
Recurrent Neural

Networks

Roberto Basili, Danilo Croce
Machine Learning, Web Mining & Retrieval 2021/2022

Outline
 Recurrent and Recursive Networks

 Training Recurrent Networks

 LSTMS

 Applications to Language Processing

 Perspectives

Recurrent Neural Networks

 Used mainly to model sequences

 naturally applied to textual and speech problems

 A representation at time step i is made

dependent on the representations of the

preceding steps

 connections between units form a directed cycle

Recurrent Neural Networks

 Commons tasks are

 language models: predict the next word in a

sentence given the already seen word

 speech recognition: predict a word given the

current wave form and the preceding words

 machine translation: produce a sequence in a

target language given an input sequence in a

source language

 The most famous and effective model of RNNs

are the Long-Short Term Memory (LSTM) Networks
(Sepp Hochreiter and Jürgen Schmidhuber, 1997)

 they are meant to better deal with long-range

dependencies

Neural Networks for Natural

Language Processing

 Linguistic features have been highly enriched since NN

language models have been introduced

 Words, n-grams as well as sentences, paragraphs have been

modeled through efficient and highly robust neural learners

 Representation are usually dense Embeddings

 Making explicit Use of the contexts: Recurrent Networks

 Beyond Classification: Transducing, Ranking, Encoding,

Decoding

Recurrent Neural Networks

 For example, consider the classifcal form of a

dynamical system

 Its corresponding unfolded computational graph

is as follows

Using a RNN

Simple RNN

…

…

…

…

xKx2x1

h1 h2 hL

y1 y2 yM

Recurrent neural networks (RNNs)
• An RNN can be unwrapped and implemented using the same

weights and biases at each step to link units over time as

shown below

• The resulting unwrapped RNN is similar to a hidden Markov

model, but keep in mind that the hidden units in RNNs are not

stochastic

Slides for Chapter 10, Deep learning, from the Weka book, Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Recurrent neural networks

(RNNs)

 Recurrent neural networks apply linear matrix operations to the current

observation and the hidden units from the previous time step, and the resulting

linear terms serve as arguments of activation functions act():

 The same matrix Uh is used at each time step

 The hidden units in the previous step ht-1 influence the computation of ht where

the current observation xt contributes to a Whxt term that is combined with Uhht-1

and bias bh terms

 Both Wh and bh are typically replicated over time

 The output layer is modeled by a classical neural network activation function

applied to a linear transformation of the hidden units, the operation is replicated

at each step.
Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

1g()

f ()

t h t h t h

t o t o

  

 

h W x U h b

o W h b

BPPTT

 For training a recurrent network, a solution is to unfold the

recurrent structure and expand it as a feedforward neural

network with a certain number of time steps: then apply

traditional backpropagation onto this unfolded neural

network.

 This solution is known as Backpropagation through Time

(BPTT), independently invented by several researchers

including (Robinson and Fallside, 1987; Werbos, 1988; Mozer,

1989)

The loss, exploding and vanishing

gradients

 The loss for a particular sequence in the training data can be
computed either at each time step or just once, at the end of
the sequence.

 In either case, predictions will be made after many processing
steps and this brings us to an important problem.

 The gradient for feedforward networks decomposes the
gradient of parameters at layer l into a term that involves the
product of matrix multiplications of the form (l)WT(l+1) (remind
lessons on backpropagation in feedforward network)

 A recurrent network uses the same matrix at each time step,
and over many steps the gradient can very easily either
diminish to zero or explode to infinity—just as the magnitude of
any number other than one taken to a large power either
approaches zero or increases indefinitely

Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

BPTT: the algorithm

1. Present a sequence of k1 timesteps of input and
output pairs to the network.

2. Unroll the network then calculate and
accumulate errors across k2 timesteps.

3. Roll-up the network and update weights.

4. Repeat

 The TBPTT algorithm requires the consideration of two parameters:

 k1: The number of forward-pass timesteps between updates.

 this influences how slow or fast training will be, given how often weight
updates are performed.

 k2: The number of timesteps to which to apply BPTT.

 it should be large enough to capture the temporal structure in the
problem for the network to learn.

 Too large a value results in vanishing gradients

Dealing with exploding

gradients

 The use of L1 or L2 regularization can mitigate the problem of
exploding gradients by encouraging weights to be small.

 Another strategy is to simply detect if the norm of the gradient
exceeds some threshold, and if so, scale it down.

 This is sometimes called gradient (norm) clipping where for a
gradient vector g and threshold T,

 where T is a hyperparameter, which can be set to the average norm
over several previous updates where clipping was not used.

if then
T

T g g g
g

Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Long-term Dependencies

with one single layer

LSTMS (Hochreiter & Schmidhuber, 1997)

 The Long Short-Term Memory (LSTM) architecture (Hochreiter

& Schmidhuber, 1997) was designed to solve the vanishing
gradients problem.

