Geometrical Embeddings in Machine Learning – Preliminary Definitions

R. Basili

Course on Web Mining and Retrieval a.a. 2012-13

January 7, 2013

<ロ> (四) (四) (三) (三) (三) (三)

Eigen Decomposition

Change of Basis

Change of Basis

Given two alternative basis $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ and $B' = \{\underline{b}'_1, \dots, \underline{b}'_n\}$, such that the square matrix $\mathbf{C} = (c_i k)$ describe the change of the basis, i.e.

$$\underline{b}'_{k} = c_{1k}\underline{b}_{1} + c_{2k}\underline{b}_{2} + \dots c_{nk}\underline{b}_{n} \qquad \forall k = 1, \dots, n$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a generic vector \underline{x} allows to compute the change of basis according only to the involved basis *B* and *B'*. For every $\underline{x} = \sum_{k=1}^{n} x_k \underline{b}_k$ such that in the new basis *B'*, \underline{x} can be expressed by $\underline{x} = \sum_{k=1}^{n} x'_k \underline{b}'_k$, then it follows that:

$$\underline{x} = \sum_{k=1}^{n} x'_{k} \underline{b}'_{k} = \sum_{k} x'_{k} \left(\sum_{i} c_{ik} \underline{b}_{i} \right) = \sum_{i,k=1}^{n} x'_{k} c_{ik} \underline{b}_{i}$$

from which it follows that:

$$x_i = \sum_{k=1}^n x'_k c_{ik} \qquad \forall i = 1, ..., n$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a generic vector \underline{x} allows to compute the change of basis according only to the involved basis *B* and *B'*. For every $\underline{x} = \sum_{k=1}^{n} x_k \underline{b}_k$ such that in the new basis *B'*, \underline{x} can be expressed by $\underline{x} = \sum_{k=1}^{n} x'_k \underline{b}'_k$, then it follows that:

$$\underline{x} = \sum_{k=1}^{n} x'_{k} \underline{b}'_{k} = \sum_{k} x'_{k} \left(\sum_{i} c_{ik} \underline{b}_{i} \right) = \sum_{i,k=1}^{n} x'_{k} c_{ik} \underline{b}_{i}$$

from which it follows that:

$$x_i = \sum_{k=1}^n x'_k c_{ik} \qquad \forall i = 1, ..., n$$

The above condition suggests that C is sufficient to describe any change of basis through the matrix vector multiplication operations:

$$\underline{x} = \mathbf{C}\underline{x}$$

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a matrix **A** can be seen by studying the case where $\underline{x}, \underline{y}$ are the expression of two vectors in a base *B* while their counterpart on *B'* are $\underline{x}', \underline{y}'$, respectively. Now if **A** and **B** are such that $\underline{y} = \mathbf{A}\underline{x}$ and $\underline{y}' = \mathbf{B}\underline{x}'$, then it follows that:

$$\underline{y} = \mathbf{C}\underline{y}' = \mathbf{A}\underline{x} = \mathbf{A}(\mathbf{C}\underline{x}') = \mathbf{A}\mathbf{C}\underline{x}'$$
(this means that)
$$\underline{y}' = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}\underline{x}'$$

from which it follows that:

$$\mathbf{B} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$$

The transformation of basis C is a *similarity transformation* and matrices A and C are said *similar*.

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix **C** on a matrix **A** can be seen by studying the case where $\underline{x}, \underline{y}$ are the expression of two vectors in a base *B* while their counterpart on *B'* are $\underline{x}', \underline{y}'$, respectively. Now if **A** and **B** are such that $\underline{y} = \mathbf{A}\underline{x}$ and $\underline{y}' = \mathbf{B}\underline{x}'$, then it follows that:

$$\underline{y} = \mathbf{C}\underline{y}' = \mathbf{A}\underline{x} = \mathbf{A}(\mathbf{C}\underline{x}') = \mathbf{A}\mathbf{C}\underline{x}'$$
(this means that)
$$\underline{y}' = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}\underline{x}'$$

from which it follows that:

$$\mathbf{B} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$$

The transformation of basis C is a *similarity transformation* and matrices A and C are said *similar*.

Eigenvalues and eigenvectors

Eigenvect<u>ors</u>

An eigenvector <u>x</u> for a matrix A is a non-zero vector for which a scalar $\lambda \in \Re$ exists such that

$$\mathbf{A}\underline{x} = \lambda \underline{x}$$

The value of the scalar λ is called eigenvalue of **A** associated to <u>x</u>, and correspond to the scaling factor along the direction of <u>x</u>.

