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Recurrent Neural Networks

 Used mainly to model sequences

 naturally applied to textual and speech problems

 A representation at time step i is made 

dependent on the representations of the 

preceding steps

 connections between units form a directed cycle



Recurrent Neural Networks

 Commons tasks are

 language models: predict the next word in a 

sentence given the already seen word

 speech recognition: predict a word given the 

current wave form and the preceding words

 machine translation: produce a sequence in a 

target language given an input sequence in a 

source language

 The most famous and effective model of RNNs 

are the Long-Short Term Memory (LSTM) Networks 
(Sepp Hochreiter and Jürgen Schmidhuber, 1997)

 they are meant to better deal with long-range 

dependencies



Neural Networks for Natural 

Language Processing 

 Linguistic features have been highly enriched since NN 

language models have been introduced

 Words, n-grams as well as sentences, paragraphs have been

modeled through efficient and highly robust neural learners

 Representation are usually dense Embeddings

 Making explicit Use of the contexts: Recurrent Networks

 Beyond Classification: Transducing, Ranking, Encoding, 

Decoding



Recurrent Neural Networks

 For example, consider the classifcal form of a 

dynamical system

 Its corresponding unfolded computational graph

is as follows







Using a RNN



Simple RNN
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Recurrent neural networks (RNNs)
• An RNN can be unwrapped and implemented using the same 

weights and biases at each step to link units over time as 

shown below 

• The resulting unwrapped RNN is similar to a hidden Markov 

model, but keep in mind that the hidden units in RNNs are not 

stochastic

Slides for Chapter 10, Deep learning, from the Weka book, Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



Recurrent neural networks 

(RNNs)

 Recurrent neural networks apply linear matrix operations to the current 

observation and the hidden units from the previous time step, and the resulting 

linear terms serve as arguments of activation functions act():

 The same matrix Uh is used at each time step 

 The hidden units in the previous step ht-1 influence the computation of ht where 

the current observation xt contributes to a Whxt term that is combined with Uhht-1 

and bias bh terms 

 Both Wh and bh are typically replicated over time

 The output layer is modeled by a classical neural network activation function 

applied to a linear transformation of the hidden units, the operation is replicated 

at each  step. 
Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal
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BPPTT

 For training a recurrent network, a solution is to unfold the 

recurrent structure and expand it as a feedforward neural 

network with a certain number of time steps: then apply 

traditional backpropagation onto this unfolded neural 

network. 

 This solution is known as Backpropagation through Time 

(BPTT), independently invented by several researchers 

including (Robinson and Fallside, 1987; Werbos, 1988; Mozer, 

1989)



The loss, exploding and vanishing 

gradients

 The loss for a particular sequence in the training data can be 
computed either at each time step or just once, at the end of 
the sequence. 

 In either case, predictions will be made after many processing 
steps and this brings us to an important problem. 

 The gradient for feedforward networks decomposes the 
gradient of parameters at layer l into a term that involves the 
product of matrix multiplications of the form (l)WT(l+1) (remind 
lessons on backpropagation in feedforward network)

 A recurrent network uses the same matrix at each time step, 
and over many steps the gradient can very easily either 
diminish to zero or explode to infinity—just as the magnitude of 
any number other than one taken to a large power either 
approaches zero or increases indefinitely

Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



BPTT: the algorithm

1. Present a sequence of k1 timesteps of input and 
output pairs to the network.

2. Unroll the network then calculate and 
accumulate errors across k2 timesteps.

3. Roll-up the network and update weights.

4. Repeat

 The TBPTT algorithm requires the consideration of two parameters:

 k1: The number of forward-pass timesteps between updates. 

 this influences how slow or fast training will be, given how often weight 
updates are performed.

 k2: The number of timesteps to which to apply BPTT.

 it should be large enough to capture the temporal structure in the 
problem for the network to learn. 

 Too large a value results in vanishing gradients



Dealing with exploding 

gradients

 The use of L1 or L2 regularization can mitigate the problem of 
exploding gradients by encouraging weights to be small. 

 Another strategy is to simply detect if the norm of the gradient 
exceeds some threshold, and if so, scale it down. 

 This is sometimes called gradient (norm) clipping where for a 
gradient vector g and threshold T, 

 where T is a hyperparameter, which can be set to the average norm 
over several previous updates where clipping was not used. 

if    then  
T

T g g g
g

Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



Long-term Dependencies

with one single layer



LSTMS (Hochreiter & Schmidhuber, 1997)

 The Long Short-Term Memory (LSTM) architecture (Hochreiter

& Schmidhuber, 1997) was designed to solve the vanishing 
gradients problem. 

 Main idea: to introduce as part of the state representation 

also specialized memory cells (a vector C) that can 

preserve gradients across time. 

 Access to the memory cells is controlled by gating 

components, i.e. smooth mathematical functions that 

simulate logical gates. 



