Recurrent Neural

Networks

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2021/2022

Qutline

m Recurrent and Recursive Networks

Training Recurrent Networks

LSTMS

Applications to Language Processing

Perspectives

Recurrent Neural Networks

m Used mainly to model sequences
m naturally applied to textual and speech problems

m A representation at time stepiis made
dependent on the representations of the
preceding steps

B connections between units form a directed cycle

® ®» ® ®
] N

[—DA = A —

AN

Recurrent Neural Networks

m Commons tasks are

® Janguage models: predict the next word in a
sentence given the already seen word

m speech recognition: predict a word given the
current wave form and the preceding words

® machine translation: produce a sequence in d
target language given an input sequence in a
source language

®m The most famous and effective model of RNNs
are the Long-Short Term Memory (LSTM) Networks
(Sepp Hochreiter and JUrgen Schmidhuber, 1997)

® they are meant to better deal with long-range
dependencies

Neural Networks for Natural
Language Processing

m | inguistic features have been highly enriched since NN
language models have been introduced

m Words, n-grams as well as sentences, paragraphs have been
modeled through efficient and highly robust neural learners

m Representation are usually dense Embeddings
® Making explicit Use of the contexts: Recurrent Networks

m Beyond Classification: Transducing, Ranking, Encoding,
Decoding

Recurrent Neural Networks

m For example, consider the classifcal form of a
dynamical system

s = f(st=1.9).

m |ts corresponding unfolded computational graph
Is as follows

Figure 10.1: The classical dynamical system described by equation 10.1, illustrated as an
unfolded computational graph. Each node represents the state at some time ¢, and the
function f maps the state at ¢ to the state at ¢ + 1. The same parameters (the same value
of @ used to parametrize f) are used for all time steps.

A H—

®)

] !
A A
& & &

f Unfold

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input @ by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of a single time
step. (Right) The same network seen as an unfolded computational graph, where each
node is now associated with one particular time instance.

Many recurrent neural networks use equation 10.5 or a similar equation to
define the values of their hidden units. To indicate that the state is the hidden
units of the network, we now rewrite equation 10.4 using the variable h to represent
the state,

R = f(RE1 2®).9), (10.5)

illustrated in figure 10.2; typical RNNs will add extra architectural features such
as output layers that read information out of the state h to make predictions.

We can represent the unfolded recurrence after t steps with a function g(®:

=f(h"D 21 9). (10.7)
The function ¢{¥) takes the whole past sequence (x(®), &1 g(t=2) £2) g1)

as input and produces the current state, but the unfolded recurrent structure
allows us to factorize ¢() into repeated application of a function f.

Using a RNN

. 588

Unfold v v %
w A
i p) 0
\ /
~ -

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target 4. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ¥ = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U, hidden-to-hidden recurrent connections
parametrized by a weight matrix W, and hidden-to-output connections parametrized
by a weight matrix V. Equation 10.8 defines forward propagation in this model. (Left)
The RNN and its loss drawn with recurrent connections. (Right) The same seen as a
time-unfolded computational graph, where each node is now associated with one particular
time instance.

Simple RNN

11.1 Simple RNN

The simplest RNN formulation, known as an Elman Network or Simple-RNN (S-RNN), was
proposed by Elman (1990) and explored for use in language modeling by Mikolov (2012).
The S-RNN takes the following form:

si =Rspan(8i—1.Xi) = 9(xs W™ +8;_1W* + b)

Yi ZOSRNN(Si) = Sj

(38)

si,yi € R x; € R, WX ¢ ReXds WS ¢ REs>ds | ¢ R

That is, the state at position i is a linear combination of the input at position i and
the previous state, passed through a non-linear activation (commonly tanh or ReLU). The
output at position 7 is the same as the hidden state in that position.”