Example

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \text{ and } \underline{x} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

<u>x</u> is an eigenvector of **A** and $\lambda = 2$ is its eigenvalue.

Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences

When a matrix \mathbf{A} has an eigenvector \underline{x} it must satisfy the following condition:

$$\mathbf{A}\underline{x} = \lambda \underline{x}$$

We can rewrite the condition $A\underline{x} = \lambda \underline{x}$ as

$$(\mathbf{A} - \lambda \mathbf{I} \underline{x}) = \underline{0}$$

where **I** is the Identity matrix.

In order for a non-zero vector \underline{x} to satisfy this equation, $\mathbf{A} - \lambda \mathbf{I}$ must not be *invertible*(see next slide).

The consequence is that the determinant of $\mathbf{A} - \lambda \mathbf{I}$ must equal 0. This function is $p(\lambda) = det(\mathbf{A} - \lambda \mathbf{I})$, called the *characteristic polynomial* of \mathbf{A} . The eigenvalues of \mathbf{A} are simply the roots of the characteristic polynomial of \mathbf{A} .

Eigenvalues, eigenvectors and some properties: Proof

$\mathbf{A} - \lambda \mathbf{I}$ must not be invertible: Why?

 $A - \lambda I$ must not be invertible, as otherwise, if $A - \lambda I$ has an inverse, and

$$(\mathbf{A} - \lambda \mathbf{I})^{-1} (\mathbf{A} - \lambda \mathbf{I}) \underline{x} = (\mathbf{A} - \lambda \mathbf{I})^{-1} \underline{0} \underline{x}$$
$$\mathbf{I} \underline{x} = \underline{0}.$$

the zero vector is derived. This is not admissibile as, by definition, $\underline{x} \neq \underline{0}$.

Eigenvalues and eigenvectors

An example: computing eigenvalues

Let
$$\mathbf{A} = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$$
. Then
 $p(\lambda) = (2 - \lambda)(-1 - \lambda) - (-4)(-1) = \lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2)$
The eigenvectors are then the solution of the linear equation system given by
 $(\mathbf{A} - \lambda \mathbf{I})\underline{x} = \underline{0}$.
Given the first eigenvalue $\lambda_1 = 3$, $(\mathbf{A} - 3\mathbf{I})\underline{x} = \underline{0}$ gives the following system:
 $\begin{cases} -x_1 - 4x_2 = 0 \\ -x_1 - 4x_2 = 0 \end{cases}$

This suggests that all vectors of the form $\alpha \underline{x}_1$ are eigenvectors with $\underline{x}_1^T = (-4, 1)$. The span of the vector $(-4, 1)^T$ is the **eigenspace** corresponding to $\lambda_1 = 3$. Correspondingly, the span of the vector $\underline{x}_2 = (1, 1)^T$ corresponds to the eigenspace of $\lambda_2 = -2$. Notice that \underline{x}_1 and \underline{x}_2 are linearly independent, so they can form a basis.

Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix \mathbf{A} is such that $\mathbf{A} = \mathbf{A}^T$, and on two dimensions, this means that :

i)
$$a_{11}, a_{22} \neq 0$$

ii) $a_{12} = a_{21} = a$

In order for A to have two real eigenvalues the following must hold:

$$p(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) - a^2 = = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a^2 = 0$$

from which eigenvalues are distinct iff:

$$(a_{11} - a_{22})^2 + 4a^2 \ge 0$$

The above inequality is always satisfied, with the 0 case only when A = I.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix **A** has *n* distinct eigenvectors \underline{x}_i with all real-valued and distinct eigenvalues λ_i , it is called *non-degenerate*.

Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix **A** has *n* distinct eigenvectors \underline{x}_i with all real-valued and distinct eigenvalues λ_i , it is called *non-degenerate*.

