Neural Word

Embeddings

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2022/2023

Qutline

®m L anguage Modeling: recall

Lexical Acquisition: recall

Use of Neural Networks for the Learning of language models:
inducing vs. counting

The CBOW and Skip-gram model

Computational Tricks

Applications of word embeddings to Language Processing

Neural Networks

m Powerful and flexible Machine Learning algorithm

m They can learn highly non linear functions and
learn complex concepts

m difficult to train until 2006 with the Deep Learning
movement

® One of the key elements of Deep Learning is the
use of pre-training techniques

Pre-training
m NNs are known to model non-linear classification functions

® The main difficulty is that NN cost functions are not convex
m high probability of stopping in a local minimum

® Pre-training is a technique to initialize the network
parameters
® in a way that they are nearer to the global minimum
m or at least in a better region of the cost function surface

Pre-training

® Pre-training can be obtained through
m Auto-Encoders
m Restricted Boltzmann Machines
® Training with other data (e.g. heuristically annotated data)

® |[n NLP, often a form of pre-training is obtained by
adopting Word Embeddings

m g d-dimensional space representing words

m cach word vector encodes in its dimensions useful
information to drive the learning process

Word representations in NNs

m Word vectors are related also to fighting the “curse of
dimensionality” of standard word representations

® [n a BOW model, the greater the vocabulary size the more
examples you need to learn all the relevant variations of each
feature

® [f we know, that two words are similar given a dense vector
representation of them

m we could not observe all the necessary variations of the data

m put instead we could rely on the similarity o make similar inferences
during training

Language Models

® A model of how the words behave and interact in a language when
forming sentences

m Probabilistic Language Modeling for
= compute the probability of a sentence
P(W) 3 P(Wl’WZ’WS""’Wn)
m compute the probability of the upcoming word

P(W4 | Wl’ WZ’W3)

m A model frained to output these quantities is a Language Model

® |n Machine Translation is adopted to rank different possible translations of a
given sentence

m |n Speech Recognition is adopted to rank different transcription hypotheses

Language Models

® How to compute P(W)
= Chainrule P(W) = P(w,W,,W,,...,W) :H P(W, W, W,,..,W)

m EX.
P(“John kills Mary with a knife") =
P(John) x P(“kills” |“john") x P(“Mary’|” kills", “John”) x P(“with”|” Mary" kills", “ John")

® How to estimate these quantitiese
m count the occurrences of sequences of words
m affected by the problem of “curse of dimensionality
m g sequence will be observed few times

1

® Traditional solution
m adopt Markov assumption and count n-grams
= P(“with”|”Mary”, “kills”, “John”) or with bi-grams P(“with”|"Mary”, “kills”))

Neural Networks and LM

m How do LM relates to word representationse
m Parameters estimation can be done in a NN architecture

m The target NN is expected to learn jointly:
m the parameters of the probability function
m O representation of the words

m The vectors representing words captures different aspects of
the word meaning by:

= making similar words near in the space
® helping the fight against the “curse of dimensionality”

Why It should work®e

m For example, given the two sentences
m The catis walking in the bedroom
m A dog was running in d room

m |[f we know that the pairs (cat, dog), (is,was) (walking,running),
(bedroom, room) are similar

® we could fry to compute that the two sentences are similar

® it means that we rely on the similarity of words and not on the
occurrence of a specific pattern

m this helps in fighting the curse of dimensionality

A neural probabilistic language
model (Bengio et al, 2003)

® Training set is a sequence of words wy, .., w In a vocabulary V

m The objective is to learn a mapping

T (W,) =P(W |Wy,...W,)

t n+1

m Decompose the function f in two components

B A mapping € from any element jof V to areal vector (i) € R™. It
represents the feature vectors associated with each word in the
vocabulary.

m The probability function over words, expressed with €

(Bengio et al., 2003): the idea

m The general idea behind the very first neural approach to
Language Modeling corresponds to the following three steps:

m Associate with each word in the vocabulary a distributed word feature
vector (a real-valued vector in RM),

m Express the joint probability function of word sequences in terms of the
feature vectors of these words in the sequence, and

m | earn simultaneously both notions:
m the word feature vectors as a matrix of lexical feature vectors and

m the parameters that corresponds to the NN that estimate the
probability function of the language model.

