
Recurrent Neural

Networks

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2022/2023

Outline
 Recurrent and Recursive Networks

 Training Recurrent Networks

 LSTMS

 Applications to Language Processing

 Perspectives

Recurrent Neural Networks

 Used mainly to model sequences

 naturally applied to textual and speech problems

 A representation at time step i is made

dependent on the representations of the
preceding steps (i-1, i-2, …)

 connections between units form a directed cycle

Recurrent Neural Networks

 Commons tasks are

 language models: predict the next word in a sentence given

the already seen word

 speech recognition: predict a word given the current wave

form and the preceding words

 machine translation: produce a sequence in a target

language given an input sequence in a source language

 The most famous and effective model of RNNs are the

Long-Short Term Memory (LSTM) Networks (Sepp

Hochreiter and Jürgen Schmidhuber, 1997)

 they are meant to better deal with long-range dependencies

Neural Networks for Natural

Language Processing

 Linguistic features have been highly enriched since NN

language models have been introduced

 Words, n-grams as well as sentences, paragraphs have been

modeled through efficient and highly robust neural learners

 Representation are usually dense embeddings

 Making explicit Use of the contexts: Recurrent Networks

 Tasks have been extended beyond Classification:

 Transducing, Ranking, Encoding, Decoding

 Generation is a form of transduction and can be adapted to

conversation

Recurrent Neural Networks

 For example, consider the classifcal form of a

dynamical system

 Its corresponding unfolded computational graph

is as follows

Using a RNN

Using a RNN (2)

Simple RNN

…

…

…

…

xKx2x1

h1 h2 hL

y1 y2 yM

Recurrent neural networks (RNNs)
• An RNN can be unwrapped and implemented using the same

weights and biases at each step to link units over time as

shown below

• The resulting unwrapped RNN is similar to a hidden Markov

model, but keep in mind that the hidden units in RNNs are not

stochastic

Slides for Chapter 10, Deep learning, from the Weka book, Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Recurrent neural networks

(RNNs)

 Recurrent neural networks apply linear matrix operations to the current

observation and the hidden units from the previous time step, and the resulting

linear terms serve as arguments of activation functions act():

 The same matrix Uh is used at each time step

 The hidden units in the previous step ht-1 influence the computation of ht where

the current observation xt contributes to a Whxt term that is combined with Uhht-1

and bias bh terms

 Both Wh and bh are typically replicated over time

 The output layer is modeled by a classical neural network activation function

applied to a linear transformation of the hidden units, the operation is replicated

at each step.
Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

1g()

f ()

t h t h t h

t o t o

−= + +

= +

h W x U h b

o W h b

BPPTT

 For training a recurrent network, a solution is to unfold the

recurrent structure and expand it as a feedforward neural

network with a certain number of time steps: then apply

traditional backpropagation onto this unfolded neural

network.

 This solution is known as Backpropagation through Time

(BPTT), independently invented by several researchers

including (Robinson and Fallside, 1987; Werbos, 1988; Mozer,

1989)

The loss, exploding and vanishing

gradients

 The loss for a particular sequence in the training data can be
computed either at each time step or just once, at the end of
the sequence.

 In either case, predictions will be made after many processing
steps and this brings us to an important problem.

 The gradient for feedforward networks decomposes the
gradient of parameters at layer l into a term that involves the
product of matrix multiplications of the form 𝜕𝐽(l)WT(l+1) (remind
the backpropagation in feedforward network)

 A recurrent network uses the same matrix at each time step,
and over many steps the gradient can very easily either
diminish to zero or explode to infinity—just as the magnitude of
any number other than one taken to a large power either
approaches zero or increases indefinitely

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPTT: the algorithm

1. Present a sequence of k1 timesteps of input and
output pairs to the network.

2. Unroll the network then calculate and
accumulate errors across k2 timesteps.

3. Roll-up the network and update weights.

4. Repeat

 The TBPTT algorithm requires the consideration of two parameters:

 k1: The number of forward-pass timesteps between updates.

 this influences how slow or fast training will be, given how often weight
updates are performed.

 k2: The number of timesteps to which to apply BPTT.

 it should be large enough to capture the temporal structure in the
problem for the network to learn.

 Too large a value results in vanishing gradients

Dealing with exploding

gradients

 The use of L1 or L2 regularization can mitigate the problem of
exploding gradients by encouraging weights to be small.

 Another strategy is to simply detect if the norm of the gradient
exceeds some threshold, and if so, scale it down.

