KERNEL-BASED LEARNING

WM\&R a.a. 2020/21

D. Croce, R. Basili (A. Moschitti)

Università di Roma "Tor Vergata"
basili@info.uniroma2.it

Outline

- Metodi Kernel
- Motivazioni
- Esempio
- Kernel standard
- Polynomial kernel
- String Kernel
- Introduzione a metodi Kernel avanzati
- Tree kernels

Support Vector Machines

- Support Vector Machines (SVMs) are a machine learning paradigm based on the statistical learning theory [Vapnik, 1995]
- No need to remember everything, just the discriminating instances (i.e. the support vectors, SV)
- The classifier corresponds to the linear combination of SVs

Support Vectors

Only the dot product is required

Linear classifiers and separability

- In a R² space, 3 point can always be separable by a linear classifier
- but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]
- One solution could be a more complex classifier
©Risk of over-fitting

Linear classifiers and separability (2)

- ... but things change when projecting instances in a higher dimension feature space through a function ϕ
- IDEA: It is better to have a more complex feature space instead a more complex function (i.e. learning algorithm)

The kernel function

- In perceptrons and SVMs the learning algorithm only depends on the scalar product over pairs of example instance vectors
- Basically only the Gram-matrix is involved. In general, we call kernel the following function:

$$
K(\vec{x}, \vec{z})=\Phi(\vec{x}) \cdot \Phi(\vec{z})
$$

- The kernel corresponds to a scalar product over the transformed of initial objects x and z
- If the mapping ϕ corresponds to the identity then the kernel is equal to the standard scalar product.
- Notice that the training in most learning machines (such as the perceptron) makes use of instances only through the kernel

First Advantage: making instances linearly separable

\rightarrow

An example: a mapping function

- Two masses m_{l} and m_{2}, one is constrained
- A force f_{a} is applied to the mass m_{l}
- Instead of applying an analyitical law we want to experiment
- The Features of individual experiments are masses m_{1}, m_{2} and the appropriate orce f_{a}
- It is clear that the Newton law of gravity is involved:

$$
f\left(m_{1}, m_{2}, r\right)=C \frac{m_{1} m_{2}}{r^{2}}
$$

- The task corresponds to determine if $f\left(m_{1}, m_{2}, r\right)<f_{a}$

An example: a mapping function (2)

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \Phi(\vec{x})=\left(\Phi_{1}(\vec{x}), \ldots, \Phi_{k}(\vec{x})\right)
$$

- This law cannot be expressed linearly. A change of space:

$$
\left(f_{a}, m_{1}, m_{2}, r\right) \rightarrow(k, x, y, z)=\left(\ln f_{a}, \ln m_{1}, \ln m_{2}, \ln r\right)
$$

- holds as:

$$
\ln f\left(m_{1}, m_{2}, r\right)=\ln C+\ln m_{1}+\ln m_{2}-2 \ln r=c+x+y-2 z
$$

- The following hyperplane is the requested function $h()$:

$$
\begin{aligned}
& \ln f_{a}-\ln m_{1}-\ln m_{2}+2 \ln r-\ln C=0 \\
& (I, I,-2,-I) \cdot\left(\ln m_{1}, \ln m_{2}, \ln r, \ln f_{a}\right)+\ln C=o,
\end{aligned}
$$

We can decide with no error if masses m_{1}, m_{2} get closer or not

Feature Spaces and Kernels

- Feature Space
- The input space is mapped into a new space F with scalar product (called feature space) through a (non linear) trasformation ϕ

$$
\phi=R^{N} \rightarrow F
$$

- The kernel function
- The evaluation require the computation of the scalar product over the trasformed
 vectors $\phi(x)$ but not the feature vectors themselves
- The scalr product is computed by a specialized function called kernel

$$
k(x, y)=(\phi(x) \cdot \phi(y))
$$

Classification function: the dual form

$$
h(x)=\operatorname{sgn}(\vec{w} \cdot \vec{x}+b)=\operatorname{sgn}\left(\sum_{J=1}^{l} \alpha_{j} y_{j} \overrightarrow{x_{j}} \cdot \vec{x}+b\right)
$$

