KERNEL-BASED
LEARNING

WME&ER a.a. 2021/22

D. Croce, R. Basili (A. Moschitti)

Universita di Roma “Tor Vergata”
basili@info.uniroma2.1it

Outline

- Metodi Kernel
- Motivazioni
- Esempio
- Kernel standard

- Polynomial kernel
- String Kernel

- Introduzione a metodi Kernel avanzati
- Tree kernels

Support Vector Machines

- Support Vector Machines (SVMs) are a machine learning
paradigm based on the statistical learning theory [Vapnik, 1995]

- No need to remember everything, just the discriminating instances (i.e.
the support vectors, SV)

- The classifier corresponds to the linear combination of SVs

l
h(x) =sgn(w-x + b) = sgn(E ajy + b)
Var, J=1
. |
[|

Support Vectors . °. SuppOI’t
; T Vectors
Only the dot product is required

»
|

LN
.....

e

, Var,

Linear classifiers and separability

- In a R? space, 3 point can always be separable by a linear classifier
- but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]

- One solution could be a more complex classifier
®Risk of over-fitting

P

Linear classifiers and separability (2)

- ... but things change when projecting instances in a higher
dimension feature space through a function ¢

- IDEA: It is better to have a more complex feature space
Instead a more complex function (i.e. learning algorithm)

A

The kernel function

- In perceptrons and SVMs the learning algorithm only depends
on the scalar product over pairs of example instance vectors

- Basically only the Gram-matrix is involved. In general, we call
kernel the following function:
K(x,2) = ®(x) - ©(2)

- The kernel corresponds to a scalar product over the
transformed of initial objects x and z

- If the mapping ¢ corresponds to the identity then the kernel is
equal to the standard scalar product.

- Notice that the training in most learning machines (such as the
perceptron) makes use of instances only through the kernel

First Advantage:
making instances linearly separable

—>
A ¢ 4
’ \\\\
m
O M|
@
B _®@m
®e
] O
M|
>
Input space Implicit kernel s

An example: a mapping function

- Two masses m; and m, , one is constrained
- Aforce f, is applied to the mass m,
- Instead of applying an analyitical law we want to experiment

- The Features of individual experiments are masses mM;, m, and the
appropriate orce f,

- It is clear that the Newton law of gravity Is involved:

m1m2
r.2

f(m,m,,r)=C

- The task corresponds to determine if | f(m;, m,, r) <f,

An example: a mapping function (2)

X = (X1, .0, Xp) = OX) = (D1(X), ..., D (X))
m This law cannot be expressed linearly. A change of space:

(f,m,m,,r)—>(k,x,y,z2)=(nf_,Inm,Inm,,Inr)

m holds as:
In f(m,m,,r)=InC+Inm, +Inm, -2Inr =c+x+y-2z

m The following hyperplane is the requested function h():

Inf,—Inm,—Inm, +2Inr-InC =0

(1,1,-2,-1) (In m,In m_Inr,In f)+ In C = o,

We can decide with no error if masses M, M, get closer or not

Feature Spaces and Kernels

* Feature Space

The input space is mapped into a new

space F with scalar product (called feature

space) through a (non linear) } Input space A Feature space

trasformation ¢ ® \ 4

6=R" > F ®5 T

e The kernel function

®
The evaluation require the computation ®
f— f—

of the scalar product over the trasformed
vectors @(X) but not the feature vectors
themselves

The scalr product is computed by a
specialized function called kernel

K(X,y) = (o(x)-4(Y))

Classification function: the dual form

l
h(x) =sgn(w-x + b) = sgn(E a;yix; - X + b)
J=1

m On the right form, instances only appear in the scalar
product

m The ony thing that is needed is the Gram matrix,

G :(<Xi 'XJ>)i,j:1

i.e. the explicit computation of the scalar product over
any pair of training instances x; .. X;