A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors $\underline{x}_1 \neq \underline{x}_2$, with $\mathbf{A}\underline{x}_i = \lambda_i \underline{x}_i$ (i = 1, 2), it follows that

$$\begin{split} \lambda_1(\underline{x}_1,\underline{x}2) &= (\mathbf{A}\underline{x}_1,\underline{x}_2) = (\underline{x}_1,\mathbf{A}\underline{x}2) = \lambda_2(\underline{x}_1,\underline{x}_2) \\ \text{from which it follows that} \qquad & (\lambda_1 - \lambda_2)(\underline{x}_1,\underline{x}_2) = 0 \end{split}$$

However as $\lambda_1 \neq \lambda_2$, and $\underline{x}_1, \underline{x}_2$ were arbitrarily chosen, the result is that

$$\forall i, j = 1, ..., n \qquad (\underline{x}_i, \underline{x}_j) = \begin{cases} \|\underline{x}_i\|^2 & i = j \\ 0 & i \neq j \end{cases}$$

Spectral Theorem

Spectral theorem

For every self-adjoint matrix **A** on a finite dimensional inner product space V_n , there correspond real valued numbers $\alpha_1, ..., \alpha_r$, and orthonormal projections $\mathbf{E}_1, ..., \mathbf{E}_r$, with $r \leq n$, such that:

- (1) all α_l are *pairwise distinct*
- (2) all \mathbf{E}_j are not null (i.e. $\forall j, \mathbf{E}_j \neq \mathbf{0}$)
- (3) $\sum_{j=1}^{r} \mathbf{E}_j = \mathbf{I}$
- (4) $\mathbf{A} = \sum_{j=1}^{r} \alpha_j \mathbf{E}_j$

Notice that the set of self-adjoint matrices whenever the underlying field is the set of real numbers consists of the set of symmetric matrices. The spectral theorem suggests that a possible basis where to diagonalize them is always available through their eigenvectors.

Applications: document similarity matrices where $a_{ij} = sim(d_i, d_j)$.

Eigen/Diagonal Decomposition

Spectral theorem and non degenerate matrices

The spectral theorem over the set of symmetric matrices imply a special kind of decomposition such that the eigenvectors corresponds to a new (orthogonal) basis and the eigen values are the factors of a transformation able to reconstruct the original matrix.

Eigen/Diagonal Decomposition

Spectral theorem and non degenerate matrices

The spectral theorem over the set of symmetric matrices imply a special kind of decomposition such that the eigenvectors corresponds to a new (orthogonal) basis and the eigen values are the factors of a transformation able to reconstruct the original matrix.

This is called Eigen decomposition of a non-degenerate matrix.

Eigen/Diagonal Decomposition

Spectral theorem and Eigen Decomposition

Let **S** be a square matrix with *m* linearly independent eigenvectors (a '**non-degenerate**' matrix). *Theorem*: it exists an eigen decomposition

$$S = U\Lambda U^{-1}$$

such that (cf. matrix diagonalization theorem)

- Columns of U are eigenvectors of S
- Λ is a diagonal m×m matrix whose diagonal elements are the m eigenvalues of S, with λ_i ≥ λ_{i+1}, ∀i = 1,...,m-1

Eigen/Diagonal Decomposition: an example

Eigen Decomposition

Given the matrix **U** where the columns correpond to *m* eigenvectors $v_1, ..., v_m$ of **S**, i.e. Let $\mathbf{U} = \begin{pmatrix} \underline{v}_1 & ... & \underline{v}_m \end{pmatrix}$ then it follows that: $\mathbf{SU} = \mathbf{S} \begin{pmatrix} \underline{v}_1 & ... & \underline{v}_m \end{pmatrix} = \begin{pmatrix} \lambda_1 \underline{v}_1 & ... & \lambda_m \underline{v}_m \end{pmatrix} = \begin{pmatrix} \underline{v}_1 & ... & \underline{v}_m \end{pmatrix} \begin{pmatrix} \lambda_1 & ... & \underline{v}_m \end{pmatrix} = \begin{pmatrix} \underline{v}_1 & ... & \underline{v}_m \end{pmatrix} \begin{pmatrix} \lambda_1 & ... & \underline{v}_m \end{pmatrix} = \mathbf{U} \Lambda$

Decomposition

Thus: $SU = U\Lambda$ and $S = U\Lambda U^{-1}$

(日)

Eigen Decomposition

An example

Let $\mathbf{S} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. The eigenvectors are the solutions of $(\mathbf{A} - \lambda \mathbf{I})\underline{x} = \underline{0}$. Given the first eigenvalue $\lambda_1 = 1$, all vectors of the form $\alpha \underline{v}_1$ are eigenvectors with $\underline{v}_1^T = (1, -1)$. Correspondingly, a second eigenvector $\underline{v}_2 = (1, 1)^T$ corresponds to $\lambda_2 = 3$. It follows that:

$$\mathbf{U} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ and } \mathbf{U}^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

