Advanced NN

Architectures: CNNs

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2022/2023



Qutline

m Architectures and tasks

m Convolutional Neural Networks
m Filters and Convolutions
= Pooling

® |magenet

m Applications of NNs:
® |mage processing: classification, Object Recognition
m Text Classification:
= Convolutional NNs over texts
m Senfiment analysis
m The Movie Review Dataset



Deep vs Shallow Networks

m Deep networks should be preferred to Shallow
ones

= when problems are non-linear;

® s has been observed that a shallow network needs
about 10x number of neurons for reaching the
expressivity of a deep one
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Deep vs Shallow Networks: Intuition

® Think of a neuron as a program routine

m in Deep Networks a neuron computation is re-used many
times in the computation

® in aShallow Network it is used only once

m Using a shallow network is similar to writing a program
without the ability of calling subroutines

--==> (0, X)

Deep Network Shallow Network



Deep Networks vs. Kernel

m A kernel machine can be thought of as a shallow
network having a huge hidden layer

m this hidden layer is never computed thanks to the kernel
trick

m Kernel methods however are expensive
m they rely on a set of examples, support vectors

m for large dataset and complex problems this set can be
large as well

m Neural networks computation
m s independent on the dataset,

m pbut only on the number of connections that have been
chosen




NN architectures

®» Multilayer perceptron (Rumelhart MCClelland, 1980)

m Self-Organizing maps (Kohonen, 1990)

® Boltzman Machines (Hinton, 1998)

s Convolutional Neural Networks (Neocogitron, Fukushima (19280))

m Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)
m Bidirectional RNNs (Schuster and Paliwal, 1997)
m BP Through-Time (Robinson & Fallside, 1987)
m | ong Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

m Attenfion mechanisms (firstly discussed by (Larochelle & Hinton, 2010; Denil
etal., 2012)).

m Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et al.,,
2015)



Recent successes in Deep
Learning

m  Convolution Neural Networks
®  |mages related tasks

m Recurrent Neural Networks
= | anguage models
= Speech to Text
®  Machine Translation, Conversation Models

= Aftentional Networks
m  Aftention mechanisms to amplify dependencies across network components

= Trasformers:
®  Encoding-decoding networks for powerful pretraining
= Avoid the forgetting problems typical of recurrent acrhitectures

m | arge Language Models and Prompting
®  Encoding-Decoding at the Natural Language level
m  Decoding only tfransformers
= (O-shot or few-shot Learning

m  Advanced architectures: multimodality
= |Image to Captions
= Text-generated Images (Dall-E)
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Convolutional Neural Networks

(Le Cun, 1998)

Mainly used for images related tasks
m image classification

m face detection

B e

Learn feature representations
® by convolving over the input
= with afilter, that slides over the input image

Compositionality (local)

m Each filter composes a local patch of lower-level
features info a higher-level representation

Location Invariance

m the detection of specific patterns is independent of
where it occurs
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Figure 9.1: An example of 2-D convolution without kernel flipping. We restrict the output
to only positions where the kernel lies entirely within the image, called “valid” convolution
in some contexts. We draw boxes with arrows to indicate how the uppmft element of
the output tensor is formed by applying the kernel to the corresponding upper-left region
of the input tensor.



A futher example of:
convolution with pooling,
and decimation operations
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® An image is convolved with a filter; curved rectangular regions
in the first large matrix depict a random set of image locations

B Maximum values within small 2x2 regions are indicated in bold
in the central matrix

® The results are pooled, using max-pooling then decimated by a
factor of two, to yield the final matrix



Convolutional Neural Networks

= CNNs automatically learn the parameters of the filters
= g filter is a matrix of parameters

®»  the key aspect is that a filter is adopted for the whole image

m Convolution can be applied in multiple layers
= qalayerl+1 is computed by convolving over output produced in layer 1

®  Pooling is an operation often adopted for taking the most informative features
that are learned after a convolution step
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Pooling and subsampling
layers

What are the consequences of backpropagating gradients through max or
average pooling layers?

Max pooling: the units that are responsible for the maximum within each
zone J, k —the “winning units”"— are the only to get the backpropagated
gradient

Average pooling: the averaging is simply a special type of convolution with a
fixed kernel that computes the (possibly weighted) average of pixels in a
zone

® the required gradients are therefore like std conv. layers

The subsampling step either samples every n' output, or avoids needless
computation by only evaluating every n'h pooling computation



Training in CNN:
Backpropagation and Max Pooling

m A Max Pooling layer can’t be trained because it doesn’t
actually have any weights

m |t still supports a method for it to calculate gradients
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m How is dL / dinputs ¢

®m An input pixel that isn’'t the max value in its 2x2 block have zero
marginal effect on the loss, as any slightly change of its value
wouldn't change the output at alll

m JL / dinputs = 0 for any non-max pixels.

m On the other hand, an input pixel that is the max value would have
its value passed through to the output, so doutput / dinput = 1,
meaning dL / dinput = dL / doutput.




Training a CNN: terminology

Input Size: 6 & Input (6, 6) Output (4, 4)
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Padding: 2 ©
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& Hover over the matrices to change kernel position.



Dimensions

® The dimension of the ouput is the following

Input Size: 6 2 Input (6, 6) Output (4, 4)
@O——
Padding: 2 S
P y— InputD — KernelD + 2PaddingD
Kernel Size: 4 © % ) StrideD =
am@—
Stride: 2. ¢
=@

&% Hover over the matrices to change kernel position.
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The ImageNet challenge

Crucial in demonstrating the effectiveness of deep CNNs

Problem: recognize object categories in Internet imagery

The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
classification task - classify image from Flickr and other search engines intfo 1 of
1000 possible object categories

Serves as a standard benchmark for deep learning

The imagery was hand-labeled based on the presence or absence of an object
belonging to these categories

There are 1.2 million images in the training set with 732-1300 fraining images
available per class

A random subset of 50,000 images was used as the validation set, and 100,000
images were used for the test set where there are 50 and 100 images per class
respectively



ImageNet Home Page

IMAGE Large Scale Visual Recognition Challenge 2017 (ILSVRC2017)

Introduction News History Timetable Challenges FAQ Citation Contact

Introduction

This challenge evaluates algorithms for object localization/detection from images/videos at scale. Most successful and innovative teams
will be invited to present at CVPR 2017 workshop.

I. Object localization for 1000 categories.
[l. Object detection for 200 fully labeled categories.
Ill. Object detection from video for 30 fully labeled categories.




Goal

ImageNet
ILSVRC

 Qver 1

t » Rough
L« Collect © Annual competition of image classification at large scale

Turk * 1.2Mimages in 1K categories
» Classification: make 5 guesses about the image label
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Object Location task

® Images, Class labels and Bounding boxes

The ground truth labels for the image are Cy, k = 1,...n with n class labels. For each ground truth class label Cf, the ground truth
bounding boxes are By, m = 1... Mj, where Mj is the number of instances of the k™ object in the current image.

Let d(c;, Cy) = 0 if ¢; = C}, and 1 otherwise. Let f(b;, By,) = 0 if b; and By, have more than 50% overlap, and 1 otherwise. The error
of the algorithm on an individual image will be computed using:

1
= — ) i ) m d i,C 3 bz,Bm
e " Zk:mm min,maz{d(c;,Ct), f(bi, Bim)}
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A plateau, then rapid

advances

m “Top-5 error” is the % of times that the target label does not appear among
the 5 highest-probability predictions

m Visual recognition methods not based on deep CNNs hit a plateau in
performance at 25%

Name

AlexNet
VGG Net
ResNet

Layers

8
=
152

Top-5 Error (%)

15.3
(o 10)
3.6

References

Krizhevsky et al. (2012)
Simonyan and Zisserman (2014)
He et al. (2016)

m Note: the performance for human agreement has been measured at 5.1%

top-5 error

m Smaller filters have been found to lead to superior results in deep networks:
the methods with 19 and 152 layers use filters of size 3x3



Simple filtering example

m Ex. consider the task of detecting edges in an
image

m A well known technique is to filter an image with
so-called “Sobel” filters, which involves convolving
it with

it il
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Research

Revolution of Depth
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Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

(slide from Kaiming He’s recent presentation)
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https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
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AN example: AlLexNet (8 Layers)
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AlexNet won the 2012 ImageNet competition with a top-5 error rate
of 15.3%, compared to the second place top-5 error rate of 26.2%
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AlexNet: Overview
°
Layer # filters / Filter size Stride Padding Size of feature Actlvaflon
neurons map function
Input - - - - 227 x 227 x 3 -
Conv 1 96 11x11 4 - 55 x 55 x 96 RelLU
Max Pool 1 - 3x3 2 - 27 x 27 x 96 -
Conv 2 256 5x5 1 2 27 x 27 x 256 RelLU
Max Pool 2 - 3x3 2 - 13 x 13 x 256
Conv 3 384 3x8 1 1 13x13 x 384 RelLU
Conv 4 384 3x3 1k 1 13 x13 x 384 RelLU
Conv 5 256 3x3 1 1 13 x 13 x 256 RelLU
Max Pool 3 - 3x3 2 - 6 x 6 x 256 -
Dropout 1 rate = 0.5 - - - 6 X 6 x 256 -
Fully Connected 1 - - - - 4096 RelLU
Dropout 2 rate = 0.5 - - - 4096
Fully Connected 2 - - - - 4096 RelLU

Fully Connected 3 - - - - 1000 Softmax



AlexNet: the architecture

® |t has 8 layers with learnable parameters.
® The input to the Model is RGB images.

® |t has 5 convolution layers with a combination of
max-pooling layers.

® Then it has 3 fully connected layers.

m The activation function used in all layers is Reluv,
whereas Soffmax is used in the output layer is

m [t used two Dropout layers.

m The total number of parameters in this architecture
1S 62.3 million.




What has been learnte¢
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image. and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.



GooglelLeNet (Inception V1)

1x1 convolutions

3x3 convolutions

[ T

Previous layer

(a) Inception module, naive version

3x3 max pooling

.,-o-""'f--

.,-'-""'-FFFF--

1x1 convolutions

Filter
concatenation

T

e —

———

3x3 convolutions

55 convolutions

1x1 convolutions

: f f
1x1 convolutions 1x1 convolutions 3x3 max pooling
—

Previous layer

(b) Inception module with dimensionality reduction




£
D)
S
O
O
=
.
o
O
2
O
o e
—

FC

AveragePool
7x7+1(V)

DepthConcat

Conv Conv Conv Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

DepthConcat

Conv Conv Conv Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

MaxPool
3x3+2(S)

DepthConcat FC

Conv
1x1+1(S)

Conv
5x5+1(S)

Conv Conv
1x1+41(S) 1x1+1(S)

Conv
3x3+1(S)

Conv
1x1+1(S)

Conv
1x1+1(S)

MaxPool AveragePool
3x3+1(S) 5x5+3(V)

DepthConcat

Conv Conv Conv Conv
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(S)

2

Conv Conv Conv Conv =
1x1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S) R P

DepthConcat

Conv Conv MaxPool
1x1+1(S) 1x1+1(S) 3x3+1(5)

Conv Conv Conv Conv
Ix1+1(S) 3x3+1(S) 5x5+1(S) 1x1+1(S)

, f
! |
g Conv MaxPool AveragePool
~



P [ ]
arameters in GooglelLeNet

o[ P o g [ o [ e [ o | Fons [ #9202 o | o

convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 x 56 x 64 0

convolution 3x3/1 H6x 56192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x4830 2 128 128 192 32 926 64 380K 304M
max pool 3x3/2 1414480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 1414512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TxTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 71M
avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K M

softmax 1x1x1000 0




Visualization .




Visualizing the filters learned
by a CNN

m | earned edge-like filters and texture-like filters are frequently
observed in the early layers of CNNs trained using natural images

m Since each layer in a CNN involves filtering the feature map
below, so as one moves up the receptive fields become larger

m Higher- level layers learn to detect larger features, which often
correspond fo textures, then small pieces of objects



How to visualize hidden
layers

® [magine to train a neural classifier on 10 x 10 images, so that n =
100. Each hidden unit i computes a function of the input:

100
es B t)
j=1

= What input image x would cause alll. to be maximally activated?

= (When |[|z]2 = Y12 22 < 1) the input which maximally activates

i=1 "1

hidden unit i is given by setting pixel x; to:
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Visualizing the filters learned
by a CNN

. ;.'\ e - 2 = - = '

First Layer

< "l: \ 3 I H o

Second Layer

M 308
(Imagery kindly provided by Matthew Zeiler) Third Layer

» Above are the strongest activations of random neurons projecting the activation back
into image space using the deconvolution approach of Zeiler and Fergus (2013).



conv3_1: a few of the 256 filters

ConvNet
filters visu

convl_1:afe




An Interesting visualization
tool

m CNN Explainer
m hitps://poloclub.github.io/cnn-explainer/
m Paper at: https://arxiv.org/abs/2004.15004



https://poloclub.github.io/cnn-explainer/
https://arxiv.org/abs/2004.15004

Current CNNs: Yolo
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S x S grid on input
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Final detections

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S x S x (Bx*5+ C) tensor.




Current CNNs: Yolo

Boundir

S x S grid on input

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S x S x (Bx*5+ C) tensor.

Is there an objec

Bounding box

Class labels



Yolo: the architecture

L F ; 3 .
N
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Yolo: Resu

Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.
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Sentence encoding &
convolution

Non-linear | | | | | | | | X
Layer

Max
Pooling | | | | | | | |
i T

Convolution
Layer

I
I
I
I

Vector
Representaion

Sentence Bill Gates is the founder of Microsoft.

Figure 2: The architecture of CNN/PCNN used for
sentence encoder.

from Yankai Lin, Shigi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.
Neural Relation Extraction with Selective Attention over Instances. ACL 2016.



https://aclanthology.org/P16-1200

From Collobert et al., 2011

In this contribution, we try to excel on multiple benchmarks while
avoiding fask-specific engineering. Instead we use a single learning
system able to discover adequate internal representations. In fact
we view the benchmarks as indirect measurements of the
relevance of the internal representations discovered by the
learning procedure, and we posit that these intermediate
representations are more general than any of the benchmarks.

Our desire to avoid task-specific engineered features prevented us
from using a large body of linguistic knowledge

The architecture takes the input sentence and learns several
layers of feature extraction that process the inputs. The features
computed by the deep layers of the network are automatically
trained by backpropagation to be relevant to the task.



» Collobert and Weston used CNNs
to achieve (near) state-of-the-art
results on many traditional NLP
tasks, such as POS tagging, SRL,
etc.

» CNN at the bottom + CRF on top.

» Collobert et al., “Natural Language

Processing (almost) from scratch”,
JLMR 2011.
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A CNN architecture for sentence
classification (Kim,2014)

good luck to all the juniors fomorrow :) |

good
luck

to

all

the
juniors
tomorrow
)

targeted
classes

=

positive

——————
]

input convolution Max fully connected
layer/embedding filters (~, ,4) pooling softmax layer
lookup



Multi-channel CNNs

wait ]
for ||
the [ B
video - B
and — Exll Q\
do — L
n't ] L
rent — —
]-t .................
I J I I I L 1
n ¥ k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

» Two “channels” of embeddings (i.e. look-up tables).
» One is allowed to change, while one is kept fixed.
» Both initialized with word2vec.



Datasets

Sentence/phrase-level classification tasks

Yy v v Y

Data || c | / N V| | |Vpre| | Prev SotA
MR 2 | 20 | 10662 | 18765 | 16448 79.5
SST-1 || 5] 18 | 11855 | 17836 | 16262 48.7
SST-2 || 2|19 | 9613 | 16185 | 14838 87.8
Subj 2 | 23 | 10000 | 21323 | 17913 93.6
TREC || 6 | 10 | 5952 | 9592 | 9125 95.0
CR 2119 | 3775 | 5340 | 5046 82.7
MPQA || 2 | 3 | 10606 | 6246 | 6083 87.2

c: number of labels

[: average sentence length

N: number of sentences

V|: vocab size (|V,e| is words already in word2vec
| g



MR datasert (Pang & Lee, 2005)

= Negative:

m “it's so laddish and juvenile , only teenage boys could possibly find it
funny . “

m while the performances are often engaging , this loose collection of
largely improvised numbers would probably have worked better as a
one-hour fv documentary .

m Positive

m if you sometimes like to go to the movies to have fun , wasabi is @
good place to start .

m gosling provides an amazing performance that dwarfs everything else
in the film .



SST (Stanford Sentiment Treebank, 2013)

® This was the worst restaurant | have ever had the misfortune of eating at.

m The restaurant was a bit slow in delivering their food, and they didn’t seem to be
using the best ingredients.

® This restaurant is pretty decent— its food is acceptable considering the low
prices.

® This is the best restaurant in the Western Hemisphere, and | will definitely be
returning for another meal!

Complex cases:

| do not hate this restaurant. (Negation)

| just love being served cold food! (Sarcasm)

The food is unnervingly unique. (Negative words being positive)



Data Prev SotA | CNN-rand | CNN-static | CNN-nonstatic

MR 79.5 76.1 81.0 81.5
SST-1 48.7 45.0 45.5 48.0
SST-2 87.8 82.7 86.8 87.2

Subj 03.6 89.6 03.0 03.4
TREC 05.0 01.2 02.8 03.6

CR 82.7 79.8 84.7 84.3
MPQA 87.2 83.4 89.6 89.5

» Fine-tuning vectors helps, though not that much.

» Perhaps our embeddings are overfitting (given the relatively
small training sample)?



Data Prev SotA | CNN-nonstatic | CNN-multichannel
MR 79.5 81.5 81.1
SST-1 48.7 48.0 47 .4
SST-2 87.8 87.2 88.1
Subj 03.6 03.4 03.2
TREC 05.0 03.6 02.2
CR 82.7 84.3 85.0
MPQA 87.2 89.5 89.4

» Performance is not statistically different from CNN-nonstatic.



What's next: autoencoders

® An autoencoder neural network is an
unsupervised learning algorithm that applies
backpropagation, setting the target values to be
equal fo the input itself, i.e., it uses

y(i) = x(i)

Layer L, Layer Ly



Autoencoders

m Suppose the inputs x are the pixel intensity values from a
10x10 image (100 pixels) so n = 100, and

m there are s2 = 50 hidden units in layer L2.

= Notfe that we also have y eR'%9,

m Since there are only 50 hidden units, the network is forced
to learn a compressed representation of the input. l.e.,
given only the vector of hidden unit activations a2 eR, it
must try to reconstruct the 100-pixel input x.

m Compressed representation may be seen as lower
dimensional embeddings

®m /magese Sentencese Longer Textse
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Resources

m Most of this slides are based on
m hitps://cs.stanford.edu/~quocle/tutoriall.pdf

m hitp://web.stanford.edu/class/cs294a/sparseAutoencoder 201 1new.
pdf

m Software packages
m Tensorflow
m Keras
m Pyforch

m Other useful resources can be found on the course welbsite


http://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf

