
Neural Word

Embeddings

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2022/2023

Outline
 Language Modeling: recall

 Lexical Acquisition: recall

 Use of Neural Networks for the Learning of language models:

inducing vs. counting

 The CBOW and Skip-gram model

 Computational Tricks

 Applications of word embeddings to Language Processing

Neural Networks

 Powerful and flexible Machine Learning algorithm

 They can learn highly non linear functions and

learn complex concepts

 difficult to train until 2006 with the Deep Learning

movement

 One of the key elements of Deep Learning is the

use of pre-training techniques

Pre-training

 NNs are known to model non-linear classification functions

 The main difficulty is that NN cost functions are not convex

 high probability of stopping in a local minimum

 Pre-training is a technique to initialize the network

parameters

 in a way that they are nearer to the global minimum

 or at least in a better region of the cost function surface

Pre-training

 Pre-training can be obtained through

 Auto-Encoders

 Restricted Boltzmann Machines

 Training with other data (e.g. heuristically annotated data)

 In NLP, often a form of pre-training is obtained by

adopting Word Embeddings

 a d-dimensional space representing words

 each word vector encodes in its dimensions useful

information to drive the learning process

Word representations in NNs

 Word vectors are related also to fighting the “curse of

dimensionality” of standard word representations

 In a BOW model, the greater the vocabulary size the more

examples you need to learn all the relevant variations of each
feature

 If we know, that two words are similar given a dense vector

representation of them

 we could not observe all the necessary variations of the data

 but instead we could rely on the similarity to make similar inferences

during training

Language Models

 A model of how the words behave and interact in a language when

forming sentences

 Probabilistic Language Modeling for

 compute the probability of a sentence

 compute the probability of the upcoming word

 A model trained to output these quantities is a Language Model

 In Machine Translation is adopted to rank different possible translations of a

given sentence

 In Speech Recognition is adopted to rank different transcription hypotheses

1 2 3() (, , ,...,)nP W P w w w w=

4 1 2 3(| , ,)P w w w w

Language Models

 How to compute P(W)
 Chain rule

 Ex.

P(“John kills Mary with a knife”) =

P(John)  P(“kills” |“john”)  P(“Mary”|”kills”, “John”)  P(“with”|”Mary”,”kills”, “John”) ….

 How to estimate these quantities?

 count the occurrences of sequences of words

 affected by the problem of “curse of dimensionality”

 a sequence will be observed few times

 Traditional solution

 adopt Markov assumption and count n-grams

 P(“with”|”Mary”, “kills”, “John”) or with bi-grams P(“with”|”Mary”, “kills”,)

1 2 3 1 2 1() (, , ,...,) (| , ,...,)n n n

i

P W P w w w w P w w w w −= =

Neural Networks and LM

 How do LM relates to word representations?

 Parameters estimation can be done in a NN architecture

 The target NN is expected to learn jointly:

 the parameters of the probability function

 a representation of the words

 The vectors representing words captures different aspects of

the word meaning by:

 making similar words near in the space

 helping the fight against the “curse of dimensionality”

Why it should work?

 For example, given the two sentences

 The cat is walking in the bedroom

 A dog was running in a room

 If we know that the pairs (cat, dog), (is,was) (walking,running),

(bedroom, room) are similar

 we could try to compute that the two sentences are similar

 it means that we rely on the similarity of words and not on the

occurrence of a specific pattern

 this helps in fighting the curse of dimensionality

A neural probabilistic language

model (Bengio et al, 2003)

 Training set is a sequence of words w1, …, wT in a vocabulary V

 The objective is to learn a mapping

 Decompose the function f in two components

 A mapping C from any element i of V to a real vector C(i) ∈ Rm. It

represents the feature vectors associated with each word in the

vocabulary.

 The probability function over words, expressed with C

t t-n+1 t 1 t-1(w ,··· ,w) (w | w ,...,w)f P=

(Bengio et al., 2003): the idea

 The general idea behind the very first neural approach to

Language Modeling corresponds to the following three steps:

 Associate with each word in the vocabulary a distributed word feature

vector (a real-valued vector in Rm),

 Express the joint probability function of word sequences in terms of the

feature vectors of these words in the sequence, and

 Learn simultaneously both notions:

 the word feature vectors as a matrix of lexical feature vectors and

 the parameters that corresponds to the NN that estimate the

probability function of the language model.

The model

 A function g maps an input sequence, (C(wt−n+1),··· ,C(wt−1)), to
a conditional probability distribution over words in V for the
next word wt.

