AUTOMATIC CLASSIFICATION: NAÏVE BAYES

WM&R 2021/22 - 2 Units

R. Basili

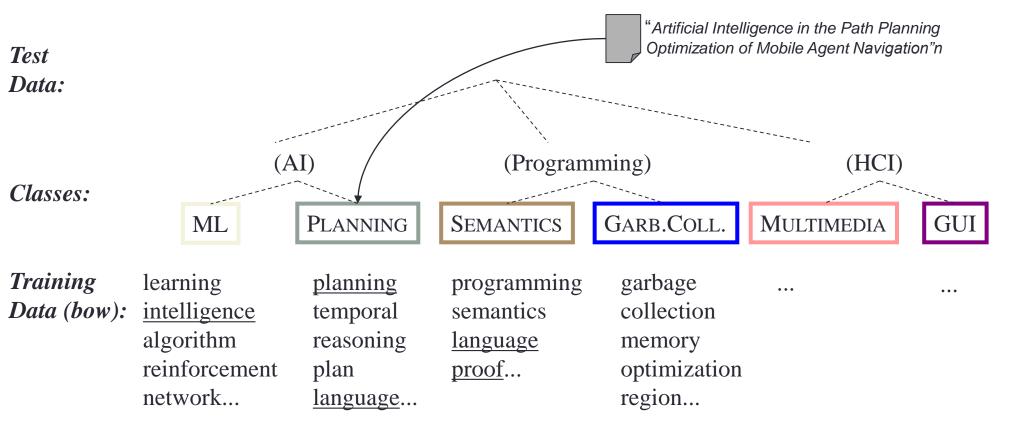
(many slides borrowed by: H. Schutze)

Università di Roma "Tor Vergata" Email: basili@info.uniroma2.it

Agenda

- The nature of probabilistic modeling
- Probabilistic Algorithms for Automatic Classification (AC)
 - Naive Bayes classification
 - Two models:
 - Univariate Binomial (FIRST UNIT)
 - Multinomial (Class Conditional Unigram Language Model) (SECOND UNIT)
- Parameter estimation
- Feature Selection
- Summary

Document Classification



(Note: in real life there is often a hierarchy; and you may get papers on ML approaches to Garb. Coll., i.e. c is a multiclassificatio function)

Text Categorization tasks: examples

- Labels are most often topics such as Yahoo-categories
 - e.g., "finance" "sports" "news>world>asia>business"
- Labels may be genres
 - e.g., "editorials" "movie-reviews" "news"
- Labels may be opinion (as in Sentiment Analysis)
 - e.g., "like", "hate", "neutral"
- Labels may be domain-specific binary
 - e.g., "interesting-to-me": "not-interesting-to-me",
 "spam": "not-spam",
 "contains adult language": "doesn't",
 "is a fake": "it isn't"

Categorization/Classification

Given:

- A description of an instance, x∈X, where X is the instance language or instance space.
 - Issue: how to represent text documents.
- A fixed set of categories:

$$C = \{c_1, c_2, ..., c_n\}$$

Determine:

• The category of x: $c(x) \in C(or\ 2^C)$, where c(x) is a categorization function whose domain is X that correspond to the classe(s) of C suitable for x.

Learning problem:

We want to know how to build the categorization function c ("classifier").

Bayesian Methods

- Learning and classification methods based on probability theory:
 - Bayes theorem plays a critical role in probabilistic learning and classification.

- Build a generative model that approximates how data are produced
- Use prior probability of each category when NO INFORMATION about an item is available.
- PRODUCE, during categorization, the POSTERIOR PROBABILITY distribution over the possible categories given a description of an item

Bayes' Rule

Given an instance X and a category C the probability P(C,X)
can be used as a joint event:

$$P(C, X) = P(C | X)P(X) = P(X | C)P(C)$$

The following rule thus holds for every X and C:

$$P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$$

What does P(X|C) means?

Maximum a posteriori Hypothesis

$$h_{MAP} \equiv \underset{h \in H}{\operatorname{argmax}} P(h \mid X)$$

$$= \underset{h \in H}{\operatorname{argmax}} \frac{P(X \mid h)P(h)}{P(X)} =$$

As P(X) is constant

$$= \operatorname*{argmax}_{h \in H} P(X \mid h) P(h)$$

Maximum likelihood Hypothesis

If all hypotheses are a priori equally likely, we only need to consider the P(D/h) term:

$$h_{ML} \equiv \underset{h \in H}{\operatorname{argmax}} P(X \mid h)$$

Naive Bayes Classifiers

Task: Classify a new instance document D based on a tuple of attribute values $D=(x_1, x_2, ..., x_n)$ into one of the classes $c_j \in C$

$$c_{MAP} = \operatorname{argmax}_{c_{j} \in C} P(Cj | x_{1}, x_{2}, ..., xn) =$$

$$= \operatorname{argmax}_{c_{j} \in C} \frac{P(x_{1}, x_{2}, ..., xn | c_{j}) P(cj)}{P(x_{1}, x_{2}, ..., xn)} =$$

