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Outline: 2022-23 NN Course Structure

 Background: from the Statistical Learning Theory to Deep Learning

 Representation and Architectures for Neural Learning

 Convolutional NNs

 Their use in Image Processing and Sentiment Analysis

 Recurrent Neural Networks: Long Short Term Memories

 Generative Models

 Autoencoders and Language Modeling: the role of embeddings

 Transformers: Architectures & Applications

 Generative Pre-trained Transformer 

 Few-Shot Learning and Prompt Engineering, Self-Instructing LLMs

 Laboratory: NN design and NN application development



Introduction to DL: Outline
 An AI perspective on DL: from Statistical Learning Theory 

to Deep Learning

 Representation Learning in Deep Learning Architectures

 MLP and non linearity

 History and types of NNs:

 Multilayer Perceptrons

 Autoencoders

 Convolutional NNs

 Recurrent Neural Networks: Long Short Term Memories

 Attentive networks

 Training a Neural Network

 Stochastic Gradient Descent

 The Backpropagation algorithm



Artificial Intelligence: the 

pendulum



Neural Networks, 

Connectionism and Deep

Learning

from Goodfellow et al., DL MIT book 





Show & Tell in italiano

Current work at UniTV (Croce, Masotti & Basili, 2017)



A bit of history …
 McCollouch & Pitts 1943 - The  logic of the MCP (Perceptron), through early electronics

 Hebb 1942 - Associative Memories: adaptive storage

 Rosenblatt, 1958 – Perceptron & on-line learning algorithm

 Minsky & Papert, 1969 – mathematical limits of the perceptron

 Rumelhart et al., 1986, McClelland et al., 1995 Backpropagation, Distributed representations

 LSTSMs –Hochreiter & Schmidhuber 1997 

 Le Cun et al., 1998 - Convolutional Nets

 Hinton et al., 2006 – Deep Belief nets (autoencoders)

 Bengio et al., 2007 – Depth vs. Breadth in NNs

 Nair & Hinton, 2010 – further training support (e.g. RLU)

 Hinton, 2012 - Dropout



 from (Wang&Raj, 2017):

Wang, Haohan; Raj, Bhiksha, 

On the Origin of Deep Learning, 

https://arxiv.org/abs/1702.07800 , 

Feb2017

https://arxiv.org/abs/1702.07800


from Goodfellow et al., DL MIT book 



(Vector) Spaces, Functions

and Learning

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

most specific hypothesis, S

most general hypothesis, G

The h  H floats between S and G to be 

consistent
It makes up the version space

(Mitchell, 1997)
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Machine Learning: in search 

of good functions

 Model and Learning

 Linear models
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Support Vector Machines
 Support Vector Machines (SVMs) are a machine 

learning paradigm based on the statistical 

learning theory [Vapnik, 1995]

 No need to remember everything, just the 

discriminating instances (i.e. the support vectors, SV)

 The classifier corresponds to the linear combination 

of SVs

Var1

Var2

Margin

Support Vectors

Support 
Vectors

Only the dot product is required

ℎ 𝑥 = 𝑠𝑔𝑛 𝑤 ∙ 𝑥 + 𝑏 = 𝑠𝑔𝑛(
𝐽=1

𝑙

𝛼𝑗𝑦𝑗𝑥𝑗 ∙ Ԧ𝑥 + 𝑏)



Linear classifiers and 

separability

 In a R2 space, 3 point can always be separable 

by a linear classifier

 but 4 points cannot always be shattered [Vapnik 

and Chervonenkis(1971)]

 One solution could be a more complex classifier

 Risk of over-fitting

?



Linear classifiers and 

separability (2)

 … but things change when projecting instances 

in a higher dimension feature space through a 

function 

 IDEA: It is better to have a more complex feature 
space instead of a more complex function



SVM First Advantage: 

making examples linearly 

separable

 Mapping data in a (richer) feature space where linear 
separability holds                 Ԧ𝑥 →  Ԧ𝑥

(attributes        features)
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Input space Implicit kernel space



Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron

x
1

x
2

x
n

x
3

b

h(x)

θ1

θ2

θ3

θn

Features

Neuron Parameters

Bias

( ) ( )n n

n

h x g bx= +



The role of Representation



Representation and 

Learning: the role of depth



Adding Layers …

 From simple linear laws …

 to feedforward structures. It can be made dependent on a 

sequence of functions g(1) and g(2), …, g(k) that give rise to a 

structured hypothesis:

 Hidden layers

( ) ( ; , ) ( )n n

n

h x g x b g bx = = +

In our example:

𝑊(1) 𝑖𝑠 𝑎 3 × 3 𝑚𝑎𝑡𝑟𝑖𝑥

𝑊(2) 𝑖𝑠 𝑎 3 × 1 𝑚𝑎𝑡𝑟𝑖𝑥

ℎ Ԧ𝑥 = 𝑔(2) 𝑔 1 Ԧ𝑥; Ԧ𝜃(1), 𝑏(1) ; Ԧ𝜃(2), 𝑏(2) =

= 𝑔(2) 𝑊(2)𝑔 1 𝑊(1) Ԧ𝑥 + 𝑏(1) + 𝑏(2)

ℎ(1) Ԧ𝑥 = 𝑔 1 𝑊(1) Ԧ𝑥 + 𝑏(1)



Adding Layers …

 From simple linear laws …

 to feedforward structures. They depend on a sequence of 

functions g(1), g(2), …, g(k) that give rise to structured hypothesis

 Hidden layers

( ) ( ; , ) ( )n n

n

h x g x b g bx = = +

ℎ Ԧ𝑥 = 𝑔 𝑘 (𝑔 𝑘−1 (…𝑔 1 ( Ԧ𝑥; Ԧ𝜃 1 , 𝑏 1 ); …); Ԧ𝜃 𝑘−1 , 𝑏 𝑘−1 ); Ԧ𝜃 𝑘 , 𝑏 𝑘 )=

= 𝑔 𝑘 𝑊 𝑘 𝑔 𝑘−1 (𝑊 𝑘−1 … . 𝑔 1 (𝑊 1 Ԧ𝑥 + 𝑏(1) … + 𝑏 𝑘−1 ) + 𝑏 𝑘 )

ℎ(𝑗) Ԧ𝑥 = 𝑔 𝑗 𝑊 𝑗 𝑔 𝑗−1 ( Ԧ𝑥; Ԧ𝜃 𝑗−1 , 𝑏 𝑗−1 ) + 𝑏 𝑗 𝑗 = 1, … . , 𝑘 − 1



Neural Networks

 Each circle represent a neuron (or unit)

 3 input, 3 hidden and 1 output

 nl = 3 is the number of layers

 sl denotes the number of units in layer l

 Layers:

 The first layer, i.e. the layer l, is denoted as Ll

 Layer l and l+1 are connected by a matrix W(l)                        of 

parameters

 W(l)
i,j connects the j-th neuron in layer l with the i-th neuron 

in layer l+1

 b(l)
i is the bias associated to neuron i in layer l+1

input layer hidden layer output layer



Forward Step: classification



Forward Step: training





 𝑔 1 Ԧ𝑥 = (ℎ(1) Ԧ𝑥 = 𝑔 1 𝑊(1) Ԧ𝑥 + 𝑏(1)





What is Deep Learning

 It is a branch of machine learning based on a set 

of algorithms that attempt to model high-level 

abstractions in data by using multiple processing 

layer

 Learning representations of data

 feature hierarchies with features from higher levels of 

the hierarchy formed by the composition of lower 

level features



From Machine Learning…

 Machine Learning in general works well 

because of human-designed features

 E.g. the so-called “Bag-of-Word” vector

 In this sense, machine learning is optimizing a 

set of parameters to obtain best 

performances

 a costly operation

 to be repeated for each new task



… to Deep Learning

 Representation Learning attempts at 

automatically learning the features (as 

well as the parameters)

 Deep Learning attempts at learning 

multiple levels (a hierarchy) of features 

of increasing complexity

 For example, in Face Detection

 A face can be composed by eyes, nose, 

mouth

 Each of them is composed from simpler 

shapes

 How to automatically learn these 

“features”?



from Goodfellow et al., DL MIT book 



AI desiderata 

 Ability to learn complex, highly-varying functions, i.e., with a number of 
variations much greater than the number of training examples.