 Main idea: to introduce as part of the state representation

also specialized memory cells (a vector C) that can

preserve gradients across time.

 Access to the memory cells is controlled by gating

components, i.e. smooth mathematical functions that

simulate logical gates.

LSTMS

 At each input state, a gate is used to decide:

 how much of the new input should be written to the memory cell,

 how much of the current content of the memory cell should be forgotten.

 Concretely, a gate g in [0;1]n is a vector of values in the range [0; 1]
that is multiplied component-wise with another vector C in Rn, and the
result is then added to another vector.

 Indices in C corresponding to near-one values in g are allowed to pass,
while those corresponding to near-zero values are blocked.

4 layer RNNS

… The memory component

and the gates

 The FORGET gate

… The memory component

and the gates

 The INPUT gate

… The memory component

and the gates

 Updating the MEMORY

… The memory component

and the gates

 Computing the OUTPUT

LSTMS

LSTM

LSTMs and vanishing

gradients
 The so-called “long short term memory” (LSTM) RNN architecture was

specifically created to address the vanishing gradient problem.

 Uses a combination of hidden units, elementwise products and sums
between units to implement gates that control “memory cells”.

 Memory cells are designed to retain information without modification
for long periods of time.

 They have their own input and output gates, which are controlled by
learnable weights that are a function of the current observation and
the hidden units at the previous time step.

 As a result, backpropagated error terms from gradient computations
can be stored and propagated backwards without degradation.

Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

…

…

…

a) b)

Other RNN architectures
a) Recurrent networks can be made

bidirectional, propagating information in
both directions

 They have been used for a wide variety of applications,
including protein secondary structure prediction and
handwriting recognition

b) An “encoder-decoder” network creates a
fixed-length vector representation for
variable-length inputs, the encoding can be
used to generate a variable-length
sequence as the output

 Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Training different Types of RNNs

Training different Types of RNNs

…

…

Encoder-decoder deep

architectures
 Given enough data, a deep encoder-decoder

architecture (see below) can yield results that

compete with hand-engineered translation systems.

 The connectivity structure means that partial

computations in the model can flow through the

graph in a wave (darker nodes in fig.)

Slides for Chapter 10, Deep learning, from the Weka book,

Data Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Attention-based RNNs

 A NN (e.g. B) is used to attend the outcome of a

second network A, e.g. (Vaswani et al., 2017)

Attention: motivations
 From (Dive into Deep Learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu

and Smola, Alexander J., 2021) ,

Attention functions

Zhang et al, 2021

Attention functions:

examples (1)

 In general, when queries and keys are vectors of different

lengths, we can use additive attention as the scoring function.

Given a query and a key the additive attention

scoring function

 where learnable parameters and

.

 In a learnable setting, the query and the key are concatenated
and fed into an MLP with a single hidden layer whose number of

hidden units is h, a hyperparameter. By using as the activation

function and disabling bias terms, we implement additive

attention in the following

Attention functions: scaled

dot-product (2)

 When q and k are d-dimensional vectors whose independent dimensions

have mean=0 and variance=1, their dot product has mean = 0 and a

variance = d. To ensure that the variance of the dot product still remains

one regardless of vector length, the scaled dot-product attention scoring

function is adopted

 It divides the dot product by . In practice, we often think in

minibatches for efficiency, such as computing attention for n queries and

m key-value pairs, where queries and keys are of length d and values are

of length v. The scaled dot-product attention of queries

keys and values is

Attention: multihead

Attention-based RNNs

Attention mechanisms in

Machine Translation

Visualization of the attention

distribution in QA

 Supporting fact

sequences for an

example question

 On the right the

attentions over facts

for individual

sequences

 Each sequence is

mapped into a

Markov process

Attention & enconding

 IN a decoding process (e.g. machine translation) there are
three kinds of dependencies for neural architectures

 Dependencies can establish between

 (1) the input and output tokens

 (2) the input tokens themselves

 (3) the output tokens themselves

 Examples:

 MT

 QA where the query the answer paragraph is the input and the
matched answer is the output

Attention in MT:
long distance dependencies

From RNNs to Transformers

Bidirectional Encoder Representations

from BERT - Transformers (Devlin et al. ’18)

Attention is a function that maps a

query Q and a set of key-value pairs

<K,V> to an output

Scaled Dot-Product Attention

L x de

L x L

Input-Output Attention

BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

Division by de

Only for numerical

stability

BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

L x L

BERT (Devlin et al. ’18)

Scaled Dot-Product Attention

L x de

L x L

BERT & NLP

BERT & NLP (2)

 How to optimize the encoding?