$$= \operatorname{argmax}_{c_{j} \in C} P(x_{1}, x_{2}, ..., xn | c_{j}) P(cj)$$

Determine the notion of document as the joint event

$$D=(x_1, x_2, ..., x_n)=(x_1, x_2, ..., x_n)$$

- Determine how x_i is related to the document content
- Determine how to estimate
 - $P(C_i)$ for the different classes $j=1, \ldots, k$
 - $P(x^{D}_{i})$ for the different properties/features i=1, ..., n
 - $P(x^{D}_{1}, x^{D}_{2}, ..., x^{D}_{n} | C_{j})$ for the different tuples and classes
- Define the law that select among the different

$$P(C_j \mid x^{D}_1, x^{D}_2, ..., x^{D}_n) j=1, ...k$$

Argmax? Best m scores? Thresholds?

Determine the notion of document as the joint event

$$D=(x_1, x_2, ..., x_n)=(x_1, x_2, ..., x_n)$$

- Determine how x_i is related to the document content
- Determine how to estimate
 - $P(C_i)$ for the different classes $j=1, \ldots, k$
 - $P(x^{D}_{i})$ for the different properties/features i=1, ..., n
 - $P(x^{D}_{1}, x^{D}_{2}, ..., x^{D}_{n} | C_{j})$ for the different tuples and classes
- Define the law that select among the different

$$P(C_j | x^{D}_1, x^{D}_2, ..., x^{D}_n) j=1, ...k$$

Argmax? Best m scores? Thresholds?

Determine the notion of document as the joint event

$$D=(x_1, x_2, ..., x_n)=(x_1^D, x_2^D, ..., x_n^D)$$

- Determine how x_i is related to the document content
- IDEA: use words and their direct occurrences, as «signals» for the content
 - Words are individual outcomes of the test of picking randomly one token from the text
 - Random variables X can be used such that x_i represent X=word_i
 - Multiple Occurrences of words in texts trigger several successfu tests for the same word word; they augment the probability

$$P(x_i)=P(X=word_i)$$

Modeling the document content

- Variables X provide a description of a document D as they correspond to the outcome of a test
- D corresponds to the joint event of one unique picking of words word;
 from the vocabulary V, whose outcomes are
 - Present if word_i occurrs in D
 - Not present if word; does not occur in D
- It is a binary event, like a picking a white or black ball from a urn
- The joint event is the «parallel» picking of the ball for every (urn, i.e.)
 word_i in the dictionary, that is one urn per word is accessed
- Notice how n (i.e. the number of features) here becomes the size | V of the vocabulary V
- Each feature x_i models the presence or absence of $word_i$ in D, and can be written as $X_i=0$ or $X_i=1$

This is the basis for the so-called Multivariate binomial model!

- Determine the notion of document as the joint event D=(x1, x2, ..., xn)=(xD1, xD2, ..., xDn)
- Determine how xi is related to the document content

- Determine how to estimate
 - $P(C_i)$ for the different classes $j=1, \ldots, k$
 - $P(x^{D}_{i})$ for the different properties/features i=1, ..., n
 - $P(x^{D}_{1}, x^{D}_{2}, ..., x^{D}_{n} | C_{j})$ for the different tuples and classes
- Define the law that select among the different

$$P(C_i | x^{D}_1, x^{D}_2, ..., x^{D}_n) j=1, ...k$$

Argmax? Best m scores? Thresholds?

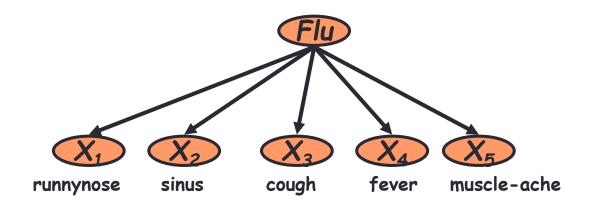
Naïve Bayes Classifier: Naïve Bayes Assumption

- $P(c_j)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_n | c_j)$
 - O(|X|ⁿ•|C|) parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naïve Bayes Conditional Independence Assumption:

Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i|c_j)$. $O(|X| \cdot |C|)$ parameters

The Naïve Bayes Classifier

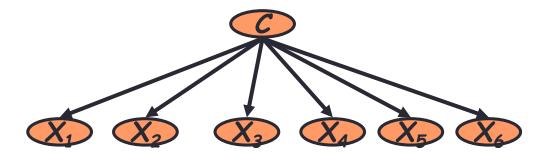


 Conditional Independence Assumption: features detect term presence and are independent of each other given the class:

$$P(X_1, ..., X_5 | C) = P(X_1 | C) \cdot P(X_2 | C) \cdot ... \cdot P(X_5 | C)$$

