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Summary
Perceptron Learning

Limitations of linear classifiers

Support Vector Machines
◦ Maximal margin classification

◦ Optimization with hard margin

◦ Optimization with soft margin

The roles of kernels in SVM-based learning



An hyperplane has equation :

is the vector of the instance to be classified

is the hyperplane gradient

Classification function: 

Linear Classifiers (1)
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Linear Classifiers (2)
Computationally simple.

Basic idea: select an hypothesis that makes no mistake over training-set.

The separating function is equivalent to a neural net with just one neuron 
(perceptron)



Which hyperplane?



Perceptron
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Notation
The functional margin of an example

with respect to an hyerplane is:

The distribution of functional margins of an hyperplane               with respect to 
a training set S is the distribution of margins of the examples in S.

The functional margin of an hyperplane              with respect to S is the 
minimum margin of the distribution
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Geometric Margin



Inner product and cosine distance
From

It follows that:

Norm of      times      cosine     , i.e. the projection of        onto 
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Notations (2)

By normalizing the hyperplan equation, i.e.

we get the geometrical margin

The geometrical margin corresponds to the distance of points in S from the 
hyperplane.

For example in 2
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Geometrical margin                         Training set margin
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Geometric margin vs.  data 
points in the training set 



Notations (3)
The margin of the training set S is the maximal geometric margin among every 
hyperplane.

The hyperplane that corresponds to this (maximal) margin is called maximal 
margin hyperplane



Maximal margin vs other margins



Perceptron: on-line algorithm
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Classification 
Error

adjustments



The mechanics of the perceptron



The mechanics of Perceptron:  
on-line learning



The adjusted hyperplane



Perceptron: the management of 
an individual instance x



Adjusting the (hyper)plane 
directions



Adjusting the distance from the 
origins



Novikoff theorem
Given a non-trival training-set S (|S|=m>>0)  and:

If a vector , exists such that:

with  > 0, then the maximal number of errors made by the perceptron is :
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Consequences
The theorem states that whatever is the length of the geometrical margin, if 
data instances are linearly separable, then the perceptron is able to find the 
separating hyperplane in a finite number of steps.

This number is inversely proportional to the square of the margin.

This bound is invariant to the scale of individual patterns.

The learning rate is not critical but only affects the rate of convergence.



The decision function of linear classifiers can be written as follows:

as well the adjustment function

The learning rate     impacts only in the re-scaling of the hyperplanes, and does 
not influence the algorithm (      )

 Training data only appear in the scalar products!!

1. 


1...

1...

( ) sgn( ) sgn( )

sgn(( ) )

j j j

j m

j j j

i m

h x w x b y x x b

y x x b









      

 





1...

if ( ) 0   then  i j j j i i i

j m

y y x x b   


    

Duality



First property of SVMs
DUALITY is the first property of Support Vector Machines

The SVMs are learning machines of the kind:

It must be noted that (input, i.e. training & testing instances) data only appear in 
the scalar product

The matrix                               is called Gram matrix of the incoming distribution  
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Limitations of linear classifiers
◦ Problems in dealing with non linearly separale data 

◦ Treatment of Noisy Data

◦ Data must be in real-value vector formalism, i.e. a underlying metric space topology 
is required



Solutions

Artificial Neural Networks (ANN) approach: augment the number of neurons, 
and organize them into layers  multilayer neural neworks  Learning 
through the Back-propagation algorithm (Rumelhart & McLelland, 91).

SVMs approach: Extend the representation by exploiting kernel functions (i.e. 
non linear often task dependent functions described by the Gram matrix).

◦ In this way the learning algorithms are decoupled from the application domain, that 
can be coded esclusively through task-specific kernel functions.

◦ The feature modeling does not necessarily have to produce real-valued vectors but 
can be derived from intrinsic properties of the training objects

◦ Complex data structures, e.g. sequences, trees, graphs or PCA-like decompositions 
(e.g. LSA), can be managed by individual kernels



Which hyperplane?



Maximum Margin Hyperplanes
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IDEA: Select the 

hyperplane that 

maximizes the margin



Support Vectors
Var1

Var2

Margin

Support vectors



How to get the maximum 
margin?
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The geometric margin 

is:
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Optimization problem

ex. negativ a is  se  ,

 ex. positive a is  if  ,
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Scaling the hyperplane …
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There is a scale for 

which k=1. 

The optimization 

problem becomes:

 negative is  if  ,1

 positive is  if  ,1  
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The optimization problem
The optimal hyperplane satyisfies:

◦ Minimize

◦ Under:

The dual problem is simpler
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Definition of the Lagrangian
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are not used as no equality 
constrant is needed in the primal 
equation



Dual optimization problem

Notice that the multipliers are not used in the dual optimization
problem as no equality constrant is imposed in the primal form



Graphically:
Two examples of constrained optmization (with equalities) 
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Dual Optimization problem

Notice that the multipliers are not used in the targeted
optimization as no equality constrant is imposed



Transforming into the dual
The Lagrangian corresponding to our problem becomes:

In order to solve the dual problem we compute

and then imposing derivatives to 0,  wrt w




Transforming into the dual (cont.)

Imposing derivatives = 0 wrt

and wrt b

w




Transforming into the dual (cont.)

… by substituting into the objective function



Dual Optimization problem

• The formulation depends on the set of variables  and not from w and  b

• It has a simpler form

• It makes explicit the individual contributions (i) of (a selected set of) 
examples (xi)



Khun-Tucker Theorem 
Necessary (and sufficent) conditions for the existence of the optimal solution  
are the following:

Karush-Kuhn-Tucker constraint



Some consequences
Lagrange constraints:

Karush-Kuhn-Tucker constraints

The support vector are     having not null     , i.e. such that 

They lie on the frontier

b is derived through the following formula
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Support Vectors

Var1

Var2

Margin

Support Vectors



Non linearly separable 
training data
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Slack variables are 

introduced

Mistakes are allowed and the 

optimization function is

penalized
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Soft Margin SVMs

Var1

Var21w x b   

1w x b  

0 bxw


11

w


i

New constraints:

Objective function:

C is the trade-off

between 

margin and errors
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Converting in the dual form

deriving wrt and


,w b



Partial derivatives



Substitution in the objective 
function

of Kronecker ij



Dual optimization problem
(the final form)



Soft Margin Support Vector Machines

The algorithm tries to keep i =0 and then maximizes the margin.

The algorithm minimizes the sums of distances from the hyperplane and 
not the number of errors (as it corresponds to an NP-complete problem)

If C, the solution tends to conform to the hard margin solution

ATT.!!!: if C = 0 then =0. Infact it is always possible to satisfy:

If C grows, it tends to limit the number of tolerated errors. Infinite 
settings for C provide the number of errors to be 0, exactly as in the hard-
margin formulation.
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Robustness: Soft vs Hard  Margin SVMs
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Soft Margin SVM Hard Margin SVM



Soft vs Hard Margin SVMs
A Soft-Margin SVM has always a solution

A Soft-Margin SVM is more robust wrt odd training examples
◦ Insufficient Representation (e.g. Limited Vocabularies)

◦ High ambiguity of (linguistic) features

An Hard-Margin SVM requires no parameter
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