The model

m A function gmaps an input sequence, (C(w,_, 1), ,C(w,_,)), tO
a conditional probability distribution over words in V for the
next word w,.

f (i’Wt—l’ ""Wt—n+1) 3 g(i’C(Wt—1)1 ""C(Wt—n+1))

® The function g is realized through a neural network with
parameters w

= The matrix behind the C mapping is learnt during the fraining
process

®m The whole parameters set is thus (C, w)

The model: training

® Training maximize the
training corpus penalized
Iog-likelihood

i-th output = P(w, = i | context)

softmax
(eoe .o L X] 900)
Zlog f(t A t n+1’H)+R(9) T 7 ~
! computation here \\

= How the probabilities in the

output layer are computed?
eYwt

P(Welwe_q, ..., We_pyq) = —Z-eyl'
l

= where:
y =b+Wx+U tanh(d + Hx)

X=(C(W,,), C(W_5),-, C(We_py))

Table ~.,
look-up |

inC shared parameters
o N across words
index for w;_,4 index for w;_» index for w,_4

The model: details

i-th output = P(w, = i | context)

softmax
L X J 00)
Y
) \
most| computation here \

X= (C (Wt—l)’ C (Wt—Z)' ., C (Wt—n+1))

Table [~ . .
!OOk_? . shared parameters
m The whole set of learned parameters inC across words
are then _u _n .
index for w;_,4 index for w;_» index for w,_4

6=(b,d,W,U ,H,C)

What about co-occurrencese

® |n previous lessons we studied co-occurrence
based models

= We have seen that co-occurrences modeling
works very well to generalize the meaning of
words in compact vector representations

A co-occurrence matrix

and:: and:: a:DT a::DT verb:: verb:: be::V be:V class:: of::IN class:: of:IN lexicon: verbnet:: vn:N vn:N syntacti syntacti

CCR CCL R L NR NL R L N R R N L L ‘NR N L R L ciJR ciJL

and::CC: 0 0 0 0 0 0 0 0 0 0,142 0 0,142 0 0 0 0 0 0,253
a::DT: 0 0 0 0 0 0 0 0,155 0,155 0 0 0,210 0 0 0 0 0,210 0
verb::N: 0 0 0 0 0 0 0 0 0,244 0 0 0 0,302 0 0 0 0 0
be::V: 0 00,174 0 0 0 0 0 0 0 0 0 0 0,255 0 0,255 0 0
of:IN: 0,147 0,1470,219 0 0 0 0 0 0,180 0 0 0 0 0 0 0 0,237 0
class::N: 0 00,000 0,184 0 0,271 0 0 0 0 0 0,205 0 0 0,271 0 0 0
the::DT: 0 0 0 0 0 0 0 0,214 0 0 0 0 0 0 0 0 0 0
to::TO: 0 0 0 0 0 0 0 0 0 0 0 0,200 0 0 0 0 0,256 0
in:IN: 0 00,295 0 0 0,320 0,320 0 0 0 0,320 0 0 0 0,397 0 0 0
xtag::N: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
lexicon::N

: 0 0 0 0 0 0,331 0 0 0 0 0 0 0 0 0 0 0 0
syntactic::

J: 0,344 0 0 0,289 0 0 0 0 0 0 0 0,313 0 0 0 0 0 0
with::IN: 0 00,259 0 0 0,280 0 0 0 0 0 0 0 0 0 0 0 0
semantic:

o | N N 2ANA N N N N N N N N N N N N N N N N QAR

What about co-occurrencese

® We have seen that co-occurrences modeling works very
well fo generalize the meaning of words in compact
vector representations

= Can we think a NN modeling how the language works
and jointly accounting for the co-occurrencese

ES

CBOW and Skip-gram
(Mikolov et al, 2013)

m Mikolov and colleagues proposed two NN based models
that accounts for co-occurrences in the learning of word
vectors

m CBOW (Conftextual Bag-Of-Word)
B model the co-occurrences in the input to a neural network

m Skip-gram
B model the co-occurrences in the output of a neural network

(Mikolov et al., 2013)

INPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the

PROJECTION

SUM

CBOW

OUTPUT

w(t)

INPUT

w(t)

PROJECTION

e

Skip-gram

context, and the Skip-gram predicts surrounding words given the current word.

OUTPUT

w(t-2)

wi(t-1)

w(t+1)

w(t+2)

CBOW

m Contextual Bag-of-Words model
m TASK: Given a context, predict the word within that context

m Fach word is represented with a distributed representation
m g d-dimensional vector

® The learning process makes similar the representations of similar
words

m Howe@e

CBOW architecture

e ste Cople
= each x; is mapped info a vector

m the vectors are contained in the
matrix W (as rows)

® h. maps the input context into @
hidden compact representation

m in this case is the mean of the context
vectors

® in the output layer the network is
expected to compute a
probability distribution

m the probability of the correct word
in a context should be higher

[O O s 00OQ]

O C O]

[eXeXe]| O

Q =mnm

[O

Input layer

Output layer

CBOW architecture

Input layer

[eXeXe]|

= The maftrix containing the word Ik
vectors (W) are induced during
the training of the network

[Q usm

[O

Output layer
m |[f two words share many contexts

during training their
representations will be similar
m as their similar contexts will be

forced to reconstruct either one or
the other

== OO O]

Xk o

(O

® The fraining process will be
directed to optimizing the log-
likelihood of recovering the
correct y; given its confext. ek

[eXeXe]|

- Q =mnm

[O

SKip-gram

The same principle as CBOW, but
® the input layer contains one word w;,

m in the output layer the context words
of w, will be predicted

m Again, the word vectors are learned
during fraining

® The training process will maximize the
log-likelihood of recovering the
correct context given a target word

= On the output layer, we are outputting C
distributions

m Fach output is computed using the same
hidden - output matrix

Input layer

== O O O]

=
=~
(@]

Output layer

O O O]

QO ==

yIJ'

LO

[eNeXe]|

y 2j

== O O O] [O O ==

@)
s
£

Skip-gram details

m After a forward step, in the output layer we want to obtain
the probability distribution of the context words

exp(ug ;)
p(Wc,j |W) yc i
Zexp(u

= w,;is the j-th word on the c-th panel

" w,,.is the actual c-th word in the context (gold standard)
® w, is the input word

= y.;is the output of the j-th unit on the c-th panel

= u.;is the netf input of the j-th unif on the c-th panel

®m The objective function is thus the probability of recovering all
the context words given the target

exp(u, ;)
E =—log p(Wg, Wy ;- logH :

Z exp(u;.)

Skip-gram and CBOW

= CBOW model averages over the context in the input; it “smooths” the
original distributional statistics

m it is a sort of regularization, as the model learns from a “corrupted” input

m The Skip-gram model does not; it needs more data but it doesn’t modify
the input

m given that you have enough data, the Skip-gram model generally learns better
vectors

m Both learns word vectors as a supervised process
= however the input are raw texts, i.e. there is no need of a real supervision!

m They can be implemented very efficiently, and can produce word
vectors starting from corpora of million of words

®m a couple of optimization techniques makes the learning process very fast.

Speed optimizations

m Are meant to avoid the full computation/update of
parameters at each iteration

m Hierarchical Softmax

m t's a technique to avoid the full computation of the output layer
(which can potentially contain millions of neurons)

® The hierarchical softmax uses a binary tfree representation of
the output layer

m the words in the vocabulary are the leaves
m for each leaf, there exists a unique path from the root to the unit

m this path is used to estimate the probability of the word
represented by the leaf unit

Speed optimizations

= Negative sampling
® in the softmax operation we should compute the output vectors
for all the words in the vocabulary (the denominator)

m {0 avoid this computation just a sampling of the words are
adopted

m This sampling is “negative”, as the chosen words are selected
from the words that should not be “similar”, i.e. they are not in
the context of the target in the Skip-gram model