- This model is appropriate for binary variables
 - Multivariate binomial model

Learning the Model



- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$N(Y = Y = C = C)$$

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

NB Bernoulli: the Learning stage

```
TrainBernoulliNB(\mathbb{C}, \mathbb{D})
   V \leftarrow \text{ExtractVocabulary}(\mathbb{D})
2 N ← COUNTDOCS(ID)
3 for each c ∈ C
    do N_c \leftarrow \text{COUNTDOCSINCLASS}(\mathbb{D}, c)
        prior[c] \leftarrow N_c/N
        for each t \in V
        do N_{ct} \leftarrow \text{COUNTDOCSINCLASSCONTAININGTERM}(\mathbb{D}, c, t)
            condprob[t][c] \leftarrow (N_{ct}+1)/(N_c+2)
    return V, prior, condprob
```

- Determine the notion of document as the joint event D=(x1, x2, ..., xn)=(xD1, xD2, ..., xDn)
- Determine how xi is related to the document content

- Determine how to estimate
 - $P(C_i)$ for the different classes $j=1, \ldots, k$
 - $P(x^{D}_{i})$ for the different properties/features i=1, ..., n
 - $P(x^{D}_{1}, x^{D}_{2}, ..., x^{D}_{n} | C_{j})$ for the different tuples and classes
- Define the law that select among the different

$$P(C_j | x^{D}_1, x^{D}_2, ..., x^{D}_n) j=1, ...k$$

Argmax? Best m scores? Thresholds?

Define the law that selects among the different

$$P(C_i | x^{D_1}, x^{D_2}, ..., x^{D_n}) j=1, ...k$$

- (A) Argmax? (B) Best *m* scores? (C) Thresholds?
- A. ARGMAX is applicable for every task in which multiclassification is not applicable:
 - Spam/not spam
 - FAKE news detection
- B. When a fixed number (n>1) of categories is requested seemingly the model output the *n* most likely classes
- C. Thresholds are usually estimated from the training data

NB Bernoulli Model: Classification

When multiclassification is not necessary:

```
APPLYBERNOULLINB(\mathbb{C}, V, prior, condprob, d)

1 V_d \leftarrow \text{EXTRACTTERMSFROMDOC}(V, d)

2 for each c \in \mathbb{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in V

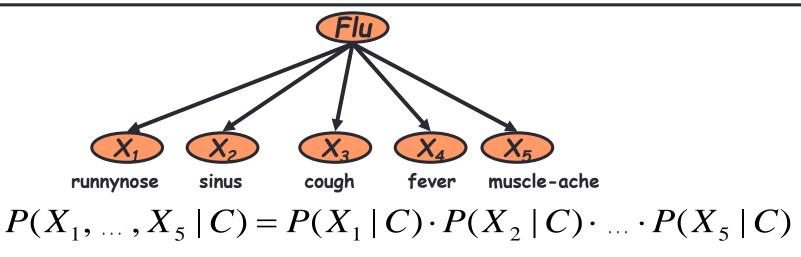
5 do if t \in V_d

6 then score[c] += \log condprob[t][c]

7 else score[c] += \log(1 - condprob[t][c])

8 return arg \max_{c \in \mathbb{C}} score[c]
```

Problem with Max Likelihood



 What if we have seen no training cases where patient had no flu and muscle aches?

$$\hat{P}(X_5 = t \mid C = nf) = \frac{N(X_5 = t, C = nf)}{N(C = nf)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \arg\max_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Smoothing

- Laplace smoothing
 - every feature has an a priori probability p,
 - It is assumed that it has been observed in a number of m virtual examples.

$$P(x_{j} \mid c_{i}) = \frac{n_{ij} + mp}{n_{i} + m}$$

- Usually
 - A uniform distribution on all words is assumed so that p = 1/|V| and m = |V|
 - It is equivalent to observing every word in the dictionary once for each category.

Smoothing to Avoid Overfitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$

of diff. values of X_i

Somewhat more subtle version

k expresses the different data bins

overall fraction in data where $X_i = x_{i,k}$

$$\hat{P}(x_{i,k} \mid c_j) = \frac{N(X_i = x_{i,k}, C = c_j) + mp_{i,k}}{N(C = c_j) + m}$$

extent of "smoothing", numb. of bins

Bayesian Classification: an alternative view

- Is there any alternative way of looking to the *joint* event $C \land D$?
- In the Bernoulli model, we determine the occurrence the event D as a instantaneous selection of individual words w_j from the Vocabulary V
 - Every D is a subset of V, thus characterized by a binary string across the entire V
 - There are as many binary strings as 2^{|V|}
- An alternative consists in modelling the event D as the occurrence of some words w_j in m distinct positions, where m is |D|, i.e. the size of the document
- This brings to map a document D into a sequence of words (w₁,, w_m) from V, i.e. strings of words
- The resulting model is called Multinomial model as every positions corresponds to a different stochastic variable

A digression: Stochastic Language Models

 Models probability of generating strings in the language (commonly all strings over an alphabet ∑), e.g., unigram model

Model M

0.2	the
0.1	a
0.01	man
0.01	woman
0.03	said
0.02	likes

the man likes the woman on the man likes of the momentum of the man of the man of the momentum of

 $P(s \mid M) = 0.00000008$

. . .

Stochastic Language Models

Model probability of generating any string

Model M1

0.2 the

0.01 class

0.0001 sayst

0.0001 pleaseth

0.0001 yon

0.0005 maiden

0.01 woman

Model M2

0.2 the

0.0001 class

0.03 sayst

0.02 pleaseth

0.1 yon

0.01 maiden

0.0001 woman

the	class	pleaseth	yon	maiden
0.2	0.01	0.0001	0.0001	0.0005
0.2	0.0001	0.02	0.1	0.01

Unigram and higher-order models

$$P(\bullet \circ \bullet \bullet)$$

$$= P(\bullet)P(\circ | \bullet) P(\bullet | \bullet \circ)P(\bullet | \bullet \circ)$$

$$\cdot \text{Unigram Language Models}$$

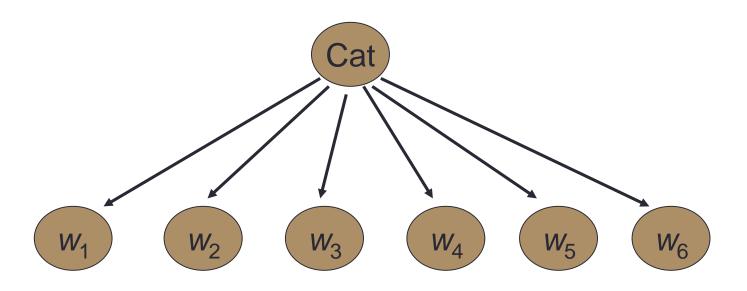
$$P(\bullet)P(\bullet)P(\bullet)P(\bullet)P(\bullet)$$

$$\cdot \text{Bigram (generally, n-gram) Language Models}$$

$$P(\bullet)P(\bullet | \bullet)P(\bullet | \bullet)P(\bullet | \bullet)$$

- Other Language Models
 - Grammar-based models (such as Probabilistic Context Free Grammars, PCFG), etc.
 - Probably not the first thing to try in IR

Naïve Bayes via a class conditional language model = multinomial NB



 Effectively, the probability of each class is done as a classspecific unigram language model

Using Multinomial Naive Bayes Classifiers to Classify Text: Basic method

Attributes are text positions, values are words.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} | c_{j})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) P(x_{1} = \text{"our"} | c_{j}) \dots P(x_{n} = \text{"text"} | c_{j})$$

- Still too many possibilities
- Assume that classification is independent of the positions of the words
 - Use same parameters for each position
 - Result is bag of words model (over tokens not types)

Multinomial Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate required $P(c_j)$ and $P(x_k / c_j)$ terms
 - For each c_i in C do
 - $docs_j \leftarrow$ subset of documents for which the target class is c_j

$$P(c_j) \leftarrow \frac{|docs_j|}{|\operatorname{total} \# \operatorname{documents}|}$$

- Text_j ← single document containing all docs_j
- for each word x_k in *Vocabulary*
 - $n_k \leftarrow$ number of occurrences of x_k in $Text_i$

$$= P(x_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

Multinomial Naïve Bayes: Classifying

- positions ← all word positions in current document which contain tokens found in *Vocabulary*
- Return c_{NR} , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Naive Bayes: Time Complexity

- Training Time: $O(|D|L_d + |C||V|)$ where L_d is the average length of a document in D.
 - Assumes V and all D_i , n_i , and n_{ij} pre-computed in $O(|D|L_d)$ time during one pass through all of the data.
 - Generally just $O(|D|L_d)$ since usually $|C||V| < |D|L_d$
- Test Time: $O(|C| L_t)$ where L_t is the average length of a test document.
 - Very efficient overall, linearly proportional to the time needed to just read in all the data.

Multinomial NB: Learning Algorithm

```
TrainMultinomialNB(\mathbb{C}, \mathbb{D})
  1 V ← EXTRACTVOCABULARY(ID)
 2 N ← COUNTDOCS(ID)
 3 for each c \in \mathbb{C}
     do N_c \leftarrow \text{COUNTDOCSINCLASS}(\mathbb{D}, c)
 5
          prior[c] \leftarrow N_c/N
          text_c \leftarrow ConcatenateTextOfAllDocsInClass(\mathbb{D}, c)
 6
          for each t \in V
          do T_{ct} \leftarrow \text{COUNTTOKENSOFTERM}(text_c, t)
 8
          for each t \in V
          do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{-t'}+1)}
10
      return V, prior, condprob
11
```

Multinomial NB: Classification Algorithm

```
APPLYMULTINOMIALNB(\mathbb{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 \textbf{for each } c \in \mathbb{C}

3 \textbf{do } score[c] \leftarrow \log prior[c]

4 \textbf{for each } t \in W

5 \textbf{do } score[c] += \log condprob[t][c]

6 \textbf{return } arg \max_{c \in \mathbb{C}} score[c]
```

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} \log P(c_{j}) + \sum_{i \in positions} \log P(x_{i} \mid c_{j})$$

Note on the two models

- Model 1: Multivariate binomial
 - One feature X_w for each word in dictionary
 - $X_w = true$ in document d if w appears in d
 - Naive Bayes assumption:
 - Given the document's topic, appearance of one word in the document tells us nothing about chances that another word appears
- This is the model used in the binary independence model in classic probabilistic relevance feedback in hand-classified data (Maron in IR was a very early user of NB)

Note: the two models (2)

- Model 2: Multinomial = Class conditional unigram
 - One feature X_i for each word pos in document
 - feature's values are all words in dictionary
 - Value of X_i is the word in position i
 - Naïve Bayes assumption:
 - Given the document's topic, word in one position in the document tells us nothing about words in other positions
 - Second assumption:
 - Word appearance does not depend on position

$$P(X_i = w \mid c) = P(X_j = w \mid c)$$

for all positions *i,j*, word *w*, and class *c*

Just have one multinomial feature predicting all words

Parameter estimation

Binomial model:

$$\hat{P}(X_{w} = true \mid c_{j}) =$$

fraction of documents of topic c_j in which word w appears

Multinomial model:

$$\hat{P}(X_i = w \mid c_j) =$$

fraction of times in which word w appears across all documents of topic c_j

- Can create a mega-document for topic j by concatenating all documents in this topic
- Use frequency of w in mega-document

Classification

- Multinomial vs Multivariate binomial?
 - Multinomial is in general better
 - See results figures later

NB example

- Given: 4 documents
 - D1 (SPORTS): China soccer
 - D2 (SPORTS): Japan baseball
 - D3 (POLITICS): China trade
 - D4 (Politics): Japan Japan exports
- Classify:
 - D5: soccer
 - D6: Japan
- Use
 - Add-one smoothing
 - Multinomial model
 - Multivariate binomial model

NB example

- p(SPORTS)=0.5
- p(Politics)=0.5
- V = {China, soccer, baseball, Japan, trade, exports}

DE - CRORTO AND DE + DOUTION

```
Multivariate Binomial
p(China|SPORTS)=1/2 (o meglio (1+1)/(2+2))
p(soccer|SPORTS)=(1+1)/(2+2)
p(exports|SPORTS)=(0+1)/(2+2)
p( China|POLITICS)=(1+1)/(2+2)
p(soccer|Politics)=(0+1)/(2+2)
p(exports|Politics)=(1+1)/(2+2)
p(Sports|D5) ca =
 p(D5|SPORTS)p(SPORTS) =
 (1-p(China|SPORTS))p(soccer|SPORTS) .... (1-
p(exports|SPORTS)).p(SPORTS)=
             1/2*1/2* ... *(1-1/4)*(0.5)
p(Politics|D5) ca =
 p(D5| POLITICS)p(POLITICS) =
 (1-p(China|Politics))p(soccer|Politics) .... (1-p(exports|Politics))=
             1/2*1/4* ... *(1-1/2)*(0.5)
da cui p(POLITICS|D5) < p(SPORTS|D5), e quindi:
```

```
Multinomial NB
Again:
V = {China, soccer, baseball, Japan, trade, exports}
p(SPORTS)=0.5
p(Politics)=0.5
p(China|SPORTS)=(1+1)/(4+2)
p(soccer|SPORTS)=(1+1)/(4+2)
p(exports|SPORTS)=(0+1)/(4+2)
p(China|Politics)=(1+1)/(5+2)
p(soccer|Politics)=(0+1)/(5+2)
p(exports|Politics)=(1+1)/(5+2)
p(Sports|D5)= ca
 = p(D5|SPORTS)p(SPORTS)=p(soccer|SPORTS)p(SPORTS)=1/6
p(Politics|D5)= ca
p(D5|POLITICS)p(POLITICS)=p(soccer|POLITICS)p(POLITICS)=
                                       = (1/7)*(1/2) = 1/14
da cui p(POLITICS|D5) < p(SPORTS|D5), e quindi:
```

D5 ∈ Sports AND D5 ∉ Politics

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words … and more
- Feature Selection:
 - is the process by which a large set of available features are neglected during the classification
 - Not reliable, not well estimated, not useful
- May make using a particular classifier feasible, e.g. reduce the training time
 - Some classifiers can't deal with 100,000 of features
 - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
 - Eliminates noise features+ Avoids overfitting

Feature selection: how?

Two idea:

- Hypothesis testing statistics:
 - Are we confident that the value of one categorical variable is associated with the value of another?
 - Chi-square test
- Information theory:
 - How much information does the value of one categorical variable give you about the value of another?
 - Mutual information
- They're similar, but χ^2 measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)

Feature selection via Mutual Information

- In training set, choose k words which best discriminate (give most info on) the categories.
- The Mutual Information between a word w and a class c is:

$$I(w,c) = \sum_{e_w \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_w, e_c) \log \frac{p(e_w, e_c)}{p(e_w)p(e_c)}$$

For each word w and each category c

Feature selection via Mutual Information

- In training set, choose k words which best discriminate (give most info on) the categories.
- The Mutual Information between a word w and a class c is:

$$I(W = w, C = c) = \sum_{\substack{W = w \ C = c \ W \neq w \ C \neq c}} \sum_{\substack{C = c \ W \neq w \ C \neq c}} p(W, C) \log \frac{p(W, C)}{p(W)p(C)}$$

For each word w and each category c

Feature selection via MI (contd.)

- For each category we build a list of k most discriminating terms.
- For example (on 20 Newsgroups):
 - sci.electronics: circuit, voltage, amp, ground, copy, battery, electronics, cooling, ...
 - rec.autos: car, cars, engine, ford, dealer, mustang, oil, collision, autos, tires, toyota, ...
- Greedy: does not account for correlations between terms
- Why?

Feature Selection

- Mutual Information
 - Clear information-theoretic interpretation
 - May select rare uninformative terms
- Chi-square
 - Statistical foundation
 - May select very slightly informative frequent terms that are not very useful for classification
- Just use the commonest terms?
 - No particular foundation
 - In practice, this is often 90% as good

Feature selection for NB

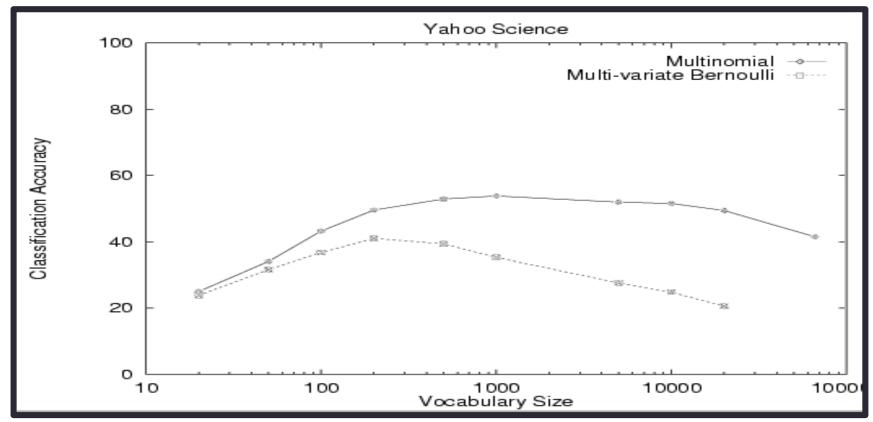
- In general feature selection is necessary for binomial NB.
- Otherwise you suffer from noise, multi-counting
- "Feature selection" really means something different for multinomial NB. It means dictionary truncation
 - The multinomial NB model only has 1 feature
- This "feature selection" normally isn't needed for multinomial NB, but may help a fraction with quantities that are badly estimated

Evaluating Categorization

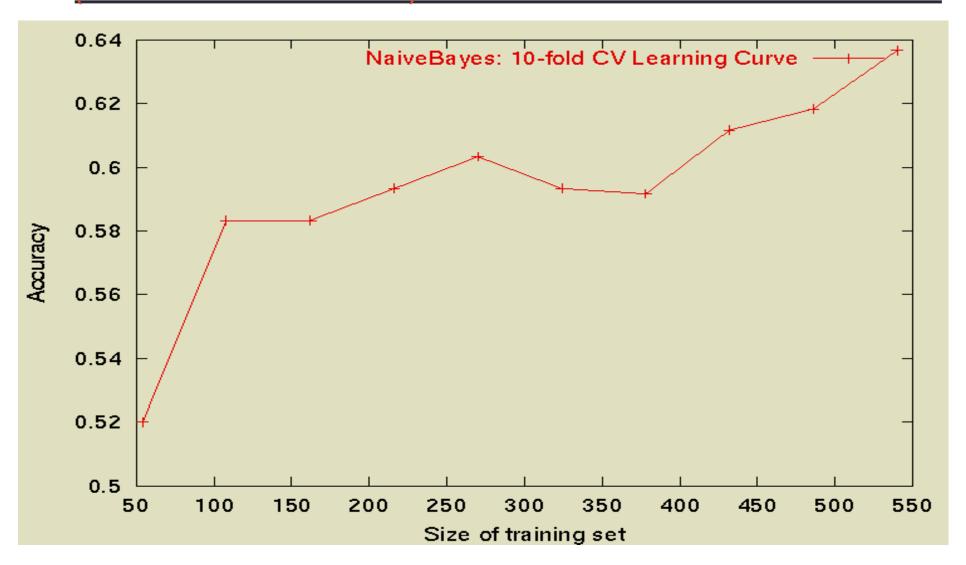
- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
- Results can vary based on sampling error due to different training and test sets.
- Average results over multiple training and test sets (splits of the overall data) for the best results.

Example: AutoYahoo!

 Classify 13,589 Yahoo! webpages in "Science" subtree into 95 different topics (hierarchy depth 2)



Sample Learning Curve (Yahoo Science Data): need more!