So that:

$$\mathbf{S} = \mathbf{U} \Lambda \mathbf{U}^{-1} = \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

Symmetric Eigen Decomposition

Normalized eigenvectors

Notice that if we take normalized eigenvectors \underline{v}_1 and \underline{v}_2 , i.e. respectively by

$$\underline{v}_1 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$
 and $\underline{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$

(with the normalized \mathbf{U} written as \mathbf{Q})

Symmetric Eigen decomposition

Then

$$\mathbf{S} = \mathbf{Q} \Lambda \mathbf{Q}^{-1} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

with **Q** orthogonal, i.e. such that $\mathbf{Q}^T = \mathbf{Q}^{-1}$ and

$$\mathbf{S} = \mathbf{Q} \Lambda \mathbf{Q}^T$$

Symmetric Eigen Decomposition

Theorem

If **S** is a $m \times m$ real-valued symmetric matrix, then it exists a unique **eigen decomposition**

$$\mathbf{S} = \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^T$$

where **Q** is orthogonal, i.e.

Symmetric Eigen Decomposition

Theorem

If **S** is a $m \times m$ real-valued symmetric matrix, then it exists a unique **eigen decomposition**

$$\mathbf{S} = \mathbf{Q} \Lambda \mathbf{Q}^T$$

where **Q** is orthogonal, i.e.

- $\mathbf{Q}^{-1} = \mathbf{Q}^T$
- The columns of **Q** are normalized eigenvectors
- All the columns in **Q** are orthogonal.

Notice that everything is real.

Symmetric Eigen Decomposition and SVD

Non square matrices

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Symmetric Eigen Decomposition and SVD

Non square matrices

When **A** is a real-valued $m \times n$ matrix, its co-variance matrix $\mathbf{A}\mathbf{A}^T$ (as well as $\mathbf{A}^T\mathbf{A}$) is a symmetric matrix. By applying the symmetric eigen decomposition to $\mathbf{W} = \mathbf{A}^T\mathbf{A}$ we get:

 $\exists ! \mathbf{Q} \text{ such that } \mathbf{W} = \mathbf{Q} \Lambda \mathbf{Q}^T$

where $\lambda_1, ..., \lambda_r$ values corresponds to the different eigenvalues of the W matrix, *r* is the range and **Q** is orthogonal.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Symmetric Eigen Decomposition and SVD

Non square matrices

When **A** is a real-valued $m \times n$ matrix, its co-variance matrix $\mathbf{A}\mathbf{A}^T$ (as well as $\mathbf{A}^T\mathbf{A}$) is a symmetric matrix. By applying the symmetric eigen decomposition to $\mathbf{W} = \mathbf{A}^T\mathbf{A}$ we get:

 $\exists ! \mathbf{Q} \text{ such that } \mathbf{W} = \mathbf{Q} \Lambda \mathbf{Q}^T$

where $\lambda_1, ..., \lambda_r$ values corresponds to the different eigenvalues of the W matrix, *r* is the range and Q is orthogonal. Notice that: a similar Q' exists for $\mathbf{A}^T \mathbf{A}$.

Symmetric Eigen Decomposition and SVD

Non square matrices

When **A** is a real-valued $m \times n$ matrix, its co-variance matrix $\mathbf{A}\mathbf{A}^T$ (as well as $\mathbf{A}^T\mathbf{A}$) is a symmetric matrix. By applying the symmetric eigen decomposition to $\mathbf{W} = \mathbf{A}^T\mathbf{A}$ we get:

 $\exists ! \mathbf{Q} \text{ such that } \mathbf{W} = \mathbf{Q} \wedge \mathbf{Q}^T$

where $\lambda_1, ..., \lambda_r$ values corresponds to the different eigenvalues of the W matrix, *r* is the range and Q is orthogonal. Notice that: a similar Q' exists for $\mathbf{A}^T \mathbf{A}$. We can keep as U (in SVD) the matrix Q and as V (in SVD) the matrix Q'. They are the (left and right) normalized eigenvector matrices of $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$, respectively.