Recurrent neural networks (RNNS-

« An RNN can be unwrapped and implemented using the same
weights and biases at each step to link units over fime as
shown below

* The resulting unwrapped RNN is similar to a hidden Markov
model, but keep in mind that the hidden units in RNNs are not
stochastic

Y1 Yo) (Ym

Slides for Chapter 10, Deep learning, from the Weka book, Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Recurrent neural networks
(RNNs)

Recurrent neural networks apply linear matrix operations to the curren
observation and the hidden units from the previous tfime step, and the resulting
linear terms serve as arguments of activation functions acft():

ht = g(WhXt + Uhht—l +bh)
o :f(Woht +bo)

The same matrix U, is used at each time step

The hidden units in the previous step h, , influence the computation of h, where
the current observation x; conftributes to a W, x; term that is combined with U h,
and bias b,, terms

Both W,, and b,, are typically replicated over time

The output layer is modeled by a classical neural network activation function
applied to a linear transformation of the hidden units, the operation is replicated

at each step.
Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPPTT

m For training a recurrent network, a solution is fo unfold the
recurrent structure and expand it as a feedforward neural
network with a certain number of time steps: then apply

traditional backpropagation onto this unfolded neural
network.

m This solution is known as Backpropagation through Time
(BPTT), independently invented by several researchers

including (Robinson and Fallside, 1987; Werbos, 1988; Mozer,
1989)

The loss, exploding and vanishing
gradients

® The loss for a particular sequence in the fraining data can be
computed either at each time step or just once, at the end of
the sequence.

m |n either case, predictions will be made after many processing
steps and this brings us to an important problem.

® The gradient for feedforward networks decomposes the
gradient of parameters at layer [info a term that involves the
product of matrix multiplications of the form §/'WT(*1) (remind
lessons on backpropagation in feedforward network)

m A recurrent network uses the same matrix at each time step,
and over many steps the gradient can very easily either
diminish to zero or explode to infinity—just as the magnitude of
any number other than one taken to a large power either

approaches zero or increases indefinitely

Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPTT: the algorithm

1. Present a sequence of k1 timesteps of input and
output pairs to the network.

2. Unroll the network then calculate and
accumulate errors across k2 timesteps.

3. Roll-up the network and update weights.

4. Repeat

m The TBPTT algorithm requires the consideration of two parameters:
m k1: The number of forward-pass timesteps between updates.

m this influences how slow or fast training will be, given how often weight
updates are performed.

m k2: The number of timesteps to which to apply BPTT.

m it should be large enough to capture the temporal structure in the
problem for the network to learn.

m Too large a value results in vanishing gradients

Dealing with exploding
gradients

m The use of L1 or L2 regularization can mitigate the problem of
exploding gradients by encouraging weights to be small.

m Another strategy is to simply detect if the norm of the gradient
exceeds some threshold, and if so, scale it down.

m This is sometimes called gradient (norm) clipping where for a
gradient vector g and threshold T,

if [g|>T then g« g
ol

m where Tis a hyperparameter, which can be set to the average norm
over several previous updates where clipping was not used.

Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Long-term Dependencies .
with one single layer

®
:
®

!
i
ST)

®

®
:
6

> —@

-@ @—>—0

LSTMS (Hochreiter & Schmidhuber, 1997)

@ ®)
el
+ [idA

® The Long Short-Term Memory (LSTM) architecture (Hochreiter

& Schmidhuber, 1997) was designed to solve the vanishing
gradients problem.

® Main idea: to infroduce as part of the state representation
also specialized memory cells (a0 vector C) that can
preserve gradients across time.

m Access to the memory cells is controlled by gating

components, i.e. smooth mathematical functions that
simulate logical gates.

& ®

t 1
LSTMS Hra =
A TAAl

S & &

m At each input state, a gate is used to decide:
= how much of the new input should be written to the memory cell,
= how much of the current content of the memory cell should be forgotten.

m Concretely, a gate gin [0;1]"is a vector of values in the range [0; 1]
that is multiplied component-wise with another vector C in R?, and the
result is then added to another vector.

m |ndices in C corresponding to near-one values in g are allowed to pass,
while those corresponding to near-zero values are blocked.

