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QOutline: 2022-23 NN Course Structure

m Background: from the Statistical Learning Theory to Deep Learning

m Representation and Architectures for Neural Learning
= Convolutional NNs
® Their use in Image Processing and Sentiment Analysis
m Recurrent Neural Networks: Long Short Term Memories

m Generative Models
m Autoencoders and Language Modeling: the role of embeddings
m Transformers. Architectures & Applications
= Generative Pre-trained Transformer
m Few-Shot Learning and Prompt Engineering, Self-Instructing LLMs

m | aboratory: NN design and NN application development



Intfroduction to DL: Outline

m An Al perspective on DL: from Statistical Learning Theory
to Deep Learning

m Representation Learning in Deep Learning Architectures
» MLP and non linearity

m History and types of NNs:

Multilayer Perceptrons

Autoencoders

Convolutional NNs

Recurrent Neural Networks: Long Short Term Memories
Attentive networks

® Training a Neural Network
m Stochastic Gradient Descent
®» The Backpropagation algorithm



Artificial Intelligence: the

pendulum
» "A physical symbol system « Symbols are
has the necessary and Luminiferous Aether
sufficient means for of Al

general intelligent action.
--Allen Newell &
Herbert Simon

—Geoff Hinton




Neural Networks,
Connectionism and Deep
Learning
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very high level representation:
MAN]| |SITTING
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slightly higher level representation

A

raw Input vector representation:
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Show & Tell in italiano

Current work at UniTV (Croce, Masoftti & Basili,
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a,
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r,

(a) im2txt+translation: Un gioca- (b)  im2txt+translation:  Una
tore di baseball che oscilla una grande torre dell’orologio che
mazza ad una sfera, Italian model: sovrasta una citta, Italian model: Un
Un giocatore di baseball che tiene grande edificio con un orologio sulla
una mazza da baseball su un campo. parte superiore.

| i " i 2

L

(d) im2txt+translation: Una per-

' sona che salta una tavola skate

in aria. Italian model: Un womo
che cavalca uno skateboard su una
strada.



A bit of history ...

[ m McCollouch & Pitts 1943 - The logic of the MCP (xPerceptron), through early electronics

m Hebb 1942 - Associative Memories: adaptive storage

= Rosenblatt, 1958 — Perceptron & on-line learning algorithm

® Minsky & Papert, 1969 — mathematical limits of the perceptron

m Rumelhart et al., 1986, McClelland et al., 1995 Backpropagation, Distributed representations
m | STSMs —Hochreiter & Schmidhuber 1997
m |e Cunetal, 1998 - Convolutional Nefs

® Hinton et al., 2006 — Deep Belief nets (autoencoders)

m Bengio ef al., 2007 — Depth vs. Breadth in NNs

®m Nair & Hinton, 2010 - further training support (e.g. RLU)

= Hinton, 2012 - Dropout




® from (Wang&Raqj, 2017):

Wang, Haohan; Raqj, Bhiksha,
On the Origin of Deep Learning,

hitps://arxiv.org/abs/1702.07800 ,

Table 1: Major milestones that will be covered in this paper

Feb2017

Year Contributer Contribution
\ . introduced Associationism, started the history of human’s
300 BC Aristotle ) . -
attempt to understand brain.
. introduced Neural Groupings as the earliest models of
1873 Alexander Bain . . IS . .
neural network, inspired Hebbian Learning Rule.
, N introduced MCP Model, which is considered as the
1943 McCulloch & Pitts o e
ancestor of Artificial Neural Model.
considered as the father of neural networks, introduced
1949 Dionald Hebb Hebbian Learning Rule, which lays the foundation of
modern neural network.
introduced the first perceptron, which highly resembles
1958 Frank Rosenblatt P P &1
modern perceptron.
1974 Paul Werbos introduced Backpropagation
1080 Teuvo Kohonen introduced Self Organizing Map
S . introduced Neocogitron, which inspired Convolutional
Kunihiko Fukushima _
Neural Network
1982 John Hopfield introduced Hopfield Network
1985 Hilton & Sejnowski introduced Boltzmann Machine
introduced Harmonium, which is later known as Restricted
Paul Smolensky .
1956 Boltzmann Machine
Michael I. Jordan defined and introduced Recurrent Neural Network
. introduced LeNet, showed the possibility of deep neural
1990 Yann LeCun . X P : D ‘
networks in practice
-~ Schuster & Paliwal introduced Bidirectional Recurrent Neural Network
1997 - - . —
Hochreiter & introduced LSTM, solved the problem of vanishing
Schmidhuber gradient in recurrent neural networks
introduced Deep Belief Networks, also introduced
2006 Geoffrey Hinton layer-wise pretraining technique, opened current deep
learning era.
Salakhutdinov & . .
2009 —— introduced Deep Boltzmann Machines
Hinton
. introduced Dropout, an efficient way of training neural
2012 Geoffrey Hinton P : ay - = :

networks



https://arxiv.org/abs/1702.07800

Connections per Neuron

:
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1950 1985 2000 2015 1. Adaptive linear element ( , )

2. Neocognitron ( \ )
3. GPU-accelerated convolutional network ( , )
4. Deep Boltzmann machine ( s )
5. Unsupervised convolutional network ( , )
6. GPU-accelerated multilayer perceptron ( s )
7. Distributed autoencoder ( y )
8. Multi-GPU convolutional network ( \ )
9. COTS HPC unsupervised convolutional network ( . )
10. GoogLeNet ( )

from Goodfellow et al., DL MIT book



(Vector) Spaces, Functions
and Learning

% ‘ most specific hypothesis, S
a
'L%ﬂ most general hypothesis, G
L o g G
g c The h € H floats between S and G to be
& ﬂ:B S © consistent
& o It makes up the version space
S
. - e (Mitchell, 1997)
e

x,: Price



Structural risk minimization: example
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y=f"(x)
f"(x) = h(x) = g(x;0)
suchthatVvX eL h(X) =Y,



Machine Learning: in search

of good functions

= Model and Learning
y=f"(x)
f*(x)  h(x) = g(x;0)
suchthatvX, eL h(X) =Y,

Prediction Error

m | inear models
h(x) =g 0x,+D)

Training Sample

Low

Model Complexity




Support Vector Machines

m Support Vector Machines (SVMs) are a machine
learning paradigm based on the statistical
learning theory [Vapnik, 1995]

® No need to remember everything, just the
discriminating instances (i.e. the support vectors, SV)

m The classifier corresponds to the linear combination
of SVs

A h(x) = Sgn( wW-x+b)= sgn(z a]u b)
Var, J=1

Only the dot product is required

Suppoﬁ
Vectors

Support Vectors

Margin

» Var,




Linear classifiers and
separabllity

® |n a R2 space, 3 point can always be separable
by a linear classifier

m put 4 points cannot always be shattered [Vapnik
and Chervonenkis(1971)]

® One solution could be a more complex classifier
m Risk of over-fitting

/ e




Linear classifiers and
separability (2)

m .. but things change when projecting instances
in a higher dimension feature space through a
function ¢

m |DEA: It is better to have a more complex feature
space instead of a more complex function

#
! |

g
e +




SVM First Advantage:
making examples linearly

separable
® Mapping data in a (richer) feature space where linear
separability holds x - O(x)
______________ (attributes — features)
m ¥ m R
D ‘ ‘ D //’ ‘\\
®e - )

NN -

\\ II
> S ARG
Input space

N
Implicit kernel §pgs’e



Perceptiron (Rosenblatt, 1958)

m Linear Classifier mimicking a neuron

Cell body

h(x)

Bias



The role of Representation

Cartesian coordinates Polar coordinates

T

,v,'"' W Yy v

O
A AM

The quintessential example of a representation learning algorithm is the au-
toencoder. An autoencoder is the combination of an encoder function, which
converts the input data into a different representation, and a decoder function,
which converts the new representation back into the original format. Autoencoders




Representation and
Learning: the role of depth

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)




Adding Layers ...

® From simple linear laws ...

() = 9(5%:6,5) = 9 (3 Ok +b) ﬂ

Layer L,

m o feedforward structures. It can be made 6@;(nden’r on a
sequence of functions g{1) and g(2). /g(k) ‘rﬁo’r give rise to a

structured h th
Ulatil ypothesis: // ,

Bl — g(2>(g(1)( 61 b(zﬁ) 6@ p@) =
_g(z)(W(z)g(l)(W(1)x+ b(l)) L b(z))

= Hidden layers In our example:

> > M) is a 3 x 3 matrix
h — gDO(WwD (1) W\Wisa
)i ( e’ ) W@ is a3 x 1matrix



Adding Layers ...

® From simple linear laws ...

NN
= - pionmenl o
h(X) = g(%:8,b) = (3 Gaxn +b)
n

m {0 feedforward structures. They depend on a sequence of
functions gl!), g@, ..., gkl that give rise to structured hypothesis

h(x) = g® (gD LgD 6D, pDY ). k=D pk-1)y. gl pK) )=
=l g (WP gk-Dy -1 Jg®O Dz + p@Y | + pk-1) 4 p)

m Hidden layers

RO (@) = P (WD gU-D(g; §U-D, pU-D) 4 p() AL A



Neural Networks

® Each circle represent a neuron (or unif)
= 3input, 3 hidden and 1 output

input layer hidden layer output layer

B 1,=3is the number of layers

B 5, denotes the number of unifs in layer 1

hw,h‘

m | ayers:

= The first layer, i.e. the layer |, is denoted as L, S

m Layerl and 1+1 are connected by a matrix W@
parameters

+1

Layer L, Layer L,

- [/V(l)l-j connects the j-th neuron in layer /7 with the i-th neuron
in layer /+1

B b(l)l- is the bias associated fo neuron i in layer /+1



Forward Step: classification

iInput layer

output layer 0 = J,(W,"h + by)
iﬁ-’ prediction | = argmax(o)
w, D

input

RN
VAN S

NN




Forward Step: fraining

iInput layer

input

label

output layer o = 9,(W,Th + b,)
;ﬁ-’ prediction | = argmax (o)
W, P

error => |oss function



‘DQMjsELfviv\g neural nebtworlks

Neural networks come with A single neuron
their own terminological A computational unit with n (3) inputs

bageage and 1 output
8898 and parameters W, b

... just like SVMs

———
But if you understand how
logistic regression or maxent
models work
Then you already understand the Inputs Activation  Output
operation of a basic neural function

network neuron!

Bias unit corresponds to intercept term
22



s g = (VR = g(l)(W(l),z i b(l))

b: We can have an “always on”

h (_x) = f(WT.)C + b) feature, which gives a class prior,
w,b . .
or separate it out, as a bias term
1

f(Z)=F lpr

X, J
L a | |
X2 6 -4 -2 0 2 4 6
> h,,(x)
X3
1 w, b are the parameters of this neuron

i.e., this logistic regression model




A heural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!




What is Deep Learning

m |t is a branch of machine learning based on a set
of algorithms that attempt to model high-level
abstractions in data by using multiple processing
layer

m [ earning representations of data

m feature hierarchies with features from higher levels of
the hierarchy formed by the composition of lower
level features




From Machine Learning...

® Machine Learning in general works well
because of human-designed features

m E.g. the so-called “Bag-of-Word" vector

® |0 this sense, machine learning is optimizing a
set of parameters to obtain best
performances

m g costly operation
m {0 be repeated for each new task




... loiDeep. Ledming

m Representation Learning attempts at
automatically learning the features (as
well as the parameters)

®m Deep Learning attempts at learning
multiple levels (a hierarchy) of features
of increasing complexity

m For example, in Face Detection

m A face can be composed by eyes, nose,
mouth

Layer 2

m Each of them is composed from simpler
shapes

A TN ALY
NS TSI A b Laver 2

m How to automatically learn these
“features’e
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Rule-based ¢ L&h learning
o machine
systems learning Representation

from Goodfellow et al., DL MIT book
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Al desiderata

= Ability to learn complex, highly-varying functions, i.e., with a number of
variations much greater than the number of training examples.

= Ability to learn with little human input the low-level, intermediate, and high-
level abstractions that would be useful to represent the kind of complex
functions needed for Al tasks.

= Ability to learn from a very large set of examples: computation fime for
training should scale well with the number of examples, i.e., close to linearly.

= Ability to learn from mostly unlabeled data, i.e., fo work in the semi-
supervised setting, where not all the examples come with complete and
correct semantic labels.

= Ability to exploit the synergies present across a large number of tasks, i.e.,
multi-task learning. These synergies exist because all the Al tasks provide
different views on the same underlying reality.

m Strong unsupervised learning (i.e., capturing most of the statistical structure
in the observed data), which seems essential in the limit of a large number
of tasks and when future tasks are not known ahead of time.



Basic Notation & Formalisms

m Basic jargon:

Vector spaces, inner products and Topology: Vector,
Matrices and Tensors

Training vs. Classification

Forward step, backpropagation,
Cost Function, Loss & Regularization
Input representation

®m Dense vs. Discrete

® Embeddings

Qutput format

Tasks: classification aka labeling, autoencoding,
encoding-decoding, stacking, multiple task learning




Non linearity: the MLP

m |n order to capture complex non linear functions with can apply a
still inear model not to x itself but rather to one of its transformed
form, e.g. @(x)

= Which mapping @

m Exploit generic mathematical, domain-independent mappings (e.g.
polynomial kernels or RBFs)

= Manually engineering @
m |earn the proper @ with respect to the task

® The result is a new form of the learning problem

y =f(x W) =W-@(x) + b



A simple MLP: the XOR
function

Input1 Input2 Output

0 0 0 m
1 0 1 S 06
@ -4
€ 04
0 1 1 @ =8
0.2
1 1 0o O ol ®
0 04 06 08 i




A MLP tfor the XOR problem

w We can now specify our complete network as

o*e flx:W.c,w.b) =w' max{0,W 'z + ¢} +b.

Figure 6.2: An example of a feedforward network, drawn in two different styles. Specifically,
this is the feedforward network we use to solve the XOR example. It has a single hidden
layer containing two units. (Left) In this style, we draw every unit as a node in the graph.
This style is explicit and unambiguous, but for networks larger than this example, it can
consume too much space. (Right) In this style, we draw a node in the graph for each entire
vector representing a layer’s activations. This style is much more compact. Sometimes
we annotate the edges in this graph with the name of the parameters that describe the
relationship between two layers. Here, we indicate that a matrix W describes the mapping
from x to h, and a vector w describes the mapping from h to y. We typically omit the
intercept parameters associated with each layer when labeling this kind of drawing.



The solution

We can now specify our complete network as

flx:W.c.w.b) = w' max{0,W 'z + ¢}

+b.

We can then specify a solution to the XOR problem. Let

and b = 0.

W =

1 1
1 11

0
-1 |

0 1
x=|" xw~— | 1! XW+ec¢c |1 0
11 2 2 2 1
0

We can now specify our complete network as

fl@; W, e, w.b) = w' max{0

- 1
W'z +c}+b 1
0

Rotazione
Traslazione

Scaling

max{0, X W + ¢} + b.

g e —

0
0
0

e O B



The new representation

space

Original & space

T T
1 1 0
™ ]
8 =
OF o ; T
| ]
0 1
Il
We can now specify our complete network as
flx:W.c,w.b) =w' max{0,W 'z + ¢} +b.

Learned h space

)




An example In Keras

m See the XOR Keras example in the Jupiter
Notebook made available on MS Teams

Inputz

Input1

We will make use of the following NN structure

y = Sigmoid(W' Sigmoid{ Wx+b )+ ¢)

To get started, import Sequential class from keras, which will create a linear stack of layers for us

Type Markdown and LaTeX: o’

In [1]: import numpy as np
from keras.models import Sequential

c nt results

#S0 we h

np.random. seed
model = Sequentiall()

Using TensorFlow backend.

The beauty of keras is that you can add layers to model with & simple add function.

The Dense class in keras forms fully interconnected layers with pre-defined input/output dimensions

In [2]: | from keras.layers.core import Dense, Activation



https://colab.research.google.com/drive/1klcN9lOdGGTMEwiq_9IcrX53G92dyTr3?usp=sharing
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Perceptron (Rosenblatt, 1958)

m Linear Classifier mimicking a neuron




Percepfron and non-linear
activation functions

= We can adopt the sigmoid funcftion instead of X - 1
the sgn() 1+e2
® to bound the final values between 0 and 1

® can be interpreted as probabilities of belonging
iewere|ass

m pelonging threshold is “>0.5" 1

® [t remains a linear classifier

a(z)

h(E) = g() OnXn +b)




Binary Step Function

Leaky ReLU

max(0.1* x,x)

max(0.1 * x,x)

Linear

Sigmoid / Logistic

Parametric ReLU

f(y)




How to induce A from examples

® We need to Learn the parameters 8 and b

m To find these we look at the past data (i.e. training data) optimizing
an objective function

m Objective function: the error we make on the training data
m the sum of differences between the decision function 2 and the label y
® qglso called Loss Function or Cost Function

J(6,b) = ) (h(x®;6,b) —y )2
=1



A general tfraining procedure:
Stochastic Gradient Descent

m Opfimizing / means minimizing it
m it measures the errors we make on the training data.

® We can iterate over examples and update the parameters of the
function in the direction of smaller costs

® we aim at finding the minimum of that function

6, = 6, — ahb, h(x)=g(x;0,b)=g(>_Gnxa+D
= Concretely, g":bef - A‘ZAQ"

" o is O meta-parameter, the learning rate

m A are the partial derivatives of the cost function wrt each parameter



Opftimizing J

® From the network
h(@) = g® (gD (..gD&F; 6D, pMD)y; . ); 6D ple-1y. k) pk) )=
= gOW O gl=D k-1 GOz 4 p®) 4 p*-Dy 4 p()
® and j-th layers equation:
hD @) = gD (WD gU-D(x; §U-D, pU-D) 4 p»)) i=2..,k—1

aj)
Label (0.00]1.00) y KD @) = g»(xV) ow )

\l

]E'J') 3 (nh(f) (xX) — y)ﬂ2 Cost (or Loss)

el { | u | J
*\/a 6

J




Optimizing J ... backwards

YN

wi-1 gG-2  pU-D

— 0 5 .
ww - gU-1) pU)
0)_C)UN"/
g 20 = wWgU-D(g; §U-D, pU-D) 4 pO)
l aj)
Label (0.00]1.00) y KD @) = g»(xV) aw D

\J

]'(‘J') — (nh(f) — y)? ~ Cost (or Loss)

'I] {l E u I ]
*\/ )

aj




Why SGD¢

m Weights are updated using the partial derivatives

m Derivative pushes down the cost following the steepest descent
path on the error curve

J(6:,6,)
(¥
o




SGD procedure

m Choose an initial random values for® and b
m Choose a learning rate

m Repeat until stop criterion is met:
m Pick a random fraining example x(!
m Update the parameters with

01 = 91 —aAHl
e Siomit ) A
b=b—alb

m We can stop WHEN

m when the parameters do not change (minimum has been reached) or,
= the number of iteration exceeds a certain upper bound



Cost Function Derivative

m |n order to update the parameters in SGD, we need
to compute the partial derivatives wrt the learnable
parameters.

m Remember the chain rule;

m if / is a function of a given function
z(x), then the derivative of J wrt xis:

h(x)

4 9 %z
= 9 | |
I 9% K 00y = —— (h(x®; 8,b) — y®)?
1
= Thus (in R2, we need to compute A6, = i(h(x(i)_ 8,b) — y®)?
= for the i-th example x@ U0, e

% . :
= — OF — (D)2
Ab = = (h(x; 6,b) — y©)



Cost Function Derivatives (in R?)

J . ;
NG, = — (h(xD;0,b) — y(D)2Z =
< 1981( e R 9(z) =

= 2((h(x®; 6,b) — y) % (h(x®; 0, b))

. - _ % — 1-9@)e@
= 2(g(6"x® + b) — yO)G- (9(67xD + b)) &
1

—Z

1+e

We have that;

Ut T _ 9g(8Tx+b) 9(6Tx+b)
96, (g(@"x +b)) = 9(0Tx+b) 96,

= (1— g(87x + b))g(87x + b) “ 222t
1
=(1-9g(@Tx+b)g(0"x + b)x,

h(x)




z\(—2

N(L1) + L(e®

/ dx \




Cost Function Derivatives

Then,
A6y = 2[(g(0"x® + b) — y)][(1 - g(8"x® + b)) g(8"x® + b)x )]
and we can do the same for 6,

AG; = 2[(g(8"x® + b) — y)][(1 — g(8"x® + b)) g(8"xV + b)xV);]

h(x)




Cost Function Derivatives for b

m For the b parameter, the same steps apply:

9 ; :
o (0. — y(y2 =
Ab = = (h(xD;,b) — y)

' =) :
= 2((h(x";6,b) —yY) 9 (h(x; 6,b))
h(x)

. A .
= 2(g(8"x® + b) — YD) = (9(0"x® + b))

9 9g(0Tx+b)9(67x + b)
%(g(BTx i 9(0Tx+b) 9
(1—g(@Tx +b)g(0Tx + b)

Ab = 2[(g(87x" + b) — y)][(1 - g(67xD + b)) g(67xD + b)]



Learning rate: low values

amall Learning Rate
sl Convergence

h(x)

= make the algorithm
converge slowly

m f S a conservative and
safer choice

= However, it implies very
long training

6, = 6, — a6,
6, =0, —alb,
b=b-aAb



Learning rate: high values

i

® make the algorithm
Large Learning Rate Con\/erge QU|C|(|y

Divergence!

® Training fime is reduced

m it is a aless safer choice
m risk of divergence

6, =6, — a6,

‘ = 6, =6, —alb,
b=b-aAb
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Backpropagation
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Multilayer Networks

Each circle represent a neuron (or
unit)
m 3 inputs, 3 hidden and 1 output

n=3 is the number of layers

s, denotes the number of units in
layer 1

Layers:
m |ayerlis denoted as L,

m Layerlandl+1 are connected by a
matrix of parameters WO

= WO,;connects neuron j in layer 1 with
neuron 7in layer 1+1

b®, is the bias associated to neuron i
in layer 1+1

input layer

hidden layer

+1

Layer L,

output layer

Layer L,

—_—
hys(X)



Multilayer Networks cont.

= 4@,is the activation of unit i in layer 1

input layer hidden layer output layer
B- A0 = Lzahioh = x.

2 1 1 1 1
h? = g Px + W% + W% + M)
2 1 1 1 1
h$? = g% + W x, + Wi xs + b5Y)
2 1 1 1 1
h$? = g x, + W x, + Wi xs + bSY)
hw,p (%) = hgg) =
g 2 2 2 2 2 2 2
gWPhD + wPhP + wPh? + bP)

= We call z»0, the weighted sum of
inputs to unitiin layerl, i.e.

n
(@8 € ©
z; —zWij xj + b,
=1
l l
Y = g(z")

L

+1

Layer L,

= g is a non-linearity function
® e.g.the sigmoid



Multilayer Network Classification

m The classification corresponds in
getting the value(s) in the output
layer

input layer hidden layer output layer

= Propagating the input fowards the
network given W, b

m This process is called forward propagation

7D — OO L p@D hys(X)

A+ = g(z(HD) Layer L,




How to Train a NN?¢

= We can re-use the gradient descent algorithm
m define a cost function
m compute the partial derivatives wrt to all the

parameters
= As the NN models function composition h(z(x))
m we are going to exploit the chain rule (again) 9h # gh 9z
X 9z K
m Setup:

® we have a training set of m examples

" {(GD YD), .., xV ™))

m xare the inputs and y are the labels



Cost Function of a NN

m Given a single training example (x,y) the cost is

1
JOW, b;%,7) = 5 lhwp () = ¥I2

® For the whole training set Jis the mean of the
errors plus a regularization term (weight decay)
—1 51 Si41

J(W,b) = Z!(W b x0,y D) 47 7 Db

1111]1
—1 S| Si4q

Z(—me(x()) y®P2) +2 777(%@)2

151 SNl

m A controls the importance of the two terms (it has
a similar role to the C parameter in SVM)



... digression: On regularization

m “any modification we make to a learning algorithm
that is intended to reduce ifs generalization error
but not its fraining error.”

m |n practical deep learning scenarios: the best fitting model (in the
sense of minimizing generalization error) is a large model that has
been regularized appropriately

