH such that 

h is consistent for any labelings 

of those N points.

 VC(axis aligned rectangles) = 4
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VC (VAPNİK-CHERVONENKİS) DİMENSİON

 What does this say about using rectangles as our hypothesis class?

 VC dimension is pessimistic: in general we do not need to worry about all possible 
labelings

 It is important to remember that one can choose the arrangement of points in the space, 
but then the hypothesis must be consistent with all possible labelings of those fixed 
points.
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EXAMPLES
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f x

a

yest

denotes +1

denotes -1

f(x,w) = sign(x.w)



EXAMPLES
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f x

a

yest

f(x,w,b) = sign(x.w+b)

denotes +1

denotes -1



SHATTERING

 Question: Can the following f shatter the following points?
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f(x,w) = sign(x.w)

 Answer: Yes. There are four possible training set types to consider:

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)



VC DIM OF LINEAR CLASSIFIERS IN M-DIMENSIONS

If input space is m-dimensional and if f is sign(w.x-b), what is the VC-
dimension?

h=m+1

 Lines in 2D can shatter 3 points

 Planes in 3D space can shatter 4 points

 ...
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EXAMPLES
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f x

a

yest

f(x,b) = sign(x.x – b)
denotes +1

denotes -1

rb1



Diapositiva 38

rb1 roberto basili; 20/03/2023



SHATTERING

 Question: Can the following f shatter the following points?
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f(x,b) = sign(x.x-b)

Answer: Yes. Hence, the VC dimension of circles on the origin is at least 2.



MODEL SELECTİON & GENERALİZATİON

 Learning is an ill-posed problem; data is not sufficient to find a unique solution

 The need for inductive bias, assumptions about H

 Generalization: How well a model performs on new data

 Different machines have different amounts of “power”.

Tradeoff between:
 More power: Can model more complex classifiers but might overfit.

 Less power: Not going to overfit, but restricted in what it can model.

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f
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TRİPLE TRADE-OFF

 There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of H, c(H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N, E

 As c(H) , first E and then E
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WHY CARE ABOUT COMPLEXITY?

 A quantitative measure of complexity is useful to determine the relationship between the training 
error (that we can observe during training) and the test error (which we want to minimize) 
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COMPLEXİTY

 “Complexity” is a measure of a family of classifiers, not of any specific (fixed) classifier

 There are many possible measures for complexity

 degrees of freedom (e.g. number of parameters in polinomials)

 description length

 Vapnik-Chervonenkis (VC) dimension

 etc.
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EXPECTED AND EMPİRİCAL ERROR
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LEARNING AND THE VC DIMENSION
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MODEL SELECTION
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VC DIMENSION AND STRUCTURAL RISK MINIMIZATION
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STRUCTURAL RISK MINIMIZATION
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SUMMARY: A LEARNING MACHINE

 A learning machine f takes an input x and transforms it, 
somehow using factors (as weights) a, into a predicted 
output yest = +/- 1
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f x

a

yest

a is some vector of 
adjustable parameters



VC-DIMENSION AS MEASURE OF COMPLEXİTY
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USING VC-DIMENSIONALITY

 People have worked hard to find VC-dimension for ...
 Decision Trees

 Perceptrons

 Neural Nets

 Decision Lists

 Support Vector Machines

 …and many many more

 All with the goals of
 Understanding which learning machines are more or less powerful under which circumstances

 Using Structural Risk Minimization for to choose the best learning machine



ALTERNATIVES TO VC-DIM-BASED MODEL SELECTION

Cross Validation

 To estimate generalization error, we need data unseen during 
training. We split the data as:
 Training set (50%) M1 M2 train(M2) < train(M1)

 Validation set (25%) test(M1, Vs) = P1     test(M2, VS) = P2  P2>P1

 Test (publication) set (25%)

 Resampling when there is few data

 N-fold cross-validation: N-2 fold for training, 1 fold as validation set and 1 
fold for testing (N*(N-1) tests) 
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ALTERNATIVES TO VC-DIM-BASED MODEL SELECTION

 What could we do instead of the scheme below?
Cross-validation
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i fi TRAINER
R

10-FOLD-CV-ERR Choice

1 f1

2 f2

3 f3 
4 f4

5 f5

6 f6



EXTRA COMMENTS

 An excellent tutorial on VC-dimension and Support Vector Machines

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge 
Discovery, 2(2):955-974, 1998. 
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WHAT YOU SHOULD KNOW

 Definition of PAC learning

 The definition of a learning machine: f(x,a) 

 The definition of Shattering

 Be able to work through simple examples of shattering

 The definition of VC-dimension

 Be able to work through simple examples of VC-dimension

 Structural Risk Minimization for model selection

 Awareness of other model selection methods
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