- On the right form, instances only appear in the scalar product
- The ony thing that is needed is the Gram matrix,

$$
G=\left(\left\langle\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\rangle\right)_{i, j=1}^{l}
$$

i.e. the explicit computation of the scalar product over any pair of training instances $x_{1} \ldots x_{l}$

A kernelized perceptron

- We can rewrite the decision function of a perceptron by taking into account a kernel:

$$
\begin{aligned}
h(x) & =\operatorname{sgn}(\vec{w} \cdot \Phi(\vec{x})+b)=\operatorname{sgn}\left(\sum_{J=1}^{l} \alpha_{j} y_{j} \Phi\left(\overrightarrow{x_{j}}\right) \cdot \Phi(\vec{x})+b\right) \\
& =\operatorname{sgn}\left(\sum_{J=1}^{l} \alpha_{j} y_{j} k\left(\overrightarrow{x_{j}}, \vec{x}\right)+b\right)
\end{aligned}
$$

- ... and during training the on-line adjustment steps become:

$$
\left.\left.y_{i}\left(\sum_{J=1}^{l} \alpha_{j} y_{j} \Phi\left(\overrightarrow{x_{j}}\right) \cdot\right) \Phi\left(\overrightarrow{x_{i}}\right)+b\right)=\sum_{J=1}^{l} \alpha_{j} y_{i} y_{j} k\left(\overrightarrow{x_{j}}, \overrightarrow{x_{i}}\right)+b\right)
$$

Kernels in Support Vector Machines

- In Soft Margin SVMs we need to maximize :

$$
\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j} \vec{x}_{i} \cdot \vec{x}_{j}+\frac{1}{2 C} \vec{\alpha} \cdot \vec{\alpha}-\frac{1}{C} \vec{\alpha} \cdot \vec{\alpha}
$$

- By using kernel functions we rewrite the problem as:

$$
\left\{\begin{array}{l}
\text { maximize } \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} y_{i} y_{j} \alpha_{i} \alpha_{j}\left(k\left(o_{i}, o_{j}\right)+\frac{1}{C} \delta_{i j}\right) \\
\alpha_{i} \geq 0, \quad \forall i=1, \ldots, m \\
\sum_{i=1}^{m} y_{i} \alpha_{i}=0
\end{array}\right.
$$

What makes a function a kernel function?

Def. 2.26 A kernel is a function k, such that $\forall \vec{x}, \vec{z} \in X$

$$
k(\vec{x}, \vec{z})=\phi(\vec{x}) \cdot \phi(\vec{z})
$$

where ϕ is a mapping from X to an (inner product) feature space.

Only such type of functions support implicit mappings such as

$$
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in R^{n} \rightarrow \Phi(\vec{x})=\left(\Phi_{1}(\vec{x}), \ldots, \Phi_{m}(\vec{x})\right) \in R^{m}
$$

What makes a function a kernel function? (2)

Def. B. 11 Eigen Values
Given a matrix $\boldsymbol{A} \in \mathbb{R}^{m} \times \mathbb{R}^{n}$, an egeinvalue λ and an egeinvector $\vec{x} \in$ $\mathbb{R}^{n}-\{\overrightarrow{0}\}$ are such that

$$
A \vec{x}=\lambda \vec{x}
$$

Def. B. 12 Symmetric Matrix
A square matrix $\boldsymbol{A} \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ is symmetric iff $\boldsymbol{A}_{i j}=\boldsymbol{A}_{j i}$ for $i \neq j i=1, . ., m$ and $j=1, .$. , n, i.e. iff $\boldsymbol{A}=\boldsymbol{A}^{\prime}$.

Def. B. 13 Positive (Semi-) definite Matrix
A square matrix $\boldsymbol{A} \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ is said to be positive (semi-) definite if its eigenvalues are all positive (non-negative).