4 layer RNNS

A
' b e e
> —@—@ >
G
A b
] [0~
- > >
\I Y AN J

|
&)

O

Neural Network Pointwise Vector
Layer Operation Transfer

> <

Concatenate Copy

... [Ine memery ecomponent
and the gaftes

®

!

fe=o(Wy-lhe1, 2] + by)

Ci_q

va

D\ D\
@ W

e
8
o+
|§|b|

®m The FORGET gate

... [Ine memery ecomponent
and the gaftes

Cy
L @ > %
. 3t = o (Wy-lhe—1, 2] + b;)
: Cy = tanh(We - [hy—1,2¢) + be)

® The INPUT gate [

... Ihne memory component
and the gates
®

Cy— Ci
t—1 @ @ ’ :

m Updating the MEMORY

va

Ct— 1 CX @

fi %tr-%§ Ci = fi x Ce1 + 9 % ét

... Ihne memory component
and the gates

®

Cy— Ci
t—1 @ @ ’ :

m Computing the OuTPUT

he
? QSR (WO [ht—laxt} ay bo)
X BN ht hy = o4 * tanh (C})

LSTMS

Mathematically, the LSTM architecture is defined as: 2
s; = Ristum(sj—1.%j) =[cj: hy]
cj=cj_1 Of +gOi
h; =tanh(c;) ® o
i =0 (x;W* + h;_; Wh)
f =0 (x;W*! + h;_; W) (39)
0 =0 (xjW*° 4 h;_; Who)
g = tanh(x; W*8 + hj_lwhg)

Yj = OLSTM(S_jJ :hj

sj € R?%™ x; e R% | ¢j hj,i,f,0,g € R%", WX g RI=>dh Who ¢ Rednxdn

e
—»—®

S)

A | Le

2 ®

Mathematically, the LSTM architecture is defined as:™> Neural Network

Layer
5; = RLSTM(Sj—l«Xj) :[le h_j]

cj=cj_1 Of+goi
h; =tanh(c;) ©® o

i =0 (x;WX 4+ h;_, Whi)

f =o(x;W* + h; ;W)

o = (x;W*° 4 h;_; Wh°)

g = tanh(x; W*® + hj_lwhg)

yi = OLSTI\-I(Sj,) :hj

O

Pointwise
Operation

(39)

sje R¥™ . x; e R™, ¢, hj,i,f,0,g € R W*° g RI=>dn Whe ¢ Rdnxin

|
&

Vector
Transfer

=

Concatenate

—~

Copy

LSTMs and vanishing
gradients

The so-called "“long short term memory” (LSTM) RNN architecture was
specifically created to address the vanishing gradient problem.

Uses a combination of hidden units, elementwise products and sums
between units to implement gates that control “memory cells”.

Memory cells are designed to retain information without modification
for long periods of time.

They have their own input and output gates, which are controlled by
learnable weights that are a function of the current observation and
the hidden units at the previous time step.

As a result, backpropagated error terms from gradient computations
can be stored and propagated backwards without degradation.

Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Other RNN architectures

a) Recurrent networks can be made
bidirectional, propagating information in
both directions

m They have been used for a wide variety of applications,
including protein secondary structure prediction and
handwriting recognition

b) An “encoder-decoder” network creates @
fixed-length vector representation for
variable-length inputs, the encoding can be
used to generate a variable-length
seguence as the output

m Parficularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Training different Types of RNNs

i R,0 ;L
L___r___:
X1

loss

o predict & T
. cale loss

| R,O iJ R.0 L R.O l. R,0
L___[___J L___I___: L---T___: L___r___J
Mg Mg X4 X5

Figure 7: Acceptor RNN Training Graph.

© predict &

v

' 1
. cale loss L

T prediet & T

¥1
P sy
P RO —
X1

SO predict &
cale loss

i
4

Y2
1 52
R,O E—-
1
X2

B prediet &
cale loss

N

< predict &
. cale loss

¥a
R
| RO ——
Lo
X4

+ caleloss S

Figure 8: Transducer RNN Training Graph.

Training different Types of RNNs

loss

7 predict & N <7 prediet & 7 predict & “‘," predict & <7 prediet &

“._ ealeloss c caleloss . caleloss | cale loss /. caleloss

[}'1 lh |ﬁ"3 |f~'4 ly.&
d [ttt da TTTTETTy d rTTTITTT d mTTTeTTTy da mTTTETTTy
8 | [| [] IS [!
0 | 1 1 2 1 3 | 4 1
1 Rp,Op 1 Rp.Op i Rp,Op r i Rp.Op - 1 Rp.Op 1
[[[E— [[
K I | K I
X1 X2 Xs | Xgq X5
o T I g TS Toge TTTTTTTC Toe TTTTTOS Hr
So ! 1 St Sz 1 Sz 1 p S4 1 S5z
 Re, O ¢) Re.Op Re, O ¢ Re.Op ——
(I [E— (A [
X Xg X3 X4 Xsg

Ythe Ybrown ¥fox Yijumped Y.

Figure 9: Encoder-Decoder RNN Training Graph. I I [I I

— > (— - NN e > PN
(coneat concat, conecat coneat concat
SO S— C_‘_ i L coneat (H_ R
b b b b b
\E: vy ¥3 V3 ¥y
I I R O | I | I R A
. R",0" =—— R",0" =—— R",0" . RO . R%,07
Lo ! Lo 1 L] Lo ! Lo !
f £ f f R
Y1 b] ¥3 ¥a ¥Ys
£ ai S i S i FroTTT T frTTTo T f
Sg 1 ! Sy ! So 1 ! Sg 1 ' Sy ' Sg
| R/,0f —|— R/,0/ —|— R/,Of —|— RIOF — ' RF,O —|——
1 1 1 I I
Lo Commo] Lo Lo Lo
Xthe Xbrown X fone Xjumped X,

Figure 11: hiRNN over the sentence “the brown fox jumped .”.

Encoder-decoder deep

architectures

m Given enough data, a deep encoder-decoder
architecture (see below) can yield results that
compete with hand-engineered franslation systems.

m The connectivity structure means that partial
computations in the model can flow through the
graph in a wave (darker nodes in fig.)

q

I %
Slides for Chapter 10, Deep learning, from the Weka book,
Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

P

Attention-based RNNs

= A NN (e.g. B) is used to attend the outcome of @
second network A, e.g. (Vaswani et al., 2017

Network B focuses on different
information from network A at
every step.

Attention: motivations

= From (Dive into Deep Learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu
and Smola, Alexander J., 2021).

Output
Keys Values
(Nonvolitional cues) (Sensory inputs)

>
EE—

.| Attention

pooling [\
\
> \
\
> [E—
Query]
(Volitional cue)

Attention functions

' +
Attention Attention O > Output

scoring .
function e

l)
L.

A&

Keys — — Values

it

B
%

Query)

Zhang et al, 2021

Attention functions:
examples (1)

® |[n general, when queries and keys are vectors of different
lengths, we can use additive attention as the scoring function.
Given a guery q € R?and a key k € R¥, the additive attention
scoring function

a(q,k) = w, tanh(W,q + W;ik) € R,

= where learnable parameters W, € R4, W € R"** and
h
w, € R".

® |n alearnable setting, the query and the key are concatenated
and fed into an MLP with a single hidden layer whose number of
hidden units is h, a hyperparameter. By using as the activation
function and disabling bias terms, we implement additive
attention in the following

Attention functions: scaled
dof-product (2)

" When g and k are d-dimensional vectors whose independent dimensions
have mean=0 and variance=1, their dot product has mean =0 and a
variance = d. To ensure that the variance of the dot product still remains
one regardless of vector length, the scaled dot-product attention scoring

function is adopted a(q, k) = qu/\/E

m |t divides the dot product by +/d. In practice, we often think in
minibatches for efficiency, such as computing attention for n queries and
m key-value pairs, where queries and keys are of length d and values are
of length v. The scaled dot-product attention of queries Q € R™<¢,
keys K € R™¢ and values V e R™* is

T

K
softmax (Q

)V e R™™",
Vd

Attention: multihead

FC
4
[—> Concat 4—]
Attention Attention
{ ! t 1 1 !
FC FC FC FC FC FC

— =)]

Queries Keys Values

The attending RNN generates a
query describing what it wants N
to focus on.

®‘\ Q‘\ ‘\ @‘\ Each item is dot producted with the
)

(query to produce a score, describing
how well it matches the query. The
scores are fed into a softmax to
create the attention distribution.

—

softmax

Attention mechanisms in
Machine Translation

accord sur la Zone economique europeenne a etée signe en aont 1992 <end>
I accord sur la Zone economigue europeenng a ete signe en aolt 1992
Bl -B}—|B|l »|/Bl Bl > Bl |Bl >|Bl (Bl >|B|l-|B|l |B| | Bl
A el A leas| A || A el A e A |es| A || A |es| A || A | e —s| A | e
1 [l [[1 I 1 I ‘ 1 l
the agreement on the European Economic Area was signed in August 1992

Diagram derived from Fig. 3 of Bahdanau, ef al. 2014

1
B L
A |
1

=g

<€

Visualization of the attention
distribution in QA

0.18
julius is a lion
= Supporting fact J @ 0, ON M
sequences for an greg is 2 frog (2) O\ OoN ¥
example question gre s it (3) © w
0.12
= On the right the o is it (7) @ 9750
attentions over facts K e
bernhard is a rhino
for individual @\\ © © Bt
Sequences brianisarhino@ \@\ @
= Each sequence is il is a lion (7) Q) \\\\ OF W
mapped into a . N s
Markov process e e]
lily is gray @ @ @ 0.02
Question: what color is bernhard? green 555

Correct Facts: 5, 6, 8

Attention & enconding

® [N a decoding process (e.g. machine translation) there are
three kinds of dependencies for neural architectures

m Dependencies can establish between
= (1) the input and output tokens

m (2) the input tokens themselves

= (3) the output tokens themselves

" Examples:
m MT

m QA where the query the answer paragraph is the input and the
matched answer is the output

Attention in MT:

long distance dependencies

A 0 8mA

RNN g RNN gg RNN

#h =3 A & T .

Multi-Head Attention

7\

Multi-! iead Attention

"

like cats more | than dogs

From RNNSs o Transformers

Qutput
Probabilities

[

-
Add & Norm

Feed
Forward

| Add & Norm z

& 1 ™
Add & Normn Multi-Head
Feed Attention
Forward D) N x
Nix Add & Norm
¢->| Add & Norm l e
Multi-Head Multi-Head
Attention Attention
) , W
(S — J U —
Positional & & Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Bidirectional Encoder Representations
from BERT - Transformers \peyjin et al. '18)

Scaled Dot-Product Attention
Attention is a function that maps a
1 query Q and a set of key-value pairs
I MatMul <K.V> to an output

Fy
|—1—| LxL
SoftMax ' ‘ '
4

Mask (opt.) l

Scale
/ i Multi-Head Attention

[Matmu | =
vV K Q S P
/A

Attention
|

Input-Output Aftention

keys

attention scores

BERT

Scaled Dot-Product Attention

1

[MatMul
1 1
SoftMax

1
Mask (opt.) l

Devlin et al. '18)

Division by Vd,
/ o
Scale Only for numerical

1 stability
[Matvul

(I

vV K Q
T

L x dg

BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

1

[MatMul

)) L x L

SoftMax
%

Mask (opt.) l S N

Scale I

1
MatMul
t 1
Vo K Q
N T

L x dg

BERT

Scaled Dot-Product Attention

1

[MatMul
)) LxL
SoftMax

1
Mask (opt.) l

Scale I

1
MatMul

(I

vV K Q
T

L x dg

Devlin et al. '18)

BERT & NLP

Encoder
13 512-D vectors (01,04,...) (03,12 ..)
h1 h? h3
Attention-based Encoder =
Attention
N ‘ ; N ‘ ‘ 13 512-D word Multi-Head Attention
G Rl L embedding vecto
X X, X
"New" "England" "Patriots"

©0,0,1,0,..)

BERT & NLP (2)

= How to optimize the encodinge

m General and complex tasks defined in (Devlin et al., 2018) are
» Masked Language Modeling (15%)
m |npired by Distributional Hypothesis
m Can be Simulated and does not require any labeling
m Next Sentence Prediction
m |nspired by Textual Inference tasks (e.g. Textual Entailment)
m Can be Simulated and does not require any labeling

m Source Representations
m Wordse And why not subword (in the BERT jargon: word pieces) ¢
m Useful to deal with out-of-vocabulary phenomena

BERT

Devlin et al. '18)

Class
Label
5
BERES
BERT
E[C.'LS] E, E, Ey
s o o
e & s # s g —
[CLS) Tok 1 Tok 2 Tok N

Single Sentence

BERT for single sentence classification (Sentiment analysis, Intent
Classification, etc.)

BERT

(Devlin et al. '18)

B-PER :
BERT
Ers) E, E, E,
s
a i g s iy —
[CLS] Tok 1 Tok 2 Tok N

Single Sentence

BERT for Sequence Tagging Tasks (e.g., POS tagging, Named Enfity
Recognition, etc.)

BERT

(Devlin et al. '18)

Class

Label
e)] (e) -
BERT
Ecs || Eq | - E, el [I ES SR
P P s e P
L L L L L
| [CLS) T,?“ (Tﬁ“ W([SEF] 1 Tﬂk
I |
I
Sentence 1 Sentence 2

BERT for sentence pairs classification (Paraphrase |dentification,
answer selection in QA, Recognizing Textual Enfailment)

BERT

Devlin et al. '18)

Start/End Span

e)] -
Erevs) E, E\ E[SEF-‘J 1 Ex
o P P o P P
L | |} | | |

| [CLS] T:"‘ (TE“][[SEF] “ T,Im‘ W T;“

| |
I
Question Paragraph

BERT for Answer Span Selection in Question Answering

A QA example on SQUAD

m Cross-lingual Question Answering

\N\JVIL IJ 1T1INA

Insert your question here:

Q How is Covid-19 transmitted? Q SEARCH

ex. Sintomi covid-19 sui bambini?
@ O

In-flight Transmission Cluster of COVID-19:A © *
Retrospective Case Series Running title: In-flight

Transmission Cluster of COVID-19
figure

Naibin Yang, Yuefei Shen, Chunwei Shi, Ada Hoi, Yan Ma, Xie Zhang, Xiaomin Jian, Liping Wang, Jiejun Shi,
Chunyang Wu, Guoxiang Li, Yuan Fu, Keyin Wang , Mingqin Lu, Guoqging Qian, * N Yang. Y Shen, C Shi, AMa

easily transmitted than SARS-CoV [25]. Different from SARS, COVID-19 can be transmitted during the
incubation period [26], or by an asymptomatic patient [27). Features of transmission between SARS
and COVID-19 were largely different. For example, health workers account for majority of persons
infected with SARS-CoV, while infection with SARS-CoV-2 usually develops in social clusters or family
clusters [3]. wider-Smith reported the first case in-flight transmission of SARS from Singapore [28].
They suggested that it is unlikely to have mass infection of SARS on airplanes. However, we believe it
is very likely that mass infection of COVID-19 can occur during a flight, especially when respiratory
and contact precautions were not in place.How the SARS-CoV-2 in our study transmitted among the
ten passengers was largely unknown. Transmission via aerosol is a possible way for SARS-CoV-2,
especially when persons are placed for a long-time under high concentration of aerosol

BERT

Devlin et al. '18)

Pretraining on two unsupervised prediction tasks:

= Masked Language Model: given a sentence s with missing words,
reconsfruct s

B Example: Amazon <MASK> amazing - Amazon is amazing

m |n BERT the language modeling is deeply Bidirectional, while in ELMo
the forward and backward LMs were two independent branches of
the NN

= Next Sentence Prediction: given two sentences s, and s,, the task is
to understand whether s, is the actual sentence that follows s,

m 50% of the fraining data are positive examples: s; and s, are actually
consecutive sentences

m 50% of the fraining data are negative examples: s, and s, are randomly
chosen from the corpus

BERT pretraining:

Input representations

INPUT [CLS] my dog is {cute | [SEP]