A kernelized perceptron

s We can rewrite the decision function of a perceptron by
taking into account a kernel:

l
h(x) = sgn(w-O(x) + b) = Sgn(z a;jy;P(x;) - P(X) + b)
j=1
= sgn(Xj=1;y;k(xj, %) + b)
s ... and during training the on-line adjustment steps become:
l

l
QY @y I D)=) vk) +b)

Kernels in Support Vector Machines

- In Soft Margin SVMs we need to maximize :

1 1
Zf_’ri——z%yjaaﬂ:i IJ—I—QC Ca— E&'Ef

1.7=1

« By using kernel functions we rewrite the problem as:

HMEHEEHE‘ZE&E — = Z Uil gk {Hﬂz: G‘J] ‘|‘ u}
i=1 13 =1

a; =0, Yi=1,..m

™
Z Yioeg = ()
i=1

What makes a function a kernel function?

Def. 2.26 A kernel is a function k, such that vV 1,7 € X
k(Z,7) = ¢(T) - (%)

where ¢ is a mapping from X to an (inner product) feature space.

Only such type of functions support implicit mappings such
as

%= (X1, ., %) ER" » OE) = (Oy(X), ..., D, (X)) € R™

What makes a function a kernel function? (2)

Def. B.11 Eigen Values

Given a matrix A € R™ x R", an egeinvalue A\ and an egeinvector © &
R"™ — {0} are such that

Def. B.12 Symmetric Matrix
A square matrix A € R™ xR" is symmetriciff A;; = Ajiforie = ji=1,...m
and j=1,..,n, ie iffA=A"

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R™ x R™ is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

What makes a function a kernel function? (3)

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K(Z, %) a symmetric function on X. Then

K(Z,Z) is a kernel function if and only if the matvix
k(Z,7) = ¢(F) - &(2)

is positive semi-definite (has non-negative eigenvalues).

- IDEA: If the Gram matrix is positive semi-definite then the
mapping ¢, such that F is an inner-product space whose
scalar product corresponds to the kernel k(.,.), exists

- In F the separability should be easier

A
Feature Spaces and Kernels

- An example of Kernel
- The Polynomial kernel

- If d=2 and k(X, Y)Z(X’Y)d

X,y € R?
. ([x [y]
o3 o
X LYy

— (- 4(y)) = k(x,y)

Polynomial kernel

https://www.youtube.com/watch?v=3lICbRZPrZA

Polynomial Kernel (n dimensions)

(7-7)* = (Zmizi)g = (Zmizi)(Zmizt)
1= = 1=
=)) wmiwgziz; =) (wiw))(2iz)
i;l j= ije{l,..n}
= ZX;EZ,& - X.Z

General Polynomial Kernel (n dimensions)

(f‘f—l—c)gz(imﬁi—l—c Zmz —I—C Zmz —|—.-: =

=1 =1

- i i TiTjziZj + E.-:Z Tz +c° =

i=1 j=1 i=1

- Z (ziz;)(ziz;) + Z (\/2_-‘31171) (\/Q_Czi) +

i,JE{1,..,n} =1

Polynomial kernel and

the conjunction of features

- The initial vectors can be mapped into a higher dimensional
space (c=1)
D(< X, %,>) = (X2, X2, V2%, , 2%, v/2x, 1)
- More expressive, as (X X,) encodes original feature pairs, e.g.
stock+market vs. downtown+market

are contributing (when occurring) togheter

- We can smartly compute the scalar product as

D(X)xD(Z) = (X2, X2, 72X, Xy, V2%, N 2%, Dx(22, 22,+/22,2,,+/22,,+/22, 1) =
= X2} + X515 + 2%, X,2,2, +2X,2, +2X,2, +1=

= (X2, + X,Z, +1)2 = (YX?_H')Z - IﬁJZ (7’ Z)

he Architecture of an SVM

It is a non linear classifier (based on a kernel)

e Decision function:

I
FO) =sgn(Q_vi(#(x)- (%)) +D) of = | Oulput o(Euk X))
i=1
I
=sgn(D_v;k(x, %) +b)) Yo SN Weights
i=1
¢(X.) substitutes every
training instamce x. il e SRR
Vi =&y _ ¢(,1)‘ “”(‘z}‘ d(x) ®(x)] Mapped vectors d(x), B(x)
v, are the solutions
of the optimization problem | x, X | Supportvectorsx ..x,
The mapping function is never |
computed, but is implict in the kernel X Test vector X
estimation

Esempi di Funzioni Kernel

- Lineare: K(X;, X;) = X; - X,

- Polinomiale potenza di p: k()‘(’i ,)‘(’j) — (]__|_)‘(’i .)‘(’j)p

- Gaussiana (radial-basis function network):
1% —%;11°

— . 22
xj)—e g

k(X

- Percettrone a due stadi:

k()_(w)_(j) =tanh(f, + 5, X ')_(j)p

String Kernel

- Given two strings, the number of matches between their
substrings is computed

- E.g. Bank and Rank
-B, a, n, k, Ba, Ban, Bank, an, ank, nk
‘R, a, n, k, Ra, Ran, Rank, an, ank, nk

- String kernel over sentences and texts

- Huge space but there are efficient algorithms

- Lodhi, Huma,; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello;
Watkins, Chris (2002). "Text classification using string kernels". Journal of
Machine Learning Research: 419-444,

String kernel

- A function that give two strings s and t is able to compute a real
number Kk(s,t) such that

- two vectors exist § and t

- §and t are unique for s and t
- (the vectors represents strings by embedding their crucial properties!!)

- k(s)=§x¢

- We will see how vectors § and t are defined in R®, as the
numer of strings of arbitrary length over an alphabet is infinite

- IDEA: Define a space whereas each substring is a dimension

Kernel tra Bank e Rank

B. a. n. k. Ba. Ban, Bank. an. ank. nk. Bn. Bnk. Bk and ak are the
substrings of Bank.

R. a. n. k. Ra. Ran, Rank. an. ank. nk. Rn. Rnk. Rk and ak are the

\ 4

substrings of Rank.

¢(Bank)=(CA , 0, A, A, A, A2, A%, A3, 0, A, 0 , A2, A3, A3,
¢(Rank)=(0 , A, A, A, A,0 , 0, 0, A3, 0 , A%, A%, A3, A3,

B, R, a, n, k, Ba, Ra, Ban, Ran, Bank, Rank, an, ank , ak ...

*Common substrings:
- a, n, k, an, ank, nk, ak
"Notice how these are the same subsequences as between

sSchrianak and Rank

Formally ...

Sottosequenza di indici ordinati e

non contigui di (1, ... |s|)

I'=(i1,....i,) u= s[I], substring of s defined by I

ﬁﬁu(s) — Z ‘)“E{fja con E(fj=€|“| — i+ 1

—

f:-u=.s[f]
K(s,t) = Z Duls) - Dul(t) = Z Z A Z \(T)
ue* wEY* fu—.s 7 u—t[J’]

DIIDIED VIR

e
“EE*fu—s[f ju—t , con M = U 2"

An example of string kernel computation

- $a(Bank) = ¢a(Rank) = A1+ = \(2=2+1) —

- ¢n(Bank) = ¢p(Rank) = A1) = \GB=3+D —

- ¢x(Bank) = ¢x(Rank) = A1—ittl) — \(4=4+1) —

- an(Bank) = ¢an(Rank) = Ni—i2+l) — \(B=2+1) — \2,

- Gapx(Bank) = dapx(Rank) = A1+ — \(U=2+1) —)3
b (Bank) = ¢ (Rank) = Alir—iat+l) = \(@4=3+1) = \2,
¢ax(Bank) = ¢ (Rank) = Ai—i2+l) — \(4=2+1) —)3,

It follows that K (Bank, Rank) = (A, A, A, AZ, A3, A2, A3)-(A, A\, A2, A3, A2, \3)
= 3N+ 201+ 2)\8,

Tree Kernels

- String kernels adopt a structured approach to kernel estimation
and are very useful in NLP and Web Mining tasks

- However, what has been defined over sequences can be

profitably exploited also in the treatment of more complex
structures

- Trees whose parent relationship determine subsequences in terms of
 Multiple paths from the root to the leaves