What does Skip-gram or
CBOW learnse

m Semantically related words

laundry::w$$0.524
basement::w$bu. o000

cooker::w$$0.558

room::w$4$0.511

dishes: :w$$0.519

bedroom::w$4$0. 560
cooks: :w$$0.557

bathroom: :w$$0.655
i

cooking cook: : w$$0. 539

What does Skip-gram or
CBOW learnse

laundry::w$$0.524
basement: : w$$u. o000

cooker: :w$$0.558

room: :w$$0.511

kitchen ' :w dishes::w$$0.519

bedroom::w$4$0.560

bathroom::w$$0.655 cooks::w$$0.557

_ A
cooking cook: : w$40. 539

Word Embedding Semantics

(slide from cs224n-2017-lecture3 by Socher)

Nearest words to
frog:

1. frogs

2. toad

3. litoria

4. leptodactylidae
5.rana

6. lizard

7. eleutherodactylus

rana eleutherodactylus

rana eleutherodactylus

What does Skip-gram or
CBOW learnse

m Other (meaningful) relationships

1.5

0.5

-1.5

Country and Capital Vectors Projected by PCA

| " China<- | |
Beijing
- Russiaz
Japan«
u Moscow
Turkey< »Ankara >Zr0ky0
Poland«
- Germxany<
France Warsaw
w —Berlin
- Italy< Paris
»Athens
Greece« ¢
| Spainx Rome
i % *Madrid
Portugal Lisbon
| | | |] | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5

What does Skip-gram or
CBOW learns?¢

Czech + currency | Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche
Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De
Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer
NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators
NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies
Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines
Company executives
Steve Ballmer Microsoft Larry Page Google
Samuel J. Palmisano IBM Werner Vogels Amazon

What we haven't touched

m FastText: using subword information
®m https://www.aclweb.org/anthology/Q17-1010.pdf
®m https://github.com/facebookresearch/fastText
= Embedding N-grams as features
® Words as sequences of features

m Sentence embeddings:
m Doc2Vec

® Quoc Le and Tomas Mikolov: “Distributed Representations of
Sentences and Documents”, 2014; arXiv:1405.4053.

= |nferSent

m Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault:
“Supervised Learning of Universal Sentence Representations from
Nafural Language Inference Data”, 2017; arXiv:1705.02364.

® | anguage Independent embeddings
= Neural embedding as a Multiple task learning
®m Subwords as core shared basis for multiple languages

https://www.aclweb.org/anthology/Q17-1010.pdf
https://github.com/facebookresearch/fastText
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1705.02364

Using word embeddings

U X X oo X oo X |
d ‘-—._"E‘v!fﬁ max-pooling
x;
B L t.

from (Conneau et al, 2017)

More recent trends

® From word to sentence embeddings

m Train NNs about the task of combining words to embed
sentences

m Character (instead of word) embeddings

= Contextual pretraining

m Attempt to made embeddings better capturing differences in
contextual use, aka senses

= Multiple biLSTMs (ELMo, 2017)

m Adopting bidirectional transformers, BERT (2018)
m Prefraining: Bidirectional Transformers for LM
m Pretraining: Masking
® Fine-tuning: Sentence prediction tasks

Differences in recent
approaches

BERT (Ours) OpenAl GPT

Figure 1: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-
to-left LSTM to generate features for downstream tasks. Among three, only BERT representations are jointly
conditioned on both left and right context in all layers.

Summary

Model language related problems with NN
m fighting the curse of dimensionality with distributional representations of words

Exploit the flexibility of Neural Networks for
m fransforming an unsupervised process into a supervised one
m compute efficiently new representations

The CBOW and Skip-gram models are not related to Deep Learning
® they have nothing of a deep architecture

However
m they emerged in the Deep Learning “era”

m they are adopted as a form of pre-training of Deep Architectures for NLP
problems

References

= (Bengio et al, 2003): Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic language model. J. Mach. Learn. Res.
3 (March 2003), 1137-1155.

m Mikolov, T.; Chen, K.; Corrado, G. & Dean, J. (2013), Efficient Estimation of Word
Representations in Vector Space, CoRR abs/1301.3781.

= Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig: Linguistic Reqgularities in Continuous
Space Word Representations. HLT-NAACL 2013: 746-751

= Tomas Mikolov, llya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean:
Distributed Representations of Words and Phrases and their Compositionality. NIPS
2013: 3111-3119

. Word2Vec parameters learning explained

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/pdf/1301.3781.pdf
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf