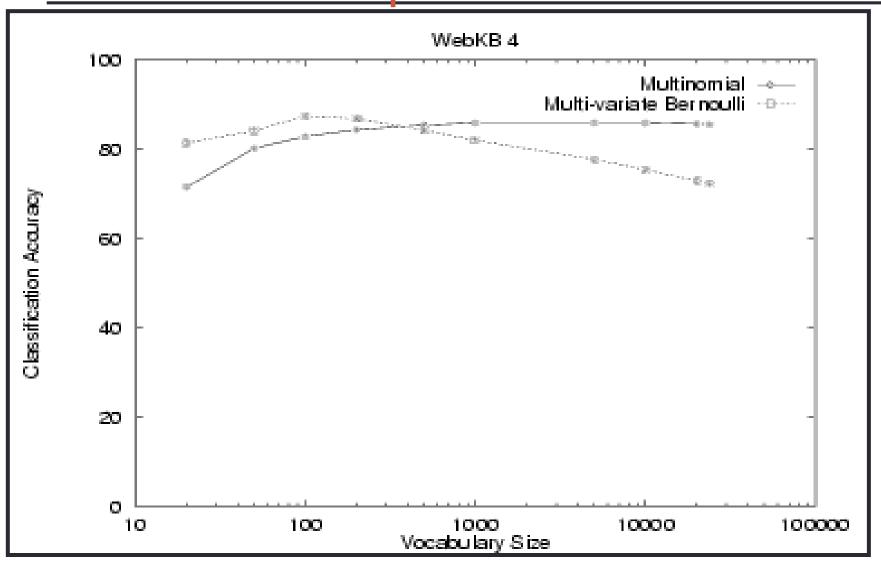
WebKB Experiment

- Classify webpages from CS departments into:
 - student, faculty, course,project
- Train on ~5,000 hand-labeled web pages
 - Cornell, Washington, U.Texas, Wisconsin
- Crawl and classify a new site (CMU)

Results:

	Student	Faculty	Person	Project	Course	Departmt
Extracted	180	66	246	99	28	1
Correct	130	28	194	72	25	1
Accuracy:	72%	42%	79%	73%	89%	100%

NB Model Comparison



F	ac	ul	ţ

associate	0.00417			
chair	0.00303			
member	0.00288			
рħ	0.00287			
director	0.00282			
fax	0.00279			
journal	0.00271			
recent	0.00260			
received	0.00258			
award	0.00250			

Students

Ntagena				
resume	0.00516			
advisor	0.00456			
student	0.00387			
working	0.00361			
stuff	0.00359			
links	0.00355			
homepage	0.00345			
interests	0.00332			
personal	0.00332			
favorite	0.00310			

Courses

homework	0.00413			
syllabus	0.00399			
assignments	0.00388			
exam	0.00385			
grading	0.00381			
midterm	0.00374			
pm	0.00371			
instructor	0.00370			
due	0.00364			
final	0.00355			

Departments

departmental	0.01246
departmentar	A.O.TZ.#A
colloquia	0.01076
epartment	0.01045
seminars	0.00997
schedules	0.00879
webmaster	0.00879
events	0.00826
facilities	0.00807
eople	0.00772
postgraduate	0.00764

Research Projects

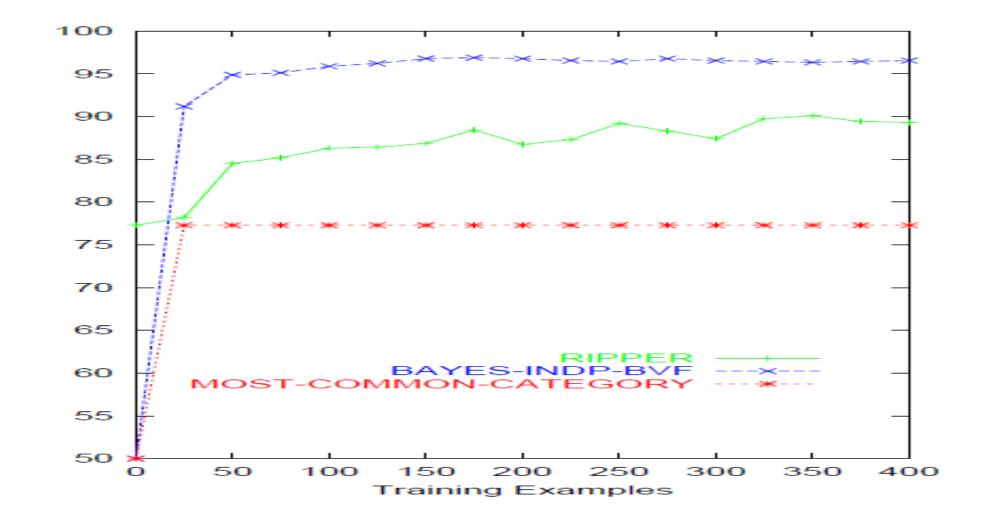
Research Projects				
investigators	0.00256			
group	0.00250			
members	0.00242			
researchers	0.00241			
laboratory	0.00238			
develop	0.00201			
related	0.00200			
агра	0.00187			
affiliated	0.00184			
project	0.00183			