What makes a function a kernel function? (3)

Proposition 2.27 (Mercer's conditions)
Let X be a finite input space with $K(\vec{x}, \vec{z})$ a symmetric function on X. Then $K(\vec{x}, \vec{z})$ is a kernel function if and only if the matrix

$$
k(\vec{x}, \vec{z})=\phi(\vec{x}) \cdot \phi(\vec{z})
$$

is positive semi-definite (has non-negative eigenvalues).

- IDEA: If the Gram matrix is positive semi-definite then the mapping ϕ, such that F is an inner-product space whose scalar product corresponds to the kernel $k(. .$.$) , exists$
- In F the separability should be easier

Feature Spaces and Kernels

- An example of Kernel
- The Polynomial kernel

$$
\text { - If } \begin{aligned}
& d=2 \text { and } k(x, y)=(x \cdot y)^{d} \\
& x, y \in R^{2} \\
& \qquad \begin{aligned}
(x \cdot y)^{2}= & \left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)^{2}=\left(\left[\begin{array}{l}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}^{2} \\
\sqrt{2} y_{1} y_{2} \\
y_{2}^{2}
\end{array}\right]\right) \\
= & (\phi(x) \cdot \phi(y))=k(x, y)
\end{aligned}
\end{aligned}
$$

Polynomial kernel

Polynomial Kernel (n dimensions)

$$
\begin{aligned}
(\vec{x} \cdot \vec{z})^{2} & =\left(\sum_{i=1}^{n} x_{i} z_{i}\right)^{2}
\end{aligned}=\left(\sum_{i=1}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{i} z_{i}\right), ~\left(\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} z_{i} z_{j}=\sum_{i, j \in\{1, \ldots, n\}}\left(x_{i} x_{j}\right)\left(z_{i} z_{j}\right) .\right.
$$

General Polynomial Kernel (n dimensions)

$$
\begin{aligned}
& (\vec{x} \cdot \vec{z}+c)^{2}=\left(\sum_{i=1}^{n} x_{i} z_{i}+c\right)^{2}=\left(\sum_{i=1}^{n} x_{i} z_{i}+c\right)\left(\sum_{j=1}^{n} x_{i} z_{i}+c\right)= \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} z_{i} z_{j}+2 c \sum_{i=1}^{n} x_{i} z_{i}+c^{2}= \\
& =\sum_{i, j \in\{1, ., n\}}\left(x_{i} x_{j}\right)\left(z_{i} z_{j}\right)+\sum_{i=1}^{n}\left(\sqrt{2 c} x_{i}\right)\left(\sqrt{2 c} z_{i}\right)+c^{2}
\end{aligned}
$$

Polynomial kernel and the conjunction of features

- The initial vectors can be mapped into a higher dimensional space ($c=1$)

$$
\Phi\left(<x_{1}, x_{2}>\right) \rightarrow\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)
$$

- More expressive, as ($x_{1} x_{2}$) encodes original feature pairs, e.g. stock+market vs. downtown+market are contributing (when occurring) togheter
- We can smartly compute the scalar product as

$$
\begin{aligned}
\Phi(\vec{x}) \times \Phi(\vec{z}) & =\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right) \times\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}, \sqrt{2} z_{1}, \sqrt{2} z_{2}, 1\right)= \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2}+2 x_{1} z_{1}+2 x_{2} z_{2}+1= \\
& =\left(x_{1} z_{1}+x_{2} z_{2}+1\right)^{2}=(\vec{x} \times \vec{z}+1)^{2}=K_{p 2}(\vec{x}, \vec{z})
\end{aligned}
$$

The Architecture of an SVM

- It is a non linear classifier (based on a kernel)
- Decision function:

$$
\begin{aligned}
f(x) & =\operatorname{sgn}\left(\sum_{i=1}^{l} v_{i}\left(\phi(x) \cdot \phi\left(x_{i}\right)\right)+b\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{l} v_{i} k\left(x, x_{i}\right)+b\right)
\end{aligned}
$$

