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Summary

- Target problems for Machine Learning

- Geometrical Paradigms

- Probabilistic Paradigms
- Generative models

- Applications to speech and language processing




Machine Learning: the core problems

Regression Classification

classification error: 0.015
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Machine Learning: the core problems

Regression Classification

- Given a set of examples of atarget - Given nclasses C,, ... C, and a
function f(.) given number of instances
X, -y X, Whose classification

* X4, ..., X, With y=f(x.) known for every i )
bk Vit g Y1, -y Y IS kNOWN

- Define a function h(.) such that:
- h(x) =y=f(x) Vi - Define the class membership
- h(x) ~f(x) elsewhere function h(.) such that
- hix)=y;, vi=1,.., Kk

. h(x)2C, such that (by definition)
x eC; for all other x




Machine Learning: la scelta delle funzioni

Regression Classification

classification error: 0.015
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Paradigms for Model Selection

- Model Selection depends on the choice of:

- (Model Family Selection) a class/family of functions (e.g. polynomials of degree n)
- (Model parametrization). Selection/Estimation of the parameters suitable for
defining the optimal decision function
- Definition of the notion of optimality (e.g. coverage vs. accuracy)

« Search for the optimal values of the parameters
- Analytical forms
- Empirical induction from the training set




Model Selection from a family of functions

- Discriminative approaches |°, ° 5

- Linear models
- h(x) =sigh(W:-x+b)

- Probabilstic approaches
- Estimates of probabilities probabilita p(Cr|x) over a training set
« Generative Model of the target task allows the application of the Bayesin inversion

P(Celx) = p(x|Cr)p(C)

p(x) \ |




Graphical Models

p(A,B,C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)
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Bayesian & Grafical models
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Weighted Grammars: Languages, Syntax & Statistics

. POS tagging (Curch, 1989)

- Probabilistic Context-Free Grammars (Pereira &
Schabes, 1991)

- Data Oriented Parsing (Scha, 1990)

- Stochastic Grammars (Abney, 1993)

- Lessicalizzati Modelli (C. Manning, 1995)
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Figure 13.2  Two parse trees for an ambiguous sentence, The transitive parse (a) cor-
responds to the sensible meaning “Book flights that serve dinner”, while the ditransitive
parse (b) to the nonsensical meaning “Book flights on behalf of ‘the dinner’?”.
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Weighted Grammars, between Syntax & Statistics
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Hidden Markov Models OO O (%)

p(X1 .1 Y1 1) = p(X)p(V1|X0) [ | [p(Xe Xo1)p(Yi] Xo)]
- States = Categories/Concepts/Properties t=2

- Observations: (sequences of) symbols characterizing a given language

- Emissions (of symbols by States) vs. Transitions (between states)

- Applications:

- Speech Recognition (symbols: phonems, states: segments of audio signal) .

- POS tagging (symbols: words, states: grammatical categories, i.e. POS tags)




HMM for Automatic Speech Recognition
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Perceptrons
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Neural Networks

g

One hidden layer neural network
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Neural Networks: going deeper
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Transducing through NNs

- Networks can be used to express the intermediate states: Recurrent Neural
Networks are used in this way

- States can be encoded and decoded, i.e. rewritten

- Decoding can be carried out locally (i.e. token-by-token) or globally (i.e. on a
sentence-by-sentence basis)

- An Example: a transducer for Machine Translation
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Encoding-Decoding
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Figure 9: Encoder-Decoder RNN Training Graph.




