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Linear Transformations

Change of Basis

Change of Basis

Given two alternative basis B = {b1, ...,bn} and B′ = {b′1, ...,b′n}, such that
the square matrix C = (cik) describe the change of the basis, i.e.

b′k = c1kb1 + c2kb2 + ...cnkbn ∀k = 1, ...,n
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Linear Transformations

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B′. For every
x = ∑

n
k=1 xkbk such that in the new basis B′, x can be expressed by

x = ∑
n
k=1 x′kb′k, then it follows that:

x =
n

∑
k=1

x′kb′k = ∑
k

x′k

(
∑

i
cikbi

)
=

n

∑
i,k=1

x′kcikbi

from which it follows that:

xi =
n

∑
k=1

x′kcik ∀i = 1, ...,n

The above condition suggests that C is sufficient to describe any change of
basis through the matrix vector mutliplication operations:

x = Cx′
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Linear Transformations

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B′ are x′,y′, respectively. Now if A and B are such that
y = Ax and y′ = Bx′, then it follows that:

y = Cy′ = Ax = A(Cx′) = ACx′

(this means that)
y′ = C−1ACx′

from which it follows that:

B = C−1AC

The transformation of basis C is a similarity transformation and matrices A
and B are said similar.
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Linear Transformations and Eigenvectors

From EigenVectors and Matrix Decomposition to Topic
Models

Matrix Eigendecomposition

Let us create a matrix S with columns the n eigenvectors of a matrix A. We
have that

AS = A[x1, ...,xn] =

= Ax1 + ...+Axn =

= λ1x1 + ...+λnxn = [x1, ...,xn]Λ

where Λ is the diagonal matrix with the eigenvalues of A along its diagonal:

Λ =


λ1 0 . . . 0
0 λ2 . . . 0

0 0
. . .

...
...

... . . . λn
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Linear Transformations and Eigenvectors

EigenVectors of symmetric matrices

Now suppose that the above n eigenvectors are linearly independent. This is
true when the matrix has n distinct eigenvalues. Then matrix S is invertible
and it holds: AS = SΛ so that

A = SΛS−1
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Towards SVD

Towards SVD

EigenDecomposition of Symmetric matrices

Now let A be an m×n matrix with entries being real numbers and m > n.
Let us consider the n×n square matrix B = ATA.
It is easy to verify that B is symmetric, as BT = (ATA)T =
AT(AT)T = ATA = B.
It has been shown that the eigenvalues of such matrices (ATA) are real
non-negative numbers. Since they are non-negative we can write them in
decreasing order as squares of non-negative real numbers:

σ
2
1 ≥ σ

2
2 ≥ ...≥ σ

2
n .

For some index r (possibly n) the first r numbers σ1, ...,σr are positive
whereas the rest are zero. For the above eigenvalues, we know that the
corresponding eigenvectors x1, ...,xr are perpendicular. Furthermore, we
normalize them to have length 1. Let

S1 = [x1, ...,xr]
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Towards SVD

Towards SVD (2)

From the set of r orthonormal eigenvectors we can create the following
vectors

y1 =
1

σ1
Ax1, ...,yr =

1
σr

Axr

These are perpendicular m-dimensional vectors of length 1 (orthonormal
vectors) as:
yT

i yj =
( 1

σi
Axi
)T 1

σj
Axj =

= 1
σiσj

xT
i ATAxj =

1
σiσj

xT
i Bxj =

1
σiσj

xT
i σ2

j xj =
σj
σi

xT
i xj

Now this is 0 when i ̸= j and 1 when i = j
(as xT

i xj = 0 when i ̸= j and xT
i xi=1 ∀i)
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Towards SVD

Towards SVD (3)

Moreover, given
S2 = [y1, ...,yr]

we have
yT

j Axi = yT
j (σixi) = σiyT

j xi

which is 0 if i ̸= j, and σi if i = j.
It follows thus that:

ST
2 AS1 = Σ

where Σ is the diagonal r× r matrix with σ1, ...,σr along the diagonal.
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Towards SVD

The SVD

Observe that ST
2 is r×m, A is m×n, and S1 is n× r, and thus the above

matrix multiplication is well defined.
Since S2 and S1 have orthonormal columns, S2ST

2 = Im×m and S1ST
1 = In×n

(where Im×m and In×n are the m×m and n×n identity matrices.
Thus, by multiplying the equality

ST
2 AS1 = Σ

by S2 on the left and ST
1 on the right, we have

A = S2ΣST
1
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Towards SVD

Summing-up the SVD definition

Reiterating, matrix Σ is diagonal and the values along the diagonal are
σ1, ...,σr which are called singular values.
They are the square roots of the eigenvalues of ATA and thus completely
determined by A.

SVD
The above decomposition of A into

S2ΣST
1

is called singular value decomposition.
For the ease of notation, let us denote S2 by V and S1 by U (getting thus rid
of the subscripts). Then

A = UΣVT
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SVD for Information Retrieval

Overview

From SVD to document spaces
The Singular Value Decomposition

Definition
Examples
Tasks and Dimensionality Reduction

Latent Semantic Analysis and SVD
SVD: Interpretation
Latent Semantic Indexing

LSA applications: term and document clustering

Latent Semantic kernels
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SVD and Embeddings

Principal Component Analysis
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LSA and Singular Value Decomposition

Given V the term vocabulary (|V |= m) and
T the collection of texts (|T |= n), we can apply the Singular Value
Decomposition (Golub and Kahan, 1965) (as seen in the previous section) to
the matrix W of m terms (rows) by n documents (columns) :

W = UΣVT

where:
U (m× r) with the m row vectors ui which are singular (i.e. UUT = I)
Σ (r× r) is diagonal, with σij such that σij = 0 ∀i = 1, ...,r and the
singular values σi = σii in the main diagonal and
σ1 ≥ σ2 ≥ ...≥ σr > 0
V (n× r) with n row vectors vi that are singular (VVT = I)

(Notice that r is the rank of the matrix W).
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What is SVD doing to term-to-document matrix W

Σ is diagonal with the singular values of WWT or WTW.
In general, r = rank(W)≤ min(m,n) .
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SVD properties

SVD maps the source matrix W in:

W = UΣVT

where:
U and V are the left and right singular vector matrices of W (i.e. they
are made of the eigenvectors of WWT and WTW, respectively)

the columns of U and the rows of V define an orthonormal space, i.e.
UUT = I and VVT = I

Σ is the diagonal matrix of singular values of W. Singular values σi are
the roots of the eigenvalues λi of WWT (or WTW: they are in fact
identical)

We get two linear transofrmations (as we will see hereafter): WV and WTU.
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SVD properties
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Latent Semantic Analysis and the properties of SVD

The SVD

W = UΣVT

can be approximated by:

W ∼W ′ = UkΣkVT
k

by neglecting the linear transformations with the order higher than k with
k << r so that:

Uk (M× r) with the M row vectors ui which are singular and
orthonormal (i.e. UkUT

k = I)
Σk (k× r) is diagonal, with σij such that σij = 0 ∀i = 1, ...,k and the
singular values σi = σii in the main diagonal and
σ1 ≥ σ2 ≥ ...≥ σk > 0
Vk (N× r) with N row vectors vi that are singular (VkVT

k = I)
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Rank reduction

k is the number of singular values chosen to represent the (latent) concepts in
the document set.
In general, k << r (original rank of W).
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Latent Semantic Analysis and the properties of SVD

The SVD

W ∼W ′ = UkΣkVT
k

has a number of properties
the matrix Σk is unique (although U and V are not)
by definition, W ′ is the matrix obtained with an SVD of order k closest
to W (according to the Frobenius norm)
σi are the root values σi =

√
λi of the k largest eigenvalues λi of WWT

the principal components of the task (i.e. characterizing the collection)
are expressed by Uk and Vk
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LSA: semantic interpretation

LSA: semantic interpretation

We can say that W = UΣVT , Σ captures the latent semantic structure of the
source space where W is defined, V ×T and that the approximation to W ′

has no significant effect on this propoerty.
to se why:

eigenvectors are data specific direction of the original space V ×T ,
characterized by the linear trasformation (from terms to documents) W.
UΣ is derived from W = UΣVT : infact, WV = UΣVTV = UΣ, that is
for every i-th row (i.e. term) in W (or U), uiΣ = wiV .
CONSEQUENCE: representing term vectors (i.e. rows wi in W)
through uiΣ, MEANS: combining linearly through Σ the elements (i.e.
the correlations with all documents, vj) from the orthonormal basis
defined by V (after truncation at k)
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LSA: semantic interpretation

LSA: semantic interpretation(cont’d)

Moreover, (for the documents):
VΣ is obtained from W = (UΣVT): infact, WT = (UΣVT)T = VΣUT ,
from which it follows that WTU = VΣ. The columns (documents) wj of
W (or rows in V) are such that vjΣ = wjU.

CONSEQUENCE: representing document vectors (i.e. columns in W)
through vjΣ MEANS combining linearly (through Σ) the rows (i.e. the
correlations wth terms ui) of the orthonormal basis expressed by U

UΣ and VΣ express two mappings from terms in V and documents in
T into the k-dimensional space generated by the SVD
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LSA: semantic interpretation
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LSA: semantic interpretation

LSA: semantic interpretation (cont’d)

Trasnformation are linear combinations towards the k dimensions
corresponding to concepts (i.e. latent topics). Infact:
Matrices U and V are orthonormal basis for the k-dimensional Latent
Semantic space. Dimensions here correspond to priviledged directions
of the linera transformation defined by W and are lineari combinations
in WWT (or WTW): in other owrds they corresponds to concepts (or
discussion topics) determined by the systematic occurrences of some
terms with some documents (and viceversa).
Term vectors wi are represented in such space through WV that is the
(linear) combination of source documents, equivalent to compute UΣ

Analogously, documents wj through WTU=VΣ
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LSA: semantic interpretation

LSA: an example of SVD over an artificially derived term to
document distribution
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LSA: semantic interpretation

LSA: an example



Overview SVDxLSA LSA and Machine Learning LSA and kernels References

LSA: semantic interpretation

LSA: ... computing UΣVT
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LSA: semantic interpretation

LSA: Rank reduction, k = 2
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LSA: semantic interpretation

LSA: exploiting SVD in ad hoc IR

Computing a Query-Doc similarity score

For n documents, matrix V encodes n rows, one for each component of
the document di projected in the LSA space
A query q can be processed as a pseudo-document and projected in the
LSA space by the same transformation
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LSA: semantic interpretation

LSA: exploiting SVD in ad hoc IR (2)

Use of the SVD

If W = UΣVT the it follows that:
V = WTUΣ−1

(in fact W = UΣVT that is WT = (UΣVT)T = V(UΣ)T = VΣUT

so that
VΣUT = WT that implies VΣ = WTU so that :
V = WTUΣ−1 )

d = dTUΣ−1

q = qTUΣ−1 (pseudo document)

After the k-order dimensionality reduction step:

d = dTUkΣ
−1
k

q = qTUkΣ
−1
k (pseudo document)

As a consequence: sim(q,d) = sim(qTUkΣ
−1
k ,dTUkΣ

−1
k )
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LSA: semantic interpretation

LSA: query and document vectors
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LSA: semantic interpretation

LSA: ... computing the query vector
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2ndOrd

LSA: Second order relations

LSA and word meaning

The LSA representation of terms depends on all the co-occurrences in
the different documents (i.e. different discourse contexts) expressed by
the initial matrix W

The term t representation in LSA is no longer the versor t⃗ orthogonal to
(and thus independent from) all the other versors

Similarity between two terms ti and tj depends on the transfromation
UΣ and inherits information from all the shared co-occurrences with
other terms tk (with tk ̸= ti, tj). These dependences characterize second
order relations.
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LSA and Lexical Semantics

LSA: SVD and term clustering
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LSA and Lexical Semantics

LSA: SVD and term clustering
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LSA and Lexical Semantics

LSA: SVD and term clustering
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LSA and Lexical Semantics

LSA: Weighting policies

For obtaining useful LSA spaces different weightiing models for the matrix
W can be used to improve the search for better possible SVD and linear
transformations

Frequency. cij (or its normalized variants cij
|dj| ,

cij
maxlkclk

)

(Landauer) wij =
log(cij+1)

1+∑
N
j=1

cij
ti

log
cij
ti

logN

=
log(cij+1)

1+∑
N
j=1 PijlogPij

logN

(Bellegarda, Language modeling) wij = (1− εi)
cij
nj

con

εi =− 1
log2N ∑

N
j=1

cij
ti

log cij
ti
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LSA and Lexical Semantics

LSA: Term similarity metrics

The LSA term similarity is defined by:

WWT

computed by:

UΣVT(UΣVT)T = (UΣVT)(VΣTUT) = UΣΣTUT = UΣ(UΣ)T

Applications: Document Indexing (representation of docs through the LSA
terms ), Word/term clustering (Clustering of terms in topics or sinonimy
classes).
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LSA and Lexical Semantics

LSA: Word Clustering
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LSA and Lexical Semantics

LSA: Metrics for document similarity

Lsa document similairty is definec by:

WTW

computed through:

(UΣVT)TUΣVT = (VΣTUT)(UΣVT) = VΣΣVT = VΣ(VΣ)T

Applications: Document clustering and Text Classification
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LSA and Lexical Semantics

LSA: Other Applications

Semantic Inferece in Automatic Call Routing

The task: mapping questions (to a Call Center) into a procedure for
replying (e.g. in a dialogue).
Training Questions (4 classes, T1-T4):
(T1) What is the time, (T2) What is the day, (T3) What time is the
meeting, (T4) Cancel the meeting

the is irrelevant, time is ambiguous (between class T1 and T3)
Input (i.e. test) question: when is the meeting (expcted label: T3)
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LSA and Lexical Semantics

Automatic Call Routing in the LSA space
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LSA vs. Machine Learning

What is the relation between LSA and learning paradigms?

Induction in LSA
LSA provides a general method for extracting a similarity estimate
from data and every example-driven algorithm can use it for guide the
generalization (i.e. optimizing the model such as in selecting the
separating hyperplane)

LSA provides a data-driven metric suitable to the application of every
algebraic approach to learning (e.g. pretraining for a neural network)
As it can be applied to unlabeled data LSA extends the generalization
power of supervised method by exploiting data properties independent
from the task (labeled data). This is fully complementary to the task
itself
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LSA: Machine Learning tasks for IR

LSA applications in Relevance Feedback

Relevance feedback is a technique to refine the user query definition by
extending (or reweighting) it according to the IR system output (i.e. ge
results against the currentl available collection). LSa can be used in this
scenario for:

Automatic Global Analysis, i.e. the a priori costruction of a lexicon of
similar terms.
Estimating relevance before query expansion.
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LSA: Machine Learning tasks in NLP

LSA and language semantics

SVD in lexical semantic analysis: semantic spaces for distributional
analysis; automatic compilation of word spaces from corpora (see
(Pado and Lapata, 2007))
Word Sense Discrimination as clustering in LSA-like spaces (see
Schutze, 1998)
Word Sense Disambiguation in LSA spaces (see (Gliozzo et al., 2005),
(Basili et al., 2006)
Framenet predicate induction (see (Basili et al., 2008), (Pennacchiotti et
al., 2008))
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LSA and Kernel methods for Machine Learning

Kernel functions K(o⃗i ,⃗o) can be used as similarity estimates of term or
document pairs, oi e o, in complex spaces in order to train kernel machines
(e.g. SVMs) according to:

h(⃗x) = sgn

(
l

∑
i=1

αiK(oi,o)+b

)

where x⃗ = φ(o), and l depends on the learning set.
It is natural to adopt the inner product in LSA spaces, as a definition of
K(oi,o) . This approach has been applied to tasks such as:

Word Sense Disambiguation (automatic classification of a word w
occurrences in texts into one of w sense definitions)
Text Categorization (document classification)
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LSA-based Domain Kernels: Applications to Lexicons

Basic Assumptions
Let oi to represent a "term" t⃗i
Let a standard Vecor Space Model to be used for representing t⃗i (e.g.
applying the tf × idf weighting)
The source matrix T is thus terms by documents
By applying SVD we get a lexical vector for each term in the LSA
space
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LSA-based Domain Kernels (2)

Process:
First, apply the LSA trasformation of dimension k, oi← t⃗i (Note: t⃗i are
the LSA vectors of oi)
Use the term similarity metrics between t⃗i pairs as the estimation of the
object oi similarity (estimation in the Latent Semantic Space)
Train a supervised classifier (a semantic labeling system) through the
kernel K(., .) defined as follows:
K(⃗ti ,⃗ t) = K(φ−1(oi),φ

−1(o)) .
= KLSA(o,oi) where:

KLSA(o,oi) = oi⊗LSA o

Note: ⊗LSA stands for the inner product between pairs of oi objects (i.e.
terms) as computed in the LSA space.
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LSA space for terms in a foreign language (portuguese)
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LSA-based Domain Kernels (3)

LSA determines the SVD transformation and the order k approximation.
k is the dimension of the LSA space, i.e. the number of principal
components of the original problem (i.e. the standard VSM)
We can interpret these notions as domains:

oi corresponds to the description of the i-th term t⃗i in the different
domains
similar terms according to KLSA(oi,o) share a large number of domains
the resulting kernel KLSA(oi,o) is called Latent Semantic Kernel
(Cristianini&Shawe-Taylor,2004) or domain kernel (Gliozzo &
Strapparava,2005).
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LSA-based Domain Kernels:

Application to Text Categorization

a document xi (like a term) can be mapped into an LSA space, oi← x⃗i

the k components of oi stand for the description of xi in the new space
the resulting kernel KLSA(oi,o) captures the similarity according to the
domain description of x⃗i

a linear supervised classifier training (e.g. an SVM) determines the
hyperplane equation in the LSA space, such as:

f (⃗x) =

(
l

∑
i=1

αiKLSA(oi,o)+b

)

Note: LSA can be computed on an unlabeled document collection and is
thus external to the training data set.
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