$\phi\left(x_{i}\right)$ substitutes every training instamce x_{i}
$v_{i}=\alpha_{i} y_{i}$
v_{i} are the solutions of the optimization problem

The mapping function is never computed, but is implict in the kernel estimation

Esempi di Funzioni Kernel

- Lineare: $k\left(\vec{x}_{i}, \vec{x}_{j}\right)=\vec{x}_{i} \cdot \vec{x}_{j}$
- Polinomiale potenza di p: $k\left(\vec{x}_{i}, \vec{x}_{j}\right)=\left(1+\vec{x}_{i} \cdot \vec{x}_{j}\right)^{p}$
- Gaussiana (radial-basis function network):

$$
k\left(\vec{x}_{i}, \vec{x}_{j}\right)=e^{-\frac{\left\|\vec{x}_{i}-\vec{x}_{j}\right\|^{2}}{2 \sigma^{2}}}
$$

- Percettrone a due stadi:

$$
k\left(\vec{x}_{i}, \vec{x}_{j}\right)=\tanh \left(\beta_{1}+\beta_{0} \vec{x}_{i} \cdot \vec{x}_{j}\right)^{p}
$$

String Kernel

- Given two strings, the number of matches between their substrings is computed
- E.g. Bank and Rank
- B, a, n, k, Ba, Ban, Bank, an, ank, nk
- R, a , n, k, Ra, Ran, Rank, an, ank, nk
- String kernel over sentences and texts
- Huge space but there are efficient algorithms
- Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). "Text classification using string kernels". Journal of Machine Learning Research: 419-444.

String kernel

- A function that give two strings s and t is able to compute a real number $k(s, t)$ such that
- two vectors exist \vec{s} and \vec{t}
- \vec{s} and \vec{t} are unique for s and t
- (the vectors represents strings by embedding their crucial properties!!)
- $\mathrm{k}(\mathrm{s}, \mathrm{t})=\vec{s} \times \vec{t}$
- We will see how vectors \vec{s} and \vec{t} are defined in \mathbb{R}^{∞}, as the numer of strings of arbitrary length over an alphabet is infinite
- IDEA: Define a space whereas each substring is a dimension

Kernel tra Bank e Rank

$\mathrm{B}, \mathrm{a}, \mathrm{n}, \mathrm{k}, \mathrm{Ba}, \mathrm{Ban}, \mathrm{Bank}, \mathrm{an}, \mathrm{ank}, \mathrm{nk}, \mathrm{Bn}, \mathrm{Bnk}, \mathrm{Bk}$ and ak are the substrings of Bank.
$\mathrm{R}, \mathrm{a}, \mathrm{n}, \mathrm{k}, \mathrm{Ra}$, Ran, Rank, an, ank, $\mathrm{nk}, \mathrm{Rn}, \mathrm{Rnk}, \mathrm{Rk}$ and ak are the substrings of Rank.

ϕ

$$
\begin{aligned}
\phi(\operatorname{Bank})= & \left(\lambda, 0, \lambda, \lambda, \lambda, \lambda^{2}, \lambda^{2}, \lambda^{3}, 0, \lambda^{4}, 0, \lambda^{2}, \lambda^{3}, \lambda^{3},\right. \\
\phi(\text { Rank })= & \left(0, \lambda, \lambda, \lambda, \lambda, 0,0,0, \lambda^{3}, 0, \lambda^{4}, \lambda^{2}, \lambda^{3}, \lambda^{3},\right. \\
& B, R, a, n, k, \text { Ba, Ra, Ban, Ran, Bank, Rank, an, ank, ak } \ldots
\end{aligned}
$$

-Common substrings:

$$
-a, n, k, a n, a n k, n k, a k
$$

- Notice how these are the same subsequences as between
-Schrianak and Rank

Formally ...