 The function g is realized through a neural network with
parameters ω

 The matrix behind the C mapping is learnt during the training
process

 The whole parameters set is thus (C, ω)

1 1 1 1(, ,...,) (, (),..., ())t t n t t nf i w w g i C w C w− − + − − +=

The model: training

 Training maximize the

training corpus penalized

log-likelihood

 How the probabilities in the

output layer are computed?

 where:

1 1

1
log (, ,..., ;) ()t t t n

t

L f w w w R
T

 − − += +

𝑃(𝑤𝑡|𝑤𝑡−1, . . . , 𝑤𝑡−𝑛+1) =
𝑒𝑦𝑤𝑡

σ𝑖 𝑒𝑦𝑖

1 2 1

tanh()

((), (),..., ())t t t n

y b Wx U d Hx

x C w C w C w− − − +

= + + +

=

The model: details

 The whole set of learned parameters

are then

1 1(| ,...,)
wt

i

y

t t t n y

i

e
P w w w

e
− − + =



1 2 1

tanh()

((), (),..., ())t t t n

y b Wx U d Hx

x C w C w C w− − − +

= + + +

=

(, , , , ,)b d W U H C =

What about co-occurrences?

 In previous lessons we studied co-occurrence

based models

 We have seen that co-occurrences modeling

works very well to generalize the meaning of
words in compact vector representations

A co-occurrence matrix

and::
CC R

and::
CC L

a::DT
R

a::DT
L

verb::
N R

verb::
N L

be::V
R

be::V
L

class::
N R

of::IN
R

class::
N L

of::IN
L

lexicon:
:N R

verbnet::
N L

vn::N
R

vn::N
L

syntacti
c::J R

syntacti
c::J L

and::CC: 0 0 0 0 0 0 0 0 0 0,142 0 0,142 0 0 0 0 0 0,253

a::DT: 0 0 0 0 0 0 0 0,155 0,155 0 0 0,210 0 0 0 0 0,210 0

verb::N: 0 0 0 0 0 0 0 0 0,244 0 0 0 0,302 0 0 0 0 0

be::V: 0 0 0,174 0 0 0 0 0 0 0 0 0 0 0,255 0 0,255 0 0

of::IN: 0,147 0,147 0,219 0 0 0 0 0 0,180 0 0 0 0 0 0 0 0,237 0

class::N: 0 0 0,000 0,184 0 0,271 0 0 0 0 0 0,205 0 0 0,271 0 0 0

the::DT: 0 0 0 0 0 0 0 0,214 0 0 0 0 0 0 0 0 0 0

to::TO: 0 0 0 0 0 0 0 0 0 0 0 0,200 0 0 0 0 0,256 0

in::IN: 0 0 0,295 0 0 0,320 0,320 0 0 0 0,320 0 0 0 0,397 0 0 0

xtag::N: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lexicon::N
: 0 0 0 0 0 0,331 0 0 0 0 0 0 0 0 0 0 0 0

syntactic::
J: 0,344 0 0 0,289 0 0 0 0 0 0 0 0,313 0 0 0 0 0 0

with::IN: 0 0 0,259 0 0 0,280 0 0 0 0 0 0 0 0 0 0 0 0

semantic:
:J: 0 0,304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,343

What about co-occurrences?

 We have seen that co-occurrences modeling works very
well to generalize the meaning of words in compact

vector representations

 Can we think a NN modeling how the language works

and jointly accounting for the co-occurrences?

 YES

CBOW and Skip-gram

(Mikolov et al, 2013)

 Mikolov and colleagues proposed two NN based models

that accounts for co-occurrences in the learning of word

vectors

 CBOW (Contextual Bag-Of-Word)

 model the co-occurrences in the input to a neural network

 Skip-gram

 model the co-occurrences in the output of a neural network

(Mikolov et al., 2013)

CBOW

 Contextual Bag-of-Words model

 TASK: Given a context, predict the word within that context

 Each word is represented with a distributed representation

 a d-dimensional vector

 The learning process makes similar the representations of similar

words

 How?

CBOW architecture

 x1k, …, xCk is a context

 each xij is mapped into a vector

 the vectors are contained in the

matrix W (as rows)

 hi maps the input context into a

hidden compact representation

 in this case is the mean of the context
vectors

 in the output layer the network is

expected to compute a

probability distribution

 the probability of the correct word

in a context should be higher

CBOW architecture

 The matrix containing the word
vectors (W) are induced during

the training of the network

 If two words share many contexts

during training their

representations will be similar

 as their similar contexts will be

forced to reconstruct either one or

the other

 The training process will be

directed to optimizing the log-

likelihood of recovering the
correct yj given its context.