= Many regularization approaches are based on limiting the
capacity of models, such as neural networks, linear regression, or logistic
regression, by adding a parameter norm penalty Q(6) to the
objective function J

= Regularization methods:
m Weight decay (ridge regression)
m . Constrained opfimization
® Data Augmentation
m Early stopping



A GD step

m A GD step update the parameters according to

g
M _\ww @
5 Wi

9
bi(l) = bi(l) —QW\](VV,b)

®m where ais the learning rate.

m The partial derivatives are computed with the
Backpropagation algorithm




The backpropagation
algorithm

® First, we compute for each example W](W, b,x(i),y(i))
ij

m Backpropagation works as follow:
1. do a forward pass for an example: x(i),y(i)
2. foreach nodeiin layerl, compute an error term 6.

1. it measures how unit i is responsible for the error on the current
example

3. The error of an output node is the difference between the true
output value and the predicted one

4. For the intermediate layer 1, a node receives a portion of the
error based on the units it is linked to of the layer 1+1

m Parfial derivatives will be computed given the error terms



The backpropagation
algorithm cont.

1. Perform a forward propagation for an example

2. For each unit 7 in the output layer (n,)

s = Y
g ﬂzi(nl)

ly= hw,b(x)|2 =—(y; — hgnl)) s g'(zi(nl))

Seeren—n -1,.,.,2
1. foreach node i inlayer/ &°=0Q w®s"*)ge®
j=1

Sl+1

4., Compute the partial derivatives as:

9
— 5 J(W, b x,y) = h}l)Si(”l)
19VVij

v z
m](W,b; xX,y) = 6i( =)
i



Some considerations

m Randomly initialize the parameters of the network
m for symmetry breaking

m Remember that the function g is a non-linear
activation function

m f gis the sigmoid 1
Oi7) =t
1+e

0'(z)=(1-9(2))a(2)

m Activations values can be cached from the
forward propagation step!

I} l l
gz =1 -gzNgE")= @—nH®

m |[f you must perform multi-classification
® there will be an output unit for each of the labels




Some considerations (2)

= How to stop and select the best model?

Waiting the iteration in which the cost function doesn’t change significantly
® Risk of overfitting

= Early stopping

Provide hints as to how many iterations can be run before overfitting
Split the original training set info a new training set and a validation set
Train only on the fraining set and evaluate the error on the validation set

1

Stop training as soon as the error is higher than it was the last time;

0.15 — Validation set loss H

log-likelihor

Use the weights the network had in that previous step

= 0.00
0

another form of regularization to avoid overfitting data A
during training (only) randomly “turn off” some of the neurons of a layer
it prevents co-adaptation of units between layers



Dropout (svrivastava et al., 2014)

m Dropout can be interpreted as a way of regularizing a
neural network by adding noise to its hidden units.

m |[f speeds-up the learning algorithm through model
averaging

m |t helps in reducing the risk of greedily promote simplistic
solutions

Randomly setting a fraction rate of input
units to o at each update during training time.

a) Standard Neural Net (b) After applying dropout.



Dropout: effects

m Drop-out effects in a speech-recognition task

Test Error
46 T

— 15 frames 3 layers 2000 units
—— 15 frames 3 layers 4000 units
— 31 frames 3 layers 4000 units ||
‘ — 31 frames 4 layers 4000 units
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Fig. 2: The frame classification error rate on the core test set of the TIMIT benchmark. Com-
parison of standard and dropout finetuning for different network architectures. Dropout of 50%
of the hidden units and 20% of the input units improves classification.



Dropout: effects

Test Error
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Fig. 7: Classification error rate on the (a) training and (b) validation sets of the Reuters dataset
as learning progresses. The training error is computed using the stochastic nets.



Next steps ...
complex NN architectures

m Convolutional Neural Networks (Neocogitron, Fukushima (1980))

m Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)
m Bidirectional RNNs (Schuster and Paliwal, 1997)
m BP Through-Time (Robinson & Fallside, 1987)
m Long Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

m Attention mechanisms (firstly discussed by (Larochelle & Hinton, 2010;
Denil et al., 2012)).

m Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et
cHER20 S

m Attention and Trasformers (A. Vaswani et al., 2017)
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