LSTMS

 At each input state, a gate is used to decide: 

 how much of the new input should be written to the memory cell, 

 how much of the current content of the memory cell should be forgotten. 

 Concretely, a gate g in [0;1]n is a vector of values in the range [0; 1] 
that is multiplied component-wise with another vector C in Rn, and the 
result is then added to another vector. 

 Indices in C corresponding to near-one values in g are allowed to pass, 
while those corresponding to near-zero values are blocked.



4 layer RNNS



… The memory component 

and the gates

 The FORGET gate



… The memory component 

and the gates

 The INPUT gate



… The memory component 

and the gates

 Updating the MEMORY



… The memory component       

and the gates

 Computing the OUTPUT



LSTMS 



LSTM



LSTMs and vanishing 

gradients
 The so-called “long short term memory” (LSTM) RNN architecture was 

specifically created to address the vanishing gradient problem.

 Uses a combination of hidden units, elementwise products and sums 
between units to implement gates that control “memory cells”. 

 Memory cells are designed to retain information without modification 
for long periods of time. 

 They have their own input and output gates, which are controlled by 
learnable weights that are a function of the current observation and 
the hidden units at the previous time step. 

 As a result, backpropagated error terms from gradient computations 
can be stored and propagated backwards without degradation. 

Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal
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a) b)

Other RNN architectures
a) Recurrent networks can be made 

bidirectional, propagating information in 
both directions 

 They have been used for a wide variety of applications, 
including protein secondary structure prediction and 
handwriting recognition 

b) An “encoder-decoder” network creates a 
fixed-length vector representation for 
variable-length inputs, the encoding can be 
used to generate a variable-length 
sequence as the output 

 Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



Training different Types of RNNs



Training different Types of RNNs



…

…

Encoder-decoder deep 

architectures
 Given enough data, a deep encoder-decoder 

architecture (see below) can yield results that 

compete with hand-engineered translation systems.

 The connectivity structure means that partial 

computations in the model can flow through the 

graph in a wave (darker nodes in fig.)

Slides for Chapter 10, Deep learning, from the Weka book, 

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



Attention-based RNNs

 A NN (e.g. B) is used to attend the outcome of a 

second network A, e.g. (Vaswani et al., 2017)



Attention: motivations
 From (Dive into Deep Learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu 

and Smola, Alexander J., 2021) , 



Attention functions

Zhang et al, 2021



Attention functions: 

examples (1)

 In general, when queries and keys are vectors of different 

lengths, we can use additive attention as the scoring function. 

Given a query and a key the additive attention

scoring function

 where learnable parameters and                     

. 

 In a learnable setting, the query and the key are concatenated 
and fed into an MLP with a single hidden layer whose number of 

hidden units is h, a hyperparameter. By using as the activation 

function and disabling bias terms, we implement additive 

attention in the following



Attention functions: scaled 

dot-product  (2)

 When q and k are d-dimensional vectors whose independent dimensions 

have mean=0 and variance=1, their dot product has mean = 0 and a 

variance = d. To ensure that the variance of the dot product still remains 

one regardless of vector length, the scaled dot-product attention scoring 

function is adopted

 It divides the dot product by  . In practice, we often think in 

minibatches for efficiency, such as computing attention for n queries and 

m key-value pairs, where queries and keys are of length d and values are 

of length v. The scaled dot-product attention of queries 

keys                   and values is



Attention: multihead



Attention-based RNNs



Attention mechanisms in 

Machine Translation



Visualization of the attention 

distribution in QA

 Supporting fact 

sequences for an 

example question 

 On the right the 

attentions over facts 

for individual 

sequences

 Each sequence is 

mapped into a 

Markov process



Attention & enconding

 IN a decoding process (e.g. machine translation) there are 
three kinds of dependencies for neural architectures

 Dependencies can establish between

 (1) the input and output tokens

 (2) the input tokens themselves

 (3) the output tokens themselves

 Examples:

 MT

 QA where the query the answer paragraph is the input and the 
matched answer is the output



Attention in MT:                 
long distance dependencies



From RNNs to Transformers



Bidirectional Encoder Representations 

from BERT - Transformers (Devlin et al. ’18)

Attention is a function that maps a 

query Q and a set of key-value pairs 

<K,V> to an output

Scaled Dot-Product Attention

L x de

L x L



Input-Output Attention



BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

Division by de

Only for numerical 

stability



BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

L x L



BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

L x L



BERT & NLP



BERT & NLP (2)

 How to optimize the encoding?

 General and complex tasks defined in (Devlin et al., 2018) are

 Masked Language Modeling (15%)

 Inpired by Distributional Hypothesis

 Can be Simulated and does not require any labeling

 Next Sentence Prediction 

 Inspired by Textual Inference tasks (e.g. Textual Entailment)

 Can be Simulated and does not require any labeling

 Source Representations

 Words? And why not subword (in the BERT jargon: word pieces)?