 General and complex tasks defined in (Devlin et al., 2018) are

 Masked Language Modeling (15%)

 Inpired by Distributional Hypothesis

 Can be Simulated and does not require any labeling

 Next Sentence Prediction

 Inspired by Textual Inference tasks (e.g. Textual Entailment)

 Can be Simulated and does not require any labeling

 Source Representations

 Words? And why not subword (in the BERT jargon: word pieces)?

 Useful to deal with out-of-vocabulary phenomena

BERT (Devlin et al. ’18)

BERT for single sentence classification (Sentiment analysis, Intent

Classification, etc.)

BERT (Devlin et al. ’18)

BERT for Sequence Tagging Tasks (e.g., POS tagging, Named Entity

Recognition, etc.)

BERT (Devlin et al. ’18)

BERT for sentence pairs classification (Paraphrase Identification,

answer selection in QA, Recognizing Textual Entailment)

BERT (Devlin et al. ’18)

BERT for Answer Span Selection in Question Answering

A QA example on SquAD

 Cross-lingual Question Answering

BERT (Devlin et al. ’18)

Pretraining on two unsupervised prediction tasks:

 Masked Language Model: given a sentence s with missing words,
reconstruct s

 Example: Amazon <MASK> amazing  Amazon is amazing

 In BERT the language modeling is deeply Bidirectional, while in ELMo
the forward and backward LMs were two independent branches of
the NN

 Next Sentence Prediction: given two sentences s1 and s2, the task is
to understand whether s2 is the actual sentence that follows s1

 50% of the training data are positive examples: s1 and s2 are actually
consecutive sentences

 50% of the training data are negative examples: s1 and s2 are randomly
chosen from the corpus

BERT pretraining:
Input representations

INPUT

WordPieces

Embeddings

Sentence

Embeddings

Position

Embeddings

All these embeddings

are learned during the

(pre)training process

MASK

EMASK

In pre-training 15% of the input tokens

are masked for the masked LM task

Attention mechanisms in

Speech Recognition

https://arxiv.org/pdf/1508.01211.pdf

A complex application of LSTM (and

recently Transformers): Image captioning

Image Captioning

 Image to captions

 Convolutional Neural Network to learn a

representation of the image

 (Bi-directional) Recurrent Neural Network to

generate a caption describing the image

 its input is the representation computed from the

CNN

 its output is a sequence of words, i.e. the caption

Attention: a dynamic

rendering

Perspectives

 Injecting bias (e.g. linguistic structures) within the learning

architectures

 Making use of hybrid architectures integrating visual and

linguistic knowledge

 Extending the epistemological transparency of current

architectures: Explainable AI

 Making natural language data to work as a representation

layer for different cognitive functions (e.g HRI in robotics
but also vision)

RNNs - Bibliographic Notes &

Further Readings

 Graves et al. (2009) demonstrate how recurrent neural networks are
particularly effective at handwriting recognition,

 Graves et al. (2013) apply recurrent neural networks to speech.

 The form of gradient clipping presented above was proposed by Pascanu
et al. (2013).

 Hochreiter and Schmidhuber (1997) is the seminal work on the “Long Short-
term Memory” architecture for recurrent neural networks;

 our explanation follows Graves and Schmidhuber (2005)’s formulation.

 Yoav Goldberg, A Primer on Neural Network Models for Natural Language
Processing, Journal of Artificial Intelligence Research volume 57 pp 345-420,
2016

 Greff et al. (2015)’s paper “LSTM: A search space odyssey” explored a wide
variety of variants and finds that:

 none of them significantly outperformed the standard LSTM architecture; and

 forget gates and the output activation function were the most critical components.
Forget gates were added by Gers et al. (2000).

RNNs - Bibliographic Notes &

Further Readings
 IRNNs were proposed by Le et al. (2015)

 Chung et al. (2014) proposed gated recurrent units

 Schuster and Paliwal (1997) proposed bidirectional recurrent neural networks

 Chen and Chaudhari (2004) used bi-directional networks for protein structure
prediction; Graves et al. (2009) used them for handwriting recognition

 Cho et al. (2014) used encoder-decoder networks for machine translation,
while Sutskever et al. (2014) proposed deep encoder-decoder networks and
used them with massive quantities of data

 For further accounts of advances in deep learning and a more extensive
history of the field, consult the reviews of LeCun et al. (2015), Bengio (2009),
and Schmidhuber (2015)

Transformers
 (Vaswani 2017), Attention is all you need,

https://arxiv.org/abs/1706.03762

 (Devlin et al 2018), BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,
https://arxiv.org/abs/1810.04805

 Other Task specific works:

 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. CoRR, abs/1409.0473, 2014.

 Effective Approaches to Attention-based Neural Machine
Translation, Minh-Thang Luong Hieu Pham Christopher D.
Manning, 2015, https://arxiv.org/abs/1508.04025v5

 Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush.
Structured attention networks. In International Conference on
Learning Representations, 2017.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1508.04025v5