Skip-gram

 The same principle as CBOW, but

 the input layer contains one word wi

 in the output layer the context words

of wi will be predicted

 Again, the word vectors are learned

during training

 The training process will maximize the

log-likelihood of recovering the

correct context given a target word

 On the output layer, we are outputting C
distributions

 Each output is computed using the same
hidden → output matrix

Skip-gram details
 After a forward step, in the output layer we want to obtain

the probability distribution of the context words

 wc,j is the j-th word on the c-th panel

 wO,c is the actual c-th word in the context (gold standard)

 wI is the input word

 yc,j is the output of the j-th unit on the c-th panel

 uc,j is the net input of the j-th unit on the c-th panel

 The objective function is thus the probability of recovering all

the context words given the target

,

, , ,

'

'

exp()
(|)

exp()

c j

c j O c I c j

j

j

u
p w w w y

u
= = =



,

,1 ,2 ,

'

'

exp()
log (, ,..., |) log

exp()

c j

O O O c I

c j

j

u
E p w w w w

u
= − = − 



Skip-gram and CBOW

 CBOW model averages over the context in the input; it “smooths” the

original distributional statistics

 it is a sort of regularization, as the model learns from a “corrupted” input

 The Skip-gram model does not; it needs more data but it doesn’t modify

the input

 given that you have enough data, the Skip-gram model generally learns better
vectors

 Both learns word vectors as a supervised process

 however the input are raw texts, i.e. there is no need of a real supervision!

 They can be implemented very efficiently, and can produce word

vectors starting from corpora of million of words

 a couple of optimization techniques makes the learning process very fast.

Speed optimizations

 Are meant to avoid the full computation/update of
parameters at each iteration

 Hierarchical Softmax

 it’s a technique to avoid the full computation of the output layer
(which can potentially contain millions of neurons)

 The hierarchical softmax uses a binary tree representation of
the output layer

 the words in the vocabulary are the leaves

 for each leaf, there exists a unique path from the root to the unit

 this path is used to estimate the probability of the word
represented by the leaf unit

Speed optimizations

 Negative sampling

 in the softmax operation we should compute the output vectors

for all the words in the vocabulary (the denominator)

 to avoid this computation just a sampling of the words are

adopted

 This sampling is “negative”, as the chosen words are selected

from the words that should not be “similar”, i.e. they are not in

the context of the target in the Skip-gram model

What does Skip-gram or

CBOW learns?

 Semantically related words

What does Skip-gram or

CBOW learns?

 Semantically related words

Word Embedding Semantics
(slide from cs224n-2017-lecture3 by Socher)

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What we haven’t touched
 FastText: using subword information

 https://www.aclweb.org/anthology/Q17-1010.pdf

 https://github.com/facebookresearch/fastText

 Embedding N-grams as features

 Words as sequences of features

 Sentence embeddings:

 Doc2Vec

 Quoc Le and Tomas Mikolov: “Distributed Representations of
Sentences and Documents”, 2014; arXiv:1405.4053.

 InferSent

 Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault:
“Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data”, 2017; arXiv:1705.02364.

 Language Independent embeddings

 Neural embedding as a Multiple task learning

 Subwords as core shared basis for multiple languages

https://www.aclweb.org/anthology/Q17-1010.pdf
https://github.com/facebookresearch/fastText
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1705.02364

Using word embeddings

from (Conneau et al, 2017)

More recent trends
 From word to sentence embeddings

 Train NNs about the task of combining words to embed
sentences

 Character (instead of word) embeddings

 Contextual pretraining

 Attempt to made embeddings better capturing differences in
contextual use, aka senses

 Multiple biLSTMs (ELMo, 2017)

 Adopting bidirectional transformers, BERT (2018)

 Pretraining: Bidirectional Transformers for LM

 Pretraining: Masking

 Fine-tuning: Sentence prediction tasks

Differences in recent

approaches

Summary

 Model language related problems with NN

 fighting the curse of dimensionality with distributional representations of words

 Exploit the flexibility of Neural Networks for

 transforming an unsupervised process into a supervised one

 compute efficiently new representations

 The CBOW and Skip-gram models are not related to Deep Learning

 they have nothing of a deep architecture

 However

 they emerged in the Deep Learning “era”

 they are adopted as a form of pre-training of Deep Architectures for NLP

problems

References
 (Bengio et al, 2003): Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic language model. J. Mach. Learn. Res.

3 (March 2003), 1137-1155.

 Mikolov, T.; Chen, K.; Corrado, G. & Dean, J. (2013), Efficient Estimation of Word

Representations in Vector Space, CoRR abs/1301.3781.

 Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig: Linguistic Regularities in Continuous

Space Word Representations. HLT-NAACL 2013: 746-751

 Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean:

Distributed Representations of Words and Phrases and their Compositionality. NIPS

2013: 3111-3119

 Word2Vec parameters learning explained

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/pdf/1301.3781.pdf
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf

