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A survey of the Baum-Welch method

The learning Problem

Given a HMM A = (E, T, r) and an observation history
Z=1(z1,22,---,2), and anew HMM A’ = (E',T', ') that
explains the observations at least as well, or possibly better, i.e.,
such that Pr[Z|A"] > Pr[Z|A] .

@ Ideally, we would like to find the model that maximizes
Pr[Z|A]; however, this is in general an intractable problem.

o We will be satisfied with an algorithm that converges to
local maxima of such probability.

@ Notice that in order for learning to be effective, we need
lots of data, i.e., many, long observation histories!
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The Baum-Welch estimation as a EM process

Baum-Welch re-estimation: the idea

Baum-Welch reestimatio is also called the Forward-Backward
algorithm It is special case of the Expectation Maximization
(EM) algorithm

@ Start with initial probability estimates

© Compute expectations of how often each
transition/emission is used

© Re-estimate the probabilities based on those expectations

...and repeat until convergence
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The forward backward probabilities
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Baum-Welch: Forward and Backward
probabilities

e Forward probabilities (DEF):
0y (s) = Prloy,....,0k,x; = s|A]

Recursively

C+1(q) = Z o (s)asgbg(or1)  (with oy (q)) = )
seS
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Baum-Welch: Forward and Backward
probabilities

e Forward probabilities (DEF):
0y (s) = Prloy,....,0k,x; = s|A]

Recurswely

Or1(q) = Y 0(s)asgbg(or1)  (with ai(q)) = m)
seS

e Backward probabilities (DEF):

B(s) = Prlog, .ol = 5,A]

Recursively

Z asq 0k+l ﬁk—i—l( )

qes
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Baum-Welch: Expectation of (state) counts

e Let us define: % (s) = Pr[Xy = s|Z, 7]
@ We already know how to compute this, e.g., using
smoothing:
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Baum-Welch: Expectation of (state) counts
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Baum-Welch: Expectation of (state) counts

e Let us define: % (s) = Pr[Xy = s|Z, 7]
@ We already know how to compute this, e.g., using

smoothing:

. $)Bi(s) _ ogls)Bi(s
Ye(s) = gf[(xi&,(z)] = g];es a/fgq))

e New concept: how many times is the state trajectory
expected to transition from state s?
e _ i1
E[# of transitions from s] =} %(s)
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Baum-Welch: Expectation of (transitions) counts

@ In much the same vein, let us define
&k(q,5) = Pr(Xy = q,Xk41 = 5|Z,2] (i.e., §(q,s) is the
probability of being at state g at time k, and at state s at
time k + 1, given the observations and the current HMM
model)
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Baum-Welch: Expectation of (transitions) counts

@ In much the same vein, let us define
&k(q,5) = Pr(Xy = q,Xk41 = 5|Z,2] (i.e., §(q,s) is the
probability of being at state g at time k, and at state s at
time k + 1, given the observations and the current HMM
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e We have that &(q,s) = Mkt (q)Ty,sEs 0., Br+1(s) where
Nk is a normalization factor, such that Y, ;& (q,s) = 1.
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Baum-Welch: Expectation of (transitions) counts

@ In much the same vein, let us define
&k(q,5) = Pr(Xy = q,Xk41 = 5|Z,2] (i.e., §(q,s) is the
probability of being at state g at time k, and at state s at
time k + 1, given the observations and the current HMM
model)

e We have that &(q,s) = Mkt (q)Ty,sEs 0., Br+1(s) where
Nk is a normalization factor, such that Y, ;& (q,s) = 1.

e New concept: how many times is the state trajectory
expected to transition from state g to state s?
E[# of transitions from ¢ to s] = Y_! &(g,5)
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Baum-Welch algorithm

@ Based on the probability estimates and expectations
computed so far, using the original HMM model
A = (E,T,T), we can construct a new model A = (E, T, #)
(notice that the two models share the states and
observations):

@ The new initial condition distribution is the one obtained
by smoothing: &, = 7 (s)
@ The entries of the new transition matrix can be obtained as

follows:
7o E# of transitions from g to s] ):;(;11 Si(g5)
45 = E[# of transitions from g] Z;(;l] %(q)

=P(q— s|q)
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Baum-Welch algorithm

@ The entries of the new emission matrix can be obtained as

follows: [ |
2 » E# of times in state s, when the observation was o]
Es7o(— bs (0)) - E[# of times in state s] -

_ Y n(9)1(z=0) _ p(0|s)

o 22: 1 Y (s)
@ In this way, new estimated version for E ) T and # are
available:

N

They correspond to a new model A = (E,7, #)
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Baum-Welch as an EM iterative model refinement

E-step (expectaton)

Yi—1 % (i) = expected number of transitions involving g;
Z,’;ll &k (i,j) = expected number of transitions from g; to g;

M-step (Likelyhood Maximimization)

We can re-estimate parameters by ratio of expected counts
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Baum-Welch: an example on the soft drink

0.3
Cola Iced Tea
Pref. Pref.

machine

0.7 0.5

start

Figure 9.2 The crazy soft drink machine, showing the states of the machine
and the state transition probabilities.

Output probability given From state

cola iced tea lemonade
(ice_t) (lem)
CP| 0.6 0.1 0.3
IP | 0.1 0.7 0.2
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Baum-Welch re-estimation on the soft drink

machine

training on the observation sequence (lem, icc_t, cola)
values for p; (i, j):
Time (and j)
1 2 3
cP IH y1 CP IP| y» CP P |ys
iCcCP 03 07 1.0 0.28 0.02 | 0.3 0.616 0.264 |0.88
1P 0.0 0.0 0.0 0.6 0.1 0.7 0.06 0.06 0.12

and so the parameters will be reestimated as follows:

Original Reestimated
iI CP 1.0 1.0
P 0.0 0.0
CP P Cp P
A CP 07 03 0.5486 0.4514
IP 05 05 0.8049 0.1951
cola ice_t lem cola ice_t lem
B CpP 0.6 0.1 0.3 0.4037 0.1376 0.4587

P 0.1 0.7 0.2 0.1363 0.8537 0.0
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Baum-Welch algorithm: convergence

@ It can be shown [Baum et al., 1970] that the new model p)
is such that
o Pr[Z|A] > Pr|Z|A], as desired.
o Pr|Z|A] = Pr[Z|A] only if A is a critical point of the
likelihood function

f(A) = Pr{Z|A]
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Other Approaches to POS tagging

@ Church (1988):

[T, P(wilt;)P(t;_2|ti_1, ;) (backward)
Estimation from tagged corpus (Brown)
No HMM training

Performances: > 95%

@ De Rose (1988):

?:1 P(W,‘ ’t,‘)P(ti_l |Z‘,‘) (forward)
Estimation from tagged corpus (Brown)
No HMM training Performance: 95%

@ Merialdo et al.,(1992), ML estimation vs. Viterbi training
Propose an incremental approach: small tagging and then
Viterbi training

° H?:l P(W,"ti)P(tH_l |ti, W,‘) 777
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HMM decoding vs. more complex sequence
labeling tasks

e wl, w2, .. wn

e pl, p2, ., pn POS TAGGING: piec {NN,JJ, VB, ..}

e pl, 2, .., pn KEYWORD SPOTTING: pice {0, 1}

« pl, P2, ., pn BRACKETING: pie {O(UT), INNER), B(EGIN)}

* Applications of bracketing: Named Entity Recognition

* |l, presidente, della, Repubblica, vaggio, verso Milano

. B, I, I, I, o, 0, B

« (ll, presidente, della, Repubblica), vaggio, verso (Milano)

¢ ... and Classification

el presidente, della, Repubblica, vaggio, verso, Milano
* B-HUM, I, I, I, o, 0, B-LOC

(I, presidente, della, Repubblica),,,,, vaggio, verso (Milano), ¢
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HMM decoding vs. more complex sequence
labeling tasks (2)

Multiword Expressions VTN
( —
he was willing to budge a little on

OO0 O O B b i |

the price which means a lot to me .

O o o B 1 1 10

a little; means a lot to me; budge .. .on

See: “Discriminative lexical semantic segmentation with gaps:
running the MWE gamut,” Schneider et al. (2014).
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HMM decoding vs. more complex sequence
labeling tasks (3)

Named Entity Recognition @
With Commander Chris Ferguson at the helm ,
person
@) B I I OO0 O O

Atlantis touched down at Kennedy Space Center .
spacecraft location

B 0 o O B | IO




Parameter Estimation by the Baum-Welch method
0000000000000000e0

HMM decoding vs. more complex sequence
labeling tasks (4)

Supersense Tagging N
ikr  smh he asked fir yo last name
- - —  communication - - - cognition
so he can add u on fb lololol
- - - stative - - group -

See: “Coarse lexical semantic annotation with supersenses: an
Arabic case study,” Schneider et al. (2012).
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HMM Decoding for Natural Language Processing

HMM Decoding is largely applicable method for many
structured prediction tasks in NLP.

Key elements

@ Map the target NLP task into a sequence of classification
problem

@ Design a representation (e.g. features and metrics), ...
@ ... a prediction function f and ...

@ ... a learning or estimation algorithm to approximate with
the hypothesis £ the function f
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