Sottosequenza di indici ordinati e

$$
\begin{aligned}
& s=s_{1}, \ldots, s_{|s|} \text { non contigui di }(I, \ldots|s|) \\
& \vec{I}=\left(i_{1}, \ldots, i_{|u|}\right) \quad u=s[\vec{I}], \text { substring of } s \text { defined by } \vec{I} \\
& \phi_{u}(s)=\sum_{\vec{I}: u=s[\vec{I}]} \lambda^{l(\vec{I})} \text {, con } l(\vec{I})=i_{|u|}-i_{1}+1 \\
& K(s, t)=\sum_{u \in \Sigma^{*}} \phi_{u}(s) \cdot \phi_{u}(t)=\sum_{u \in \Sigma^{*}} \sum_{\vec{I}: u=s[\vec{I}]} \lambda^{l(\vec{I})} \sum_{\vec{J}: u=t[\vec{J}]} \lambda^{l(\vec{J})}= \\
& =\sum_{u \in \Sigma^{*}} \sum_{\vec{I}: u=s[\vec{I}]} \sum_{\vec{J}: u=t[\vec{J}]} \lambda^{l(\vec{I})+l(\vec{J})} \quad, \text { con } \Sigma^{*}=\bigcup_{n=0}^{\infty} \Sigma^{n}
\end{aligned}
$$

An example of string kernel computation

- $\phi_{\mathrm{a}}($ Bank $)=\phi_{\mathrm{a}}(\mathrm{Rank})=\lambda^{\left(i_{1}-i_{1}+1\right)}=\lambda^{(2-2+1)}=\lambda$,
- $\phi_{\mathrm{n}}(\operatorname{Bank})=\phi_{\mathrm{n}}(\mathrm{Rank})=\lambda^{\left(i_{1}-i_{1}+1\right)}=\lambda^{(3-3+1)}=\lambda$,
- $\phi_{\mathrm{k}}(\operatorname{Bank})=\phi_{\mathrm{k}}(\operatorname{Rank})=\lambda^{\left(i_{1}-i_{1}+1\right)}=\lambda^{(4-4+1)}=\lambda$,
- $\phi_{\mathrm{an}}(\mathrm{Bank})=\phi_{\mathrm{an}}(\mathrm{Rank})=\lambda^{\left(i_{1}-i_{2}+1\right)}=\lambda^{(3-2+1)}=\lambda^{2}$,
- $\phi_{\text {ank }}($ Bank $)=\phi_{\text {ank }}(\operatorname{Rank})=\lambda^{\left(i_{1}-i_{3}+1\right)}=\lambda^{(4-2+1)}=\lambda^{3}$,

$$
\begin{aligned}
& \phi_{\mathrm{nk}}(\mathrm{Bank})=\phi_{\mathrm{nk}}(\mathrm{Rank})=\lambda^{\left(i_{1}-i_{2}+1\right)}=\lambda^{(4-3+1)}=\lambda^{2} \\
& \phi_{\mathrm{ak}}(\mathrm{Bank})=\phi_{\mathrm{ak}}(\mathrm{Rank})=\lambda^{\left(i_{1}-i_{2}+1\right)}=\lambda^{(4-2+1)}=\lambda^{3}
\end{aligned}
$$

It follows that $K(\operatorname{Bank}, \operatorname{Rank})=\left(\lambda, \lambda, \lambda, \lambda^{2}, \lambda^{3}, \lambda^{2}, \lambda^{3}\right) \cdot\left(\lambda, \lambda, \lambda, \lambda^{2}, \lambda^{3}, \lambda^{2}, \lambda^{3}\right)$ $=3 \lambda^{2}+2 \lambda^{4}+2 \lambda^{6}$.

Tree Kernels

- String kernels adopt a structured approach to kernel estimation and are very useful in NLP and Web Mining tasks
- However, what has been defined over sequences can be profitably exploited also in the treatment of more complex structures
- Trees whose parent relationship determine subsequences in terms of
- Multiple paths from the root to the leaves
- Ordered sets of children (i.e. sequences of immediately dominated nodes) of every node in the tree
- Graphs, whose structure can be captured by several trees (subgraphs) and thus characterized by multiple subsequences

Tree kernels

- Applications are related to text processing tasks such as
- Syntactic parsing, when SVM classification is useful to select the best parse tree among multiple legal grammatical interpretations
- Question Classification, where SVM classification is applied to the recognition of the target of a question (e.g. a person such as in "Who is the inventor of the light?" vs. a place as in "Where is Taji Mahal?"
or to pattern recognition (e.g. in bioinformatics the classification of protein structures)

Tree Kernels

Modeling syntax in Natural Language learning task is complex, e.g.

- Question Classification
- Semantic role relations within predicate argument structures and

Tree kernels are natural way to exploit syntactic information from sentence parse trees

- useful to engineer novel and complex features.

Tree structures and natural language

- PARSING: Breaking down a text into its component parts of speech (according to a formal grammar) with an explanation of the form, function, and syntactic relationship of each part
- INPUT: gives a talk
- Output : a costituency tree

Chomsky, N. 1957. Syntactic Structures. The Hague/Paris: Mouton.

The Collins and Duffy's Tree Kernel

Given a costituency tree

The overall fragment set

We can explode the syntactic tree in all syntactically motivated fragments

- For each node the production rules must be respected, i.e. we can remove " 0 or all children at a time"
- It is also known as Syntactic Tree Kernel

Explicit feature space

Can we build a feature vector accounting on all this information?

$\vec{x}_{1} \cdot \vec{x}_{2}$ counts the number of common substructures

Implicit Representation

Can we estimate the tree kernel in an implicit space?

- We can implicitly count the number of common subtrees
- We prevent to define feature vectors that consider ALL POSSIBLE SUBTREES, i.e. thousand of features
- The final model will not contain feature vectors, but TREES

$$
\begin{array}{r}
\vec{x}_{1} \cdot \vec{x}_{2}=\phi\left(T_{1}\right) \cdot \phi\left(T_{2}\right)=K\left(T_{1}, T_{2}\right)= \\
=\sum_{n_{1} \in l_{1}} \sum_{n_{2} \in r_{2}} \Delta\left(n_{1}, n_{2}\right)
\end{array}
$$

[Collins and Duffy, ACL 2002] evaluate Δ in $O\left(n^{2}\right)$:
$\Delta\left(n_{1}, n_{2}\right)=0$, if the productions are different else $\Delta\left(n_{1}, n_{2}\right)=1$, if pre-terminals else
$\Delta\left(n_{1}, n_{2}\right)=\prod_{j=1}^{n c\left(n_{1}\right)}\left(1+\Delta\left(\operatorname{ch}\left(n_{1}, j\right), \operatorname{ch}\left(n_{2}, j\right)\right)\right)$

Tree kernels are ... embedding tools

- Semantic Tree Kernels allows generating vectors that reflect syntactic/semantic information of sentences
- Who is the tallest man in the world?

- Which most similar sentences/trees/vectors?
- Who is the richest woman in the world?
- Who is the richest person in the world?
- Who is the fastest swimmer in the world?
- Who was murdered yesterday by the terrorist group?

Weighting in grammatical tree kernels

In the kernel estimation different subtrees are taken in account different times

- Es: in the following trees, one fragment will contribute twice to the overall kernel

Weighting

- A decay factor can be used, so the contribution of the embedded trees is reduced.
- The normalization of Tree Kernel estimation corresponds to the normalization of the explicit feature vector

$$
\begin{aligned}
& \text { Decay factor } \\
& \Delta\left(n_{1}, n_{2}\right)=\lambda, \text { if pre-terminals else } \\
& \Delta\left(n_{1}, n_{2}\right)=\lambda \prod_{j=1}^{n c\left(n_{1}\right)}\left(1+\Delta\left(\operatorname{ch}\left(n_{1}, j\right), \operatorname{ch}\left(n_{2}, j\right)\right)\right) \\
& \text { Normalization }^{\prime} K^{\prime}\left(T_{1}, T_{2}\right)=\frac{K\left(T_{1}, T_{2}\right)}{\sqrt{K\left(T_{1}, T_{1}\right) \times K\left(T_{2}, T_{2}\right)}}
\end{aligned}
$$