 This is sometimes called gradient (norm) clipping where for a
gradient vector g and threshold T,

 where T is a hyperparameter, which can be set to the average norm
over several previous updates where clipping was not used.

if 𝐠 ≥ 𝑇 then 𝐠 ←
𝑇

𝐠
𝐠

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Teacher Forcing

Long-term Dependencies

with one single layer

Dealing with

Long-term

Dependencies

LSTMS (Hochreiter & Schmidhuber, 1997)

 The Long Short-Term Memory (LSTM) architecture (Hochreiter

& Schmidhuber, 1997) was designed to solve the vanishing

gradients problem.

 Main idea: to introduce as part of the state representation
also specialized memory cells (a vector C) that can

preserve gradients across time.

 Access to the memory cells is controlled by gating

components, i.e. smooth mathematical functions that

simulate logical gates.

LSTMS

 At each input state, a gate is used to decide:

 how much of the new input should be written to the memory cell,

 how much of the current content of the memory cell should be forgotten.

 Concretely, a gate g in [0;1]n is a vector of values in the range [0; 1]
that is multiplied component-wise with another vector C in Rn, and the
result is then added to another vector.

 Indices in C corresponding to near-one values in g are allowed to pass,
while those corresponding to near-zero values are blocked.

4 layer RNNS

… The memory component

and the gates

 The FORGET gate

… The memory component

and the gates

 The INPUT gate

… The memory component

and the gates

 Updating the M E M O R Y

… The memory component

and the gates

 Computing the OUTPUT

LSTMS

LSTM

LSTMs and vanishing

gradients
 The so-called “long short term memory” (LSTM) RNN architecture was

specifically created to address the vanishing gradient problem.

 Uses a combination of hidden units, elementwise products and sums
between units to implement gates that control “memory cells”.

 Memory cells are designed to retain information without modification
for long periods of time.

 They have their own input and output gates, which are controlled by
learnable weights that are a function of the current observation and
the hidden units at the previous time step.

 As a result, backpropagated error terms from gradient computations
can be stored and propagated backwards without degradation.

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

…

…

…

a) b)

Other RNN architectures
a) Recurrent networks can be made

bidirectional, propagating information in
both directions

 They have been used for a wide variety of applications,
including protein secondary structure prediction and
handwriting recognition

b) An “encoder-decoder” network creates a
fixed-length vector representation for
variable-length inputs, the encoding can be
used to generate a variable-length
sequence as the output

 Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Training different Types of RNNs

Training different Types of RNNs

…

…

Encoder-decoder deep

architectures
 Given enough data, a deep encoder-decoder

architecture (see below) can yield results that
compete with hand-engineered translation systems.

 The connectivity structure means that partial

computations in the model can flow through the

graph in a wave (darker nodes in fig.)

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

RNNs - Bibliographic Notes &

Further Readings

 Graves et al. (2009) demonstrate how recurrent neural networks are
particularly effective at handwriting recognition,

 Graves et al. (2013) apply recurrent neural networks to speech.

 The form of gradient clipping presented above was proposed by Pascanu
et al. (2013).

 Hochreiter and Schmidhuber (1997) is the seminal work on the “Long Short-
term Memory” architecture for recurrent neural networks;

 our explanation follows Graves and Schmidhuber (2005)’s formulation.

 Yoav Goldberg, A Primer on Neural Network Models for Natural Language
Processing, Journal of Artificial Intelligence Research volume 57 pp 345-420,
2016

 Greff et al. (2015)’s paper “LSTM: A search space odyssey” explored a wide
variety of variants and finds that:

 none of them significantly outperformed the standard LSTM architecture; and

 forget gates and the output activation function were the most critical components.
Forget gates were added by Gers et al. (2000).

RNNs - Bibliographic Notes &

Further Readings
 IRNNs were proposed by Le et al. (2015)

 Chung et al. (2014) proposed gated recurrent units

 Schuster and Paliwal (1997) proposed bidirectional recurrent neural networks

 Chen and Chaudhari (2004) used bi-directional networks for protein structure
prediction; Graves et al. (2009) used them for handwriting recognition

 Cho et al. (2014) used encoder-decoder networks for machine translation,
while Sutskever et al. (2014) proposed deep encoder-decoder networks and
used them with massive quantities of data

 For further accounts of advances in deep learning and a more extensive
history of the field, consult the reviews of LeCun et al. (2015), Bengio (2009),
and Schmidhuber (2015)