Singular Value Decomposition

SVD

For an $m \times n$ matrix **A** of rank *r* there exists a factorization called **Singular Value Decomposition** (SVD) as follows:

$$\mathbf{A} = \mathbf{U}_{(m \times r)} \boldsymbol{\Sigma}_{(r \times r)} \mathbf{V}_{(n \times r)}^{T}$$

where

- U expresses the normalized eigevectors of **AA**^T
- V expresses the normalized eigevectors of A^TA
- Σ is a diagonal matrix whose non-zero elements σ_i (i = 1, ...r) are called *singular values* and are defined as

$$\sigma_i = \sqrt{\lambda_i}$$

with λ_i as eigenvalues of $\mathbf{A}\mathbf{A}^T$ (and $\mathbf{A}^T\mathbf{A}$)

Singular Value Decomposition

An example with m = 3, n = 2

Let

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array}\right)$$

Then the corresponding SVD is:

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V} =$

$$= \left(\begin{array}{ccc} 0 & 2/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{6} & -1/\sqrt{3} \end{array}\right) \left(\begin{array}{ccc} \mathbf{1} & 0 \\ 0 & \sqrt{3} \\ 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{array}\right)$$

(OSS: The singular values are arranged in decreasing order. Moreover, the diagonal elements of Λ are filled with 0 for the $\sigma_i \quad \forall i > r$

Singular Values and Eigenvectors

Eigenvalues of the Covariance Matrix

In the above example, where

$$\mathbf{A} = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array} \right)$$

it is useful to compute the covariance matrix $\mathbf{A}^T \mathbf{A}$, i.e.

$$\mathbf{A}^T \mathbf{A} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)$$

Eigenvalues of the Covariance Matrix

In the above example, where

$$\mathbf{A} = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{array} \right)$$

it is useful to compute the covariance matrix $\mathbf{A}^T \mathbf{A}$, i.e.

$$\mathbf{A}^T \mathbf{A} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)$$

whose eigenvalues λ_i are: **3** and **1**.

Covariance Matrix and singular values

Notice how the singular values of **A** σ_i are exactly the square roots of eigenvalues for $\mathbf{A}^T \mathbf{A}$, i.e. $\sigma_i = \sqrt{\lambda_i}$ i = 1, ..., r

▲ロト▲御と▲臣と▲臣と 臣 のへで

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Singular Values and Eigenvectors

Eigenvalues of the Covariance Matrix

In the above example, given the covariance matrix $\mathbf{A}^T \mathbf{A}$, i.e.

$$\mathbf{A}^T \mathbf{A} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)$$

Eigenvalues of the Covariance Matrix

In the above example, given the covariance matrix $A^{T}A$, i.e.

$$\mathbf{A}^T \mathbf{A} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right)$$

and its eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 1$, the corresponding eigenspaces correspond to the rotations and stretching of the original (2) dimensions along the direction of maximal variance.

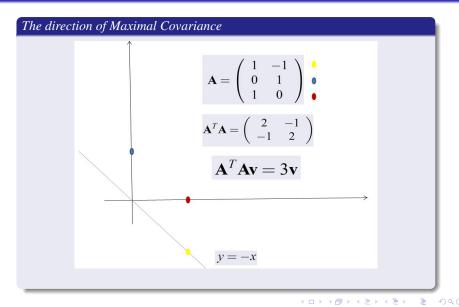
Eigenspace

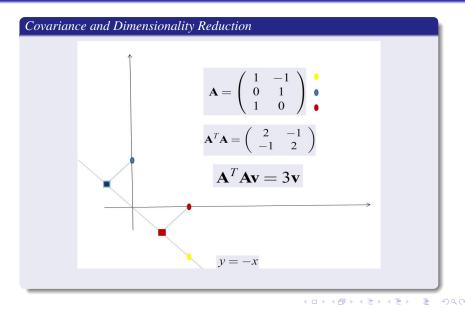
For the eigenvalue $\lambda_1 = 3$, the corresponding direction is the one for which $\mathbf{A}^T \mathbf{A} \mathbf{v} = \lambda_1 \mathbf{v}$, i.e. $\mathbf{A}^T \mathbf{A} \mathbf{v} = 3 \mathbf{v}$:

$$\begin{cases} 2x_1 - x_2 &= 3x_1 \\ -x_1 + 2x_2 &= 3x_2 \end{cases}$$

whose solution $x_2 = -x_1$ corresponds to: y = -x.

00





▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Vectors, Operations, Norms and Distances

K. Van Rijesbergen, The Geometry of Information Retrieval, CUP Press, 2004. Chapter 4.

SVD and the fundamental theorem of linear algebra

G. Golub & C. van Loan (1996): Matrix computations. Third edition. London: The Johns Hopkins University Press.