Partial Tree [Moschitti,2006]

- A Syntactic Tree satisfies completely a grammar rule, i.e. the constraint is "remove 0 or all children at a time".
- Partial Tree Kernel (PTK) relaxes such constraint we get more general substructures
- It allows gaps in the production rules in the same fashion of the sequence kernel

Partial Tree Kernel

- if the node labels of n_{1} and n_{2} are different then $\Delta\left(n_{1}, n_{2}\right)=0$;
- else

$$
\Delta\left(n_{1}, n_{2}\right)=1+
$$

$$
\sum_{\vec{J}_{1}, \vec{J}_{2}, l\left(\vec{J}_{1}\right)=l\left(\vec{J}_{2}\right)} \prod_{i=1}^{l\left(\vec{J}_{1}\right)}
$$

- By adding two decay factors we obtain:

$$
\mu\left(\lambda^{2}+\sum_{\vec{J}_{1}, \vec{J}_{2}, l\left(\vec{J}_{1}\right)=l\left(\vec{J}_{2}\right)} \lambda^{d\left(\vec{J}_{1}\right)+d\left(\vec{J}_{2}\right)} \prod_{i=1}^{l\left(\vec{J}_{1}\right)} \Delta\left(c_{n_{1}}\left[\vec{J}_{1 i}\right], c_{n_{2}}\left[\vec{J}_{2 i}\right]\right)\right)
$$

Kernel Combination and normalization

- Kernels can be easily combined so that the evidences captured by several kernel functions can contribute to the learning algorithm
- The sum of kernels is a valid kernel
- The product of kernels is a valid kernel
- We can also Normalize the implicit space operating directly only the kernel function

$$
\begin{aligned}
\hat{K}(s, t) & =\langle\hat{\phi}(s) \cdot \hat{\phi}(t)\rangle=\left\langle\frac{\phi(s)}{\|\phi(s)\|} \cdot \frac{\phi(t)}{\|\phi(t)\|}\right\rangle \\
& =\frac{1}{\|\phi(s)\|\|\phi(t)\|}\langle\phi(s) \cdot \phi(t)\rangle=\frac{K(s, t)}{\sqrt{K(s, s) K(t, t)}}
\end{aligned}
$$

Summary

- The dual form of the SVM optimization problem ONLY depends on the scalar product between training examples and NOT from their explicit vector representation (likewise the perceptron)
- This suggests to exploit this property in order to:
- Define efficient functions able to compute the scalar product out from the original representation (i.e. from the input space)
- Exploit more complex representations (i.e. more expressive feature spaces) in implicit way
- This corresponds to search the model in feature spaces able to:
- Preserve the mathematical properties sufficient to guarantee convergence (i.e. the minimization of the expected error)
- Support training and classification by a limited complexity (e.g. no need to build large dimensional representations of input instances)

Summary (2)

- In order for a function k(.,.) to be a valid kernel, its correspondin Gram matrix mast be positive semi-definite
- In practice, such property is verified empirically over the training datasets
- In this unit, the following kernel funcrion have been introduced as they can be very effective in Web Mining problems:
- Base kernels (for example, polynomial kernel polinomiali of degree 2)
- Task dependent kernels that dipenden on the structura of a learning task:
- String (Sequence) kernels
- Tree kernels
- We will explore semantic kernels (e.g. latent semantic kernels) later in the course

References

- Kernel Methods for Pattern Analysis, John Shawe-Taylor \& Nello Cristianini - Cambridge University Press, 2004
- Haussler, D. (1999). Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz
- Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). "Text classification using string kernels". Journal of Machine Learning Research: 419-444.
- Roberto Basili, Marco Cammisa and Alessandro Moschitti, Effective use of wordnet semantics via kernel-based learning. In Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL 2005), Ann Arbor(MI), USA, 2005
- Building Semantic Kernels for Text Classification using Wikipedia, Pu Wang and Carlotta Domeniconi, Department of Computer Science, George Mason University