Others

Quicio				
type	0.00164			
jan	0.00148			
enter	0.00145			
random	0.00142			
program	0.00136			
net	0.00128			
time	0.00128			
format	0.00124			
access	0.00117			
begin	0.00116			

Faculty			Students		Cour	Courses	
	associate	0.004	117	resume	0.00516	homework	0.00413
	chair	0.003	303	advisor	0.00456	syllabus	0.00399
	member	0.002	288	student	0.00387	assignment	s 0.00388
	\mathbf{ph}	0.002	287	working	0.00361	exam	0.00385
	director	0.002	282	stuff	0.00359	grading	0.00381
	fax	0.002	279	links	0.00355	midterm	0.00374
	journal	0.002	71			-w	0.00371
Ì	recent						<u> </u>
	recei	These	e feature	sets corre	spond to	o domain	90364
	These feature sets correspond to domain dictionaries. Specific terms such as <i>chair</i> or						
	'						
	director are selected for the individual classes						
	such as Faculty as well as advisor for						
	student: it is a form of "knowledge" emerging						
					_	, ,	
	automatically from annotated data						
	sche						56
	webmaste	1					0.00128
	events] [0.000				0.00128
	facilities	(0.00807	агра	0.0018		0.00124
	eople		0.00772	affiliated	0.0018	$4 \mid $ access \mid (0.00117
	postgradu	ıate (0.00764	project	0.0018	3 begin (0.00116

Naïve Bayes on spam email



Violation of NB Assumptions

- Conditional independence
- "Positional independence"
- Examples?
 - Computer vs. science in the Technology category
 - par vs. condition in the Law, Politics Category
 - Box office vs. Office Box
 - Taxonomy tree vs. Tree taxonomy
 - (Dog eats vs. eating dogs) vs. (Eating vegetables vs. vegetables eat)

When does Naive Bayes work?

- Sometimes NB performs well even if the Conditional Independence assumptions are badly violated.
- Classification is about predicting the correct class label and NOT about accurately estimating probabilities.

Assume two classes c_1 and c_2 . A new case A arrives.

NB will classify A to c_1 if:

 $P(A, c_1) > P(A, c_2)$

	$P(A,c_1)$	$P(A,c_2)$	Class of A
Actual Probability	0.1	0.01	c_1
Estimated Probability by NB	0.08	0.07	c_1

Besides the big error in estimating the probabilities the classification is still correct.

Correct estimation ⇒ accurate prediction but NOT

accurate prediction

Correct estimation

Naive Bayes is *not-so-*Naive

 Naïve Bayes: First and Second place in KDD-CUP 97 competition, among 16 (then) state of the art algorithms

Goal: Financial services industry direct mail response prediction model: Predict if the recipient of mail will actually respond to the advertisement – 750,000 records.

Robust to Irrelevant Features

Irrelevant Features cancel each other without affecting results Instead Decision Trees can heavily suffer from this.

- Very good in domains with many <u>equally important</u> features
 Decision Trees suffer from *fragmentation* in such cases especially if little data
- A good dependable baseline for text classification (but not the best)!
- Optimal if the Independence Assumptions hold: If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Very Fast: Learning with one pass over the data; testing linear in the number of attributes, and document collection size
- Low Storage requirements

Resources

- Fabrizio Sebastiani. Machine Learning in Automated Text Categorization.
 ACM Computing Surveys, 34(1):1-47, 2002.
 (http://faure.iei.pi.cnr.it/~fabrizio/Publications/ACMCS01/ACMCS01.pdf)
- Andrew McCallum and Kamal Nigam. A Comparison of Event Models for Naive Bayes Text Classification. In AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.
- Tom Mitchell, Machine Learning. McGraw-Hill, 1997.
 - Clear simple explanation
- Yiming Yang & Xin Liu, A re-examination of text categorization methods.
 Proceedings of SIGIR, 1999.

Summary

- A general type of learning is the probabilistic one. Learning here means
 - Describe the problem through a generative model that makes the relations between input (e.g. symptoms) and output variables (e.g. diagnoses) explicit
 - Find the best parameters for the model (i.e. analytical probability distributions or estimation of discrete probabilities) able to decide about the problem in an accurate way
- An example: NB document classifiction (discrete case)
- Most applied models:
 - Multivariate Binomial (o Bernoulli) NB
 - Multinomial NB

Summary (2)

- In estimating the parameters of a NB classifiers a cengtral role isplayed by the so-called smoothing techniques: inaccurate estimation processes may result in a poor, i.e. inaccurate, results
 - Smoothing allows to improve the estimate of some parameters that are particularly problematic
 - Some target phenomena (e.g. very rare words)
 - Structural lacks on the adopted annotated sample
- NB classification is to be preferred for its robustness and efficiency
- It is widely adopted as a baseline in several researches and applications