 Useful to deal with out-of-vocabulary phenomena



BERT (Devlin et al. ’18)

BERT for single sentence classification (Sentiment analysis, Intent 

Classification, etc.)



BERT (Devlin et al. ’18)

BERT for Sequence Tagging Tasks (e.g., POS tagging, Named Entity 

Recognition, etc.)



BERT (Devlin et al. ’18)

BERT for sentence pairs classification (Paraphrase Identification, 

answer selection in QA, Recognizing Textual Entailment)



BERT (Devlin et al. ’18)

BERT for Answer Span Selection in Question Answering



A QA example on SquAD

 Cross-lingual Question Answering



BERT (Devlin et al. ’18)

Pretraining on two unsupervised prediction tasks:

 Masked Language Model: given a sentence s with missing words, 
reconstruct s

 Example: Amazon <MASK> amazing  Amazon is amazing

 In BERT the language modeling is deeply Bidirectional, while in ELMo
the forward and backward LMs were two independent branches of 
the NN

 Next Sentence Prediction: given two sentences s1 and s2, the task is 
to understand whether s2 is the actual sentence that follows s1

 50% of the training data are positive examples: s1 and s2 are actually 
consecutive sentences

 50% of the training data are negative examples: s1 and s2 are randomly 
chosen from the corpus



BERT pretraining: 
Input representations

INPUT

WordPieces

Embeddings

Sentence

Embeddings

Position

Embeddings

All these embeddings

are learned during the 

(pre)training process

MASK

EMASK

In pre-training 15% of the input tokens 

are masked for the masked LM task



Attention mechanisms in 

Speech Recognition

https://arxiv.org/pdf/1508.01211.pdf



A complex application of LSTM (and 

recently Transformers): Image captioning



Image Captioning

 Image to captions 

 Convolutional Neural Network to learn a 

representation of the image

 (Bi-directional) Recurrent Neural Network to 

generate a caption describing the image

 its input is the representation computed from the 

CNN

 its output is a sequence of words, i.e. the caption





Attention: a dynamic 

rendering



Perspectives

 Injecting bias (e.g. linguistic structures) within the learning 

architectures

 Making use of hybrid architectures integrating visual and 

linguistic knowledge

 Extending the epistemological transparency of current

architectures: Explainable AI

 Making natural language data to work as a representation

layer for different cognitive functions (e.g HRI in robotics
but also vision)



RNNs - Bibliographic Notes & 

Further Readings

 Graves et al. (2009) demonstrate how recurrent neural networks are 
particularly effective at handwriting recognition, 

 Graves et al. (2013) apply recurrent neural networks to speech. 

 The form of gradient clipping presented above was proposed by Pascanu
et al. (2013).

 Hochreiter and Schmidhuber (1997) is the seminal work on the “Long Short-
term Memory” architecture for recurrent neural networks; 

 our explanation follows Graves and Schmidhuber (2005)’s formulation. 

 Yoav Goldberg, A Primer on Neural Network Models for Natural Language 
Processing, Journal of Artificial Intelligence Research volume 57 pp 345-420, 
2016

 Greff et al. (2015)’s paper “LSTM: A search space odyssey” explored a wide 
variety of variants and finds that: 

 none of them significantly outperformed the standard LSTM architecture; and 

 forget gates and the output activation function were the most critical components. 
Forget gates were added by Gers et al. (2000).



RNNs - Bibliographic Notes & 

Further Readings
 IRNNs were proposed by Le et al. (2015)

 Chung et al. (2014) proposed gated recurrent units

 Schuster and Paliwal (1997) proposed bidirectional recurrent neural networks 

 Chen and Chaudhari (2004) used bi-directional networks for protein structure 
prediction; Graves et al. (2009) used them for handwriting recognition

 Cho et al. (2014) used encoder-decoder networks for machine translation, 
while Sutskever et al. (2014) proposed deep encoder-decoder networks and 
used them with massive quantities of data

 For further accounts of advances in deep learning and a more extensive 
history of the field, consult the reviews of LeCun et al. (2015), Bengio (2009), 
and Schmidhuber (2015)



Transformers
 (Vaswani 2017), Attention is all you need, 

https://arxiv.org/abs/1706.03762

 (Devlin et al 2018), BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding, 
https://arxiv.org/abs/1810.04805

 Other Task specific works:

 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 
Neural machine translation by jointly learning to align and 
translate. CoRR, abs/1409.0473, 2014.

 Effective Approaches to Attention-based Neural Machine 
Translation, Minh-Thang Luong Hieu Pham Christopher D. 
Manning, 2015, https://arxiv.org/abs/1508.04025v5

 Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. 
Structured attention networks. In International Conference on 
Learning Representations, 2017.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1508.04025v5