- Ordered sets of children (i.e. sequences of immediately dominated nodes) of
every node in the tree

- Graphs, whose structure can be captured by several trees (subgraphs)
and thus characterized by multiple subsequences

Tree kernels

- Applications are related to text processing tasks
such as

- Syntactic parsing, when SVM classification is useful to
select the best parse tree among multiple legal
grammatical interpretations

- Question Classification, where SVM classification is
applied to the recognition of the target of a question (e.qg.
a person such as in “Who is the inventor of the light?” vs.
a place as in “Where is Taji Mahal?”

or to pattern recognition (e.g. in bioinformatics the
classification of protein structures)

Tree Kernels

Modeling syntax in Natural Language learning task is complex,
e.g.

- Question Classification
- Semantic role relations within predicate argument structures and

WI—||NP S|Q |
WP VP 7
| /\
who::w VE|3D N|P
kill::v NNP

gandhi::n

Tree kernels are natural way to exploit syntactic information from

sentence parse trees
- useful to engineer novel and complex features.

Tree structures and natural language

- PARSING: Breaking down a text into its component parts of
speech (according to a formal grammar) with an explanation of
the form, function, and syntactic relationship of each part

- INPUT: gives a talk /VP
|
NP

- Output : a costituency tree | /\

Chomsky, N. 1957. Syntactic Structures. The Hague/Paris: Mouton.

L
The Collins and Duffy’'s Tree Kernel

Given a costituency tree

L
The overall fragment set

We can explode the syntactic tree in all syntactically motivated
fragments

« For each node the production rules must be respected, i.e. we
can remove “0 or all children at a time”
* |tis also known as Syntactic Tree Kernel

VP VP VP NP NP NP
7 # | / | / | £ SN /N
/ / D N D ND N
Voo v v PO |
. o /A /N a talk a talk
S IR R U (R
a talk a talk) | /N | I
VP VP VP VP gves D N a mk
; VP
VA AN 7 VP VP
V NPy NPV NPV \n oy ANy
SN ™ Lo VNPV
Y i }
T’ ND }T gves D N gves D N . VAR

a talk

d

L
EXxplicit feature space

Can we build a feature vector accounting on all this
iInformation?

= (0, L0 Ly L0, L0, 10,0, 10)
/‘ /‘ /‘ / \ /\ D/ \N

R YR YR T |
gives D IT D N [|) T a talk a talk
a talk a talk

X, * X, counts the number of common substructures

L
Implicit Representation

Can we estimate the tree kernel in an implicit space?

We can implicitly count the number of common subtrees
We prevent to define feature vectors that consider ALL
POSSIBLE SUBTREES, i.e. thousand of features

The final model will not contain feature vectors, but TREES

X X, =¢(1) ¢(T,) = K(I,,T),) =

= ; A(n,,n,)

[Collins and Duffy, ACL 2002] evaluate A in O(n2):

A(n,,n,) =0, if the productions are different else
A(n,,n,) =1, if pre-terminals else

ne(n)

A(ny,n,) =]_ L+ Alch(n,,), ch(n,, j)))

j=

Tree kernels are ... embedding tools

- Semantic Tree Kernels allows generating vectors that reflect
syntactic/semantic information of sentences
- Who is the tallest man in the world?

root<*:* who::w>

M

cop<who::w,be::v> nsubj<who::w,man::n>

VBZ cop be:v det<man:n,the::d> amod<man:ntallest:j> prep-in<man::n,world::n> NN nsubj man:n

DT det thexd JIS amod tallest:j det<world::n,ithe::d> NN prep-in world:n

DT det the:d
- Which most similar sentences/trees/vectors? 1 o =
- Who is the richest woman in the world? n "
- Who is the richest person in the world?
- Who is the fastest swimmer in the world? ':.

- Who was murdered yesterday by the terrorist group? >

L
Welighting In grammatical tree kernels

In the kernel estimation different subtrees are taken in

account different times

* Es: inthe following trees, one fragment will contribute
twice to the overall kernel

L
Welighting

« A decay factor can be used, so the contribution of the
embedded trees is reduced.

 The normalization of Tree Kernel estimation corresponds
to the normalization of the explicit feature vector

Decay factor

A(n,,n,) = A, if pre-terminals else

ne(ny)

A(ny,n,)=A (1+A(ch(n,, j),ch(n,, j)))

J=
Normalization K'(TI,T _ K(TnTz)

) R L) <K (T

L
Partial Tree [Moschitti,2000]

« A Syntactic Tree satisfies completely a grammar rule, i.e. the
constraint is “remove 0 or all children at a time”.

- Partial Tree Kernel (PTK) relaxes such constraint we get
more general substructures
« It allows gaps in the production rules in the same fashion
of the sequence kernel

VP VP VP VP VP VP VP VP

7 7 | | I .

v NP Vv NP NP NP NP NP NP NP

|\ = SN N N

gives D N D N D N D ND D N e
| I I | Np NP NP

a talk a talk a talk a a / /

D N N D

Partial Tree Kernel
- if the node labels of n; and no are different then
A(ny,ng) = 0;

- else [(J1)

A(nlvnz) = 1+ Z H A(Cn1[tfl’i]vcﬂ2[j3’i])

Ty o (J1)=1(T2) =1
- By adding two decay factors we obtain:

I(J1)

“()\er Z NI +d(T2) H A(cnl[ii],cng[ﬁi]))

Ty, Jo 1 (Jy)=1(J3) =1

Kernel Combination and normalization

- Kernels can be easily combined so that the evidences
captured by several kernel functions can contribute to the

learning algorithm
- The sum of kernels is a valid kernel
- The product of kernels is a valid kernel
- We can also Normalize the implicit space operating directly
only the kernel function

A R] é(s) o(t)
CORIONE <||¢<s)|| | ||¢<t)||>

B K(s,t)
(8(s) - 6(1)) = VE (s, 9K b)

K(s,t)

1
le(s)l o)l

Summary

- The dual form of the SVM optimization problem ONLY depends
on the scalar product between training examples and NOT from
their explicit vector representation (likewise the perceptron)

- This suggests to exploit this property in order to:

- Define efficient functions able to compute the scalar product out from the
original representation (i.e. from the input space)

- Exploit more complex representations (i.e. more expressive feature
spaces) in implicit way
- This corresponds to search the model in feature spaces able to:

- Preserve the mathematical properties sufficient to guarantee convergence
(i.e. the minimization of the expected error)

- Support training and classification by a limited complexity (e.g. no need to
build large dimensional representations of input instances)

s
Summary (2)

- In order for a function k(.,.) to be a valid kernel, its
correspondin Gram matrix mast be positive semi-definite

- In practice, such property is verified empirically over the
training datasets

- In this unit, the following kernel funcrion have been introduced
as they can be very effective in Web Mining problems:
- Base kernels (for example, polynomial kernel polinomiali of degree 2)
- Task dependent kernels that dipenden on the structura of a learning task:

- String (Sequence) kernels
- Tree kernels

- We will explore semantic kernels (e.g. latent semantic kernels)
later in the course

References

- Kernel Methods for Pattern Analysis, John Shawe-Taylor & Nello Cristianini
- Cambridge University Press, 2004

- Haussler, D. (1999). Convolution kernels on discrete structures. Technical
Report UCSC-CRL-99-10, UC Santa Cruz

- Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello;
Watkins, Chris (2002). "Text classification using string kernels". Journal of
Machine Learning Research: 419-444.

- Roberto Basili, Marco Cammisa and Alessandro Moschitti, Effective use of
wordnet semantics via kernel-based learning. In Proceedings of the 9th
Conference on Computational Natural Language Learning (CoNLL 2005),
Ann Arbor(MI), USA, 2005

- Building Semantic Kernels for Text Classification using Wikipedia, Pu Wang
and Carlotta Domeniconi, Department of Computer Science, George Mason
University