 Ability to learn with little human input the low-level, intermediate, and high-
level abstractions that would be useful to represent the kind of complex 
functions needed for AI tasks.

 Ability to learn from a very large set of examples: computation time for 
training should scale well with the number of examples, i.e., close to linearly.

 Ability to learn from mostly unlabeled data, i.e., to work in the semi-
supervised setting, where not all the examples come with complete and 
correct semantic labels.

 Ability to exploit the synergies present across a large number of tasks, i.e., 
multi-task learning. These synergies exist because all the AI tasks provide 
different views on the same underlying reality.

 Strong unsupervised learning (i.e., capturing most of the statistical structure 
in the observed data), which seems essential in the limit of a large number 
of tasks and when future tasks are not known ahead of time.



Basic Notation & Formalisms

 Basic jargon:

 Vector spaces, inner products and Topology: Vector, 
Matrices and Tensors

 Training  vs. Classification

 Forward step, backpropagation,

 Cost Function, Loss & Regularization

 Input representation

 Dense vs. Discrete

 Embeddings

 Output format

 Tasks: classification aka labeling, autoencoding, 
encoding-decoding, stacking, multiple task learning 



Non linearity: the MLP

 In order to capture complex non linear functions with can apply a 

still linear model not to x itself but rather to one of its transformed

form, e.g. (x)

 Which mapping  :

 Exploit generic mathematical, domain-independent mappings (e.g. 

polynomial kernels or RBFs)

 Manually engineering 

 Learn the proper  with respect to the task

 The result is a new form of the learning problem

y = f(x;,W) = W(x) + b



A simple MLP: the XOR 

function



A MLP for the XOR problem



The solution

Rotazione

Traslazione

Scaling 



The new representation

space



An example in Keras

 See the XOR Keras example in the Jupiter 

Notebook made available on MS Teams

https://colab.research.google.com/drive/1klcN9lOdGGTMEwiq_9IcrX53G92dyTr3?usp=sharing


from Goodfellow et al., DL MIT book 



Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron
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Perceptron and non-linear 

activation functions

 We can adopt the sigmoid function instead of 
the sgn()

 to bound the final values between 0 and 1

 can be interpreted as probabilities of belonging 

to a class

 belonging threshold is  “>0.5”

 It remains a linear classifier

𝑔(𝑧) =
1

1 + 𝑒−𝑧

ℎ( Ԧ𝑥) = 𝑔(

𝑛

𝜃𝑛 𝑥𝑛 + 𝑏)





How to induce h from examples

 We need to Learn the parameters θ   and b

 To find these we look at the past data (i.e. training data) optimizing 

an objective function

 Objective function: the error we make on the training data

 the sum of differences between the decision function h and the label y

 also called Loss Function or Cost Function

𝐽(𝜃, 𝑏) = 

𝑖=1

𝑚

(ℎ(𝑥(𝑖); 𝜃, 𝑏) − 𝑦(𝑖))2



A general training procedure: 

Stochastic Gradient Descent

 Optimizing   J means minimizing it

 it measures the errors we make on the training data.

 We can iterate over examples and update the parameters of the 

function in the direction of smaller costs

 we aim at finding the minimum of that function

 Concretely,

 α is a meta-parameter, the learning rate

 Δ are the partial derivatives of the cost function wrt each parameter

𝜃1 = 𝜃1 − 𝛼Δ𝜃1

…
𝜃𝑛 = 𝜃𝑛 − 𝛼Δ𝜃𝑛

𝑏 = 𝑏 − 𝛼Δ𝑏

( ) ( ; , ) ( )n n

n

h x g x b g bx = = +



Optimizing J

 From the network

 and j-th layers equation:

ℎ Ԧ𝑥 = 𝑔 𝑘 (𝑔 𝑘−1 (…𝑔 1 ( Ԧ𝑥; Ԧ𝜃 1 , 𝑏 1 ); …); Ԧ𝜃 𝑘−1 , 𝑏 𝑘−1 ); Ԧ𝜃 𝑘 , 𝑏 𝑘 )=

= 𝑔 𝑘 𝑊 𝑘 𝑔 𝑘−1 (𝑊 𝑘−1 … . 𝑔 1 (𝑊 1 Ԧ𝑥 + 𝑏(1) … + 𝑏 𝑘−1 ) + 𝑏 𝑘 )

ℎ(𝑗) Ԧ𝑥 = 𝑔 𝑗 𝑊 𝑗 𝑔 𝑗−1 ( Ԧ𝑥; Ԧ𝜃 𝑗−1 , 𝑏 𝑗−1 ) + 𝑏 𝑗 𝑗 = 2, … . , 𝑘 − 1

𝑊 𝑗 𝑔 𝑗−1 𝑏 𝑗

Ԧ𝑥 𝑗 = 𝑊 𝑗 𝑔 𝑗−1 ( Ԧ𝑥; Ԧ𝜃 𝑗−1 , 𝑏 𝑗−1 ) + 𝑏 𝑗

ℎ 𝑗 ( Ԧ𝑥) = 𝑔 𝑗 ( Ԧ𝑥 𝑗 )

𝐽 𝑗 = (ℎ 𝑗 ( Ԧ𝑥) − 𝑦)2

𝑦

𝜕𝐽 𝑗

𝜕𝑊 𝑗

𝜕 Ԧ𝑥 𝑗

𝜕𝐽 𝑗

𝜕𝑊 𝑗Label (0.00|1.00)

Cost (or Loss)



Optimizing J … backwards

𝑊 𝑗 𝑔 𝑗−1 𝑏 𝑗

Ԧ𝑥 𝑗 = 𝑊 𝑗 𝑔 𝑗−1 ( Ԧ𝑥; Ԧ𝜃 𝑗−1 , 𝑏 𝑗−1 ) + 𝑏 𝑗

ℎ 𝑗 ( Ԧ𝑥) = 𝑔 𝑗 ( Ԧ𝑥 𝑗 )

𝐽 𝑗 = (ℎ 𝑗 − 𝑦)2

𝑦

𝜕𝐽 𝑗

𝜕𝑊 𝑗

𝜕 Ԧ𝑥 𝑗

𝜕𝐽 𝑗

𝜕𝑊 𝑗Label (0.00|1.00)

Cost (or Loss)

𝑊 𝑗−1 𝑔 𝑗−2 𝑏 𝑗−1

… … …

𝜕𝑊 𝑗−1



Why SGD?

 Weights are updated using the partial derivatives

 Derivative pushes down the cost following the steepest descent 

path on the error curve



SGD procedure

 Choose an initial random values for θ  and  b

 Choose a learning rate

 Repeat until stop criterion is met:

 Pick a random training example x(i)

 Update the parameters with

 We can stop WHEN

 when the parameters do not change (minimum has been reached) or,

 the number of iteration exceeds a certain upper bound 

𝜃1 = 𝜃1 − 𝛼Δ𝜃1

…
𝜃𝑛 = 𝜃𝑛 − 𝛼Δ𝜃𝑛

𝑏 = 𝑏 − 𝛼Δ𝑏



Cost Function Derivative
 In order to update the parameters in SGD, we need 

to compute the partial derivatives wrt the learnable 
parameters.

 Remember the chain rule:

 if J is a function of a given function                              
z(x), then the derivative of J wrt x is: 

 Thus (in R2), we need to compute

 for the i-th example x(i)

x

z

z

J

x

J












=

Δ𝜃1 =
𝜗

𝜗𝜃1
(ℎ(𝒙(𝑖); 𝜽, 𝑏) − 𝑦(𝑖))2

Δ𝜃2 =
𝜗

𝜗𝜃2
(ℎ(𝒙(𝑖); 𝜽, 𝑏) − 𝑦(𝑖))2

Δ𝑏 =
𝜗

𝜗𝑏
(ℎ(𝒙(𝑖); 𝜽, 𝑏) − 𝑦(𝑖))2

x1

x2

h(x)

θ1

θ2

b



Cost Function Derivatives (in R2)

Δ𝜃1 =
𝜗

𝜗𝜃1
(ℎ(𝒙(𝒊); 𝜽, 𝑏) − 𝑦(𝑖))2 =

= 2((ℎ(𝒙(𝒊); 𝜽, 𝑏) − 𝑦(𝑖))
𝜗

𝜗𝜃1
(ℎ(𝒙(𝒊); 𝜽, 𝑏))

= 2(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏) − 𝑦(𝑖))
𝜗

𝜗𝜃1
(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏))

𝜗

𝜗𝜃1
(𝑔(𝜽𝑻𝒙 + 𝑏)) =

𝜗𝑔(𝜽𝑻𝒙+𝑏)

𝜗(𝜽𝑻𝒙+𝑏)

𝜗(𝜽𝑻𝒙+𝑏)

𝜗𝜃1
=

= (1 − 𝑔(𝜽𝑻𝒙 + 𝑏))𝑔(𝜽𝑻𝒙 + 𝑏)
𝜗(𝜃1𝑥1+𝜃2𝑥2+𝑏)

𝜗𝜃1
=

= (1 − 𝑔(𝜽𝑻𝒙 + 𝑏))𝑔(𝜽𝑻𝒙 + 𝑏)𝑥1

ze
zg

−+
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We have that:
x1

x2

h(x)

θ1

θ2
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Cost Function Derivatives

Then,

and we can do the same for θ2

Δ𝜃1 = 2[(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏) − 𝑦(𝑖))][(1 − 𝑔(𝜽𝑻𝒙(𝒊) + 𝑏))𝑔(𝜽𝑻𝒙(𝒊) + 𝑏)𝑥(𝑖)
1]

Δ𝜃2 = 2[(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏) − 𝑦(𝑖))][(1 − 𝑔(𝜽𝑻𝒙(𝒊) + 𝑏))𝑔(𝜽𝑻𝒙(𝒊) + 𝑏)𝑥(𝑖)
2]

x1

x2

h(x)

θ1

θ2

b



Cost Function Derivatives for b

 For the b parameter, the same steps apply:

Δ𝑏 =
𝜗

𝜗𝑏
(ℎ(𝒙(𝒊); 𝜽, 𝑏) − 𝑦(𝑖))2 =

= 2((ℎ(𝒙(𝒊); 𝜽, 𝑏) − 𝑦(𝑖))
𝜗

𝜗𝑏
(ℎ(𝒙(𝒊); 𝜽, 𝑏))

= 2(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏) − 𝑦(𝑖))
𝜗

𝜗𝑏
(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏))

𝜗

𝜗𝑏
𝑔 𝜽𝑻𝒙 + 𝑏 =

𝜗𝑔 𝜽𝑻𝒙 + 𝑏

𝜗 𝜽𝑻𝒙 + 𝑏

𝜗 𝜽𝑻𝒙 + 𝑏

𝜗𝑏
=

(1 − 𝑔(𝜽𝑻𝒙 + 𝑏))𝑔(𝜽𝑻𝒙 + 𝑏)

Δ𝑏 = 2[(𝑔(𝜽𝑻𝒙(𝒊) + 𝑏) − 𝑦(𝑖))][(1 − 𝑔(𝜽𝑻𝒙(𝒊) + 𝑏))𝑔(𝜽𝑻𝒙(𝒊) + 𝑏)]

x1

x2

h(x)

θ1

θ2

b



Learning rate: low values

 make the algorithm 

converge slowly

 it is a conservative  and 

safer choice

 However, it implies very 

long training

bbb −=

−=

−=
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Learning rate: high values

 make the algorithm 
converge quickly

 Training time is reduced

 it is a a less safer choice

 risk of divergence

bbb −=

−=

−=







222

111
x1

x2

h(x)

θ1

θ2

b





0

ℎ

𝜃𝑖 𝑥𝑖 𝑔





0

ℎ

𝜃𝑖 𝑥𝑖 𝑔





0

ℎ

𝜃𝑖 𝑥𝑖 𝑔



0

ℎ

𝜃𝑖 𝑥𝑖 𝑔

𝜕𝐽

𝜕𝜃𝑗
(𝑖)





0

ℎ

𝜃𝑖 𝑥𝑖 𝑔



0

ℎ

𝜃𝑖 𝑥𝑖 𝑔



0

ℎ

𝜃𝑖 𝑥𝑖 𝑔

𝜕𝐽

𝜕𝑧

𝜕𝑧

𝜕𝑥

𝜕𝑧

𝜕𝑦





0

ℎ

𝜃𝑖 𝑥𝑖 𝑔

𝜕𝐽

𝜕𝜃𝑗
(𝑖)



0

ℎ

𝜃𝑖 𝑥𝑖 𝑔

𝜃𝑗
(𝑖)

= 𝜃𝑗
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− 𝛼
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(𝑖)



Multilayer Networks
 Each circle represent a neuron (or 

unit)

 3 inputs, 3 hidden and 1 output

 nl=3 is the number of layers

 sl denotes the number of units in 

layer l

 Layers:

 Layer l is denoted as Ll

 Layer l and l+1 are connected by a 
matrix of parameters W(l)

 W(l)
i,j connects neuron j in layer l with 

neuron i in layer l+1

 b(l)
i is the bias associated to neuron i

in layer l+1

input layer hidden layer output layer



Multilayer Networks cont.
 h(l)

I is the activation of unit i in layer l

 for l=1 h(1)
i = xi

input layer hidden layer output layer

ℎ1
(2)

= 𝑔(𝑊11
(1)

𝑥1 + 𝑊12
(1)

𝑥2 + 𝑊13
(1)

𝑥3 + 𝑏1
(1)

)

ℎ2
(2)

= 𝑔(𝑊21
(1)

𝑥1 + 𝑊22
(1)

𝑥2 + 𝑊23
(1)

𝑥3 + 𝑏2
(1)

)

ℎ3
(2)

= 𝑔(𝑊31
(1)

𝑥1 + 𝑊32
(1)

𝑥2 + 𝑊33
(1)

𝑥3 + 𝑏3
(1)

)

ℎ𝑊,𝑏 𝑥 = ℎ1
3 =

𝑔(𝑊11
(2)

ℎ1
(2)

+ 𝑊12
(2)

ℎ2
(2)

+ 𝑊13
(2)

ℎ3
(2)
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 We call z(l)
i the weighted sum of 

inputs to unit i in layer l, i.e.

𝑧𝑖
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𝑊𝑖𝑗
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 g is a non-linearity function

 e.g. the sigmoid
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Multilayer Network Classification
 The classification corresponds in 

getting the value(s) in the output 

layer

 Propagating the input towards the 
network given W, b

 This process is called forward propagation

input layer hidden layer output layer

𝑧(𝑙+1) = 𝑊(𝑙)ℎ(𝑙) + 𝑏(𝑙)

ℎ(𝑙+1) = 𝑔(𝑧(𝑙+1))



How to Train a NN?

 We can re-use the gradient descent algorithm

 define a cost function

 compute the partial derivatives wrt to all the 

parameters

 As the NN models function composition 

 we are going to exploit the chain rule (again)

 Setup:

 we have a training set of m examples

 {(x(1),y(1)), …, (x(m),y(m))}

 x are the inputs and y are the labels
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Cost Function of a NN

 Given a single training example (x,y) the cost is

 For the whole training set J is the mean of the 

errors plus a regularization term (weight decay)

 λ  controls the importance of the two terms (it has 

a similar role to the C parameter in SVM)
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2
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𝐽(𝑊, 𝑏) =
1

𝑚
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𝑚
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𝜆
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𝑛𝑙−1



𝑖=1

𝑠𝑙
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2
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… digression: On regularization

 “any modification we make to a learning algorithm                      
that is intended to reduce its generalization error                           
but not its training error.” 

 In practical deep learning scenarios: the best fitting model (in the 
sense of minimizing generalization error) is a large model that has 
been regularized appropriately

 Many regularization approaches are based on limiting the 
capacity of models, such as neural networks, linear regression, or logistic 

regression, by adding a parameter norm penalty Ω(θ) to the 
objective function J

 Regularization methods:

 Weight decay (ridge regression)

 … Constrained optimization

 Data Augmentation

 Early stopping



A GD step

 A GD step update the parameters according to

 where α is the learning rate.

 The partial derivatives are computed with the 

Backpropagation algorithm

),(

),(

)(

)()(

)(

)()(

bWJ
b

bb

bWJ
W

WW

l

i

l

i

l

i

l

ij

l

ij

l

ij











−=

−=



The backpropagation

algorithm

 First, we compute for each example 

 Backpropagation works as follow:

1. do a forward pass for an example:

2. for each node i in layer l, compute an error term δl
i

1. it measures how unit i is responsible for the error on the current 

example

3. The error of an output node is the difference between the true 

output value and the predicted one

4. For the intermediate layer l, a node receives a portion of the 

error based on the units it is linked to of the layer l+1

 Partial derivatives will be computed given the error terms

𝜗

𝜗𝑊𝑖𝑗
(𝑙)

𝐽(𝑊, 𝑏, 𝒙(𝒊), 𝑦(𝑖))

𝒙(𝒊), 𝑦(𝑖)



The backpropagation

algorithm cont.

1. Perform a forward propagation for an example

2. For each unit i in the output layer (nl )

3. For l=nl-1,…,2

1. for each node i in layer l

4. Compute the partial derivatives as:

𝛿𝑖
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𝜗
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𝐽(𝑊, 𝑏; 𝒙, 𝒚) = 𝛿𝑖
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Some considerations

 Randomly initialize the parameters of the network

 for symmetry breaking

 Remember that the function g is a non-linear 

activation function

 if g is the sigmoid

 Activations values can be cached from the 

forward propagation step!

 If you must perform multi-classification

 there will be an output unit for each of the labels
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(𝑙)
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(𝑙)

)ℎ𝑖
(𝑙)



Some considerations (2)

 How to stop and select the best model?

 Waiting the iteration in which the cost function doesn’t change significantly

 Risk of overfitting

 Early stopping

 Provide hints as to how many iterations can be run before overfitting

 Split the original training set into a new training set and a validation set

 Train only on the training set and evaluate the error on the validation set 

 Stop training as soon as the error is higher than it was the last time

 Use the weights the network had in that previous step

 Dropout

 another form of regularization to avoid overfitting data

 during training (only) randomly “turn off” some of the neurons of a layer

 it prevents co-adaptation of units between layers



Dropout (Svrivastava et al., 2014)

 Dropout can be interpreted as a way of regularizing a 
neural network by adding noise to its hidden units.

 It speeds-up the learning algorithm through model 

averaging

 It helps in reducing the risk of greedily promote simplistic 

solutions

 It can be applied to individual steps or in averaging mode



Dropout: effects
 Drop-out effects in a speech-recognition task



Dropout: effects



Next steps ... 

complex NN architectures

 Convolutional Neural Networks (Neocogitron, Fukushima (1980))

 Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)

 Bidirectional RNNs (Schuster and Paliwal, 1997)

 BP Through-Time (Robinson & Fallside, 1987)

 Long Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

 Attention mechanisms (firstly discussed by (Larochelle & Hinton, 2010; 

Denil et al., 2012)).

 Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et 

al., 2015)

 Attention and Trasformers (A. Vaswani et al., 2017) 
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