WordPieces
Embeddings Breisi || Emy || Faog || Sis || Eeute | | Erser
S + + + + + +

entence
Embeddings| | Ea || Ba || Ea || Ba || Ea || Ea
+ + + + + +

Position

Embeddings Es || B || B5 || B || Ba || Es

All these embeddings
are learned during the
(pre)training process

In pre-training 15% of the input tokens
are masked for the masked LM task

Attention mechanisms in
Speech Recognition

o o = — = <end> output text

network B

network A

input audio

Figure derived from Chan, et al. 2015 https://arxiv.org/pdf/1508.01211.pdf

A complex application of LSTM (and
recently Transtormers): Image captioning

7 Py A T SRR s
i Y DA E AN T
DRI, . S S e
R e A Vs
‘e B Al
3 ¥ it
% % J
e 3
1
3 ® -2
-y ‘
G . '.
= -
i n -
| b,
= - -
Y -
- v . . L N - _—
¢

A woman is throwmg a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

Image Captioning

® [mage to captions

m Convolutional Neural Network fo learn a
representation of the image

m (Bi-directional) Recurrent Neural Network to
generate a caption describing the image

m jts input is the representation computed from the
CNN

m ifs output is a sequence of words, i.e. the caption

“straw” “hat” END

A e L e R
"baseball player is throwing ball
in game.'

START MStraW" Mhat"

A___|
bird

flying

over

14x14 Feature Map

d
body
of
water
L. Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word
generation
J

Attention: a dynamic
rendering

Perspectives

m |njecting bias (e.g. linguistic structures) within the learning
architectures

® Making use of hybrid architectures integrating visual and
linguistic knowledge

m Extending the epistemological transparency of current
architectures: Explainable Al

® Making natural language data to work as a representation
layer for different cognitive functions (e.g HRI in robofics
but also vision)

RNNS - Bibliographic Notes &
Further Readings

Graves et al. (2009) demonstrate how recurrent neural networks are
particularly effective at handwriting recognition,

Graves et al. (2013) apply recurrent neural networks to speech.

The form of gradient clipping presented above was proposed by Pascanu
et al. (2013).

Hochreiter and Schmidhuber (1997) is the seminal work on the “Long Short-
term Memory” architecture for recurrent neural networks;

= our explanation follows Graves and Schmidhuber (2005)'s formulation.

Yoav Goldberg, A Primer on Neural Network Models for Natural Language
E’(rjocéessing, Journal of Artificial Intelligence Research volume 57 pp 345-420,
1

Greff et al. (2015)'s paper “LSTM: A search space odyssey” explored a wide
variety of variants and finds that:

® none of them significantly outperformed the standard LSTM architecture; and

m forget gates and the output activation function were the most critical components.
Forget gates were added by Gers et al. (2000).

RNNs - Bibliographic Notes &
Further Readings

IRNNs were proposed by Le et al. (2015)
Chung et al. (2014) proposed gated recurrent units
Schuster and Paliwal (1997) proposed bidirectional recurrent neural networks

Chen and Chaudhari (2004) used bi-directional networks for protein structure
prediction; Graves et al. (2009) used them for handwriting recognition

Cho et al. (2014) used encoder-decoder networks for machine translation,
while Sutskever et al. (2014) proposed deep encoder-decoder networks and
used them with massive quantities of data

For further accounts of advances in deep learning and a more extensive
history of the field, consult the reviews of LeCun et al. (2015), Bengio (2009),
and Schmidhuber (2015)

Transformers

= (Vaswani 2017), Attention is all you need,
https://arxiv.org/abs/1706.03762

m (Devlin et al 2018), BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,
hitps://arxiv.org/abs/1810.04805

m Other Task specific works:

= Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine franslation by jointly learning to align and
translate. CoRR, abs/1409.0473, 2014.

m Effective Approaches to Attention-based Neural Machine
Translation, Minh-Thang Luong Hieu Pham Christopher D.
Manning, 2015, hitps://arxiv.org/abs/1508.04025v5

® Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush.
Structured attention networks. In International Conference on
Learning Representations, 2017.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1508.04025v5

