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Change of Basis

Change of Basis

Given two alternative basis B = {b1, ...,bn} and B′ = {b′1, ...,b′n}, such that
the square matrix C = (cik) describe the change of the basis, i.e.

b′k = c1kb1 + c2kb2 + ...cnkbn ∀k = 1, ...,n
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a generic vector x allows to compute the
change of basis according only to the involved basis B and B′. For every
x = ∑

n
k=1 xkbk such that in the new basis B′, x can be expressed by

x = ∑
n
k=1 x′kb′k, then it follows that:

x =
n

∑
k=1

x′kb′k = ∑
k

x′k

(
∑

i
cikbi

)
=

n

∑
i,k=1

x′kcikbi

from which it follows that:

xi =
n

∑
k=1

x′kcik ∀i = 1, ...,n

The above condition suggests that C is sufficient to describe any change of
basis through the matrix vector mutliplication operations:

x = Cx′
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Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B′ are x′,y′, respectively. Now if A and B are such that
y = Ax and y′ = Bx′, then it follows that:

y = Cy′ = Ax = A(Cx′) = ACx′

(this means that)
y′ = C−1ACx′

from which it follows that:

B = C−1AC

The transformation of basis C is a similarity transformation and matrices A
and C are said similar.



Overview Linear Transformations Eigenvalues and eigenvectors Eigen Decomposition References

Matrix and Change of Basis

Matrix and Change of Basis

The effect of the matrix C on a matrix A can be seen by studying the case
where x,y are the expression of two vectors in a base B while their
counterpart on B′ are x′,y′, respectively. Now if A and B are such that
y = Ax and y′ = Bx′, then it follows that:

y = Cy′ = Ax = A(Cx′) = ACx′

(this means that)
y′ = C−1ACx′

from which it follows that:

B = C−1AC

The transformation of basis C is a similarity transformation and matrices A
and C are said similar.



Overview Linear Transformations Eigenvalues and eigenvectors Eigen Decomposition References

Eigenvalues and eigenvectors

Eigenvectors

An eigenvector x for a matrix A is a non-zero vector for which a scalar
λ ∈ℜ exists such that

Ax = λx

The value of the scalar λ is called eigenvalue of A associated to x, and
correspond to the scaling factor along the direction of x.

Example

A =

(
0 2
2 0

)
and x =

(
3
3

)
(

0 2
2 0

) (
3
3

)
=

(
6
6

)
= 2

(
3
3

)
x is an eigenvector of A and λ = 2 is its eigenvalue.
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Eigenvalues, eigenvectors and some properties

Eigenvalues, eigenvectors: Some Consequences

When a matrix A has an eigenvector x it must satisfy the following condition:

Ax = λx

We can rewrite the condition Ax = λx as

(A−λ Ix) = 0

where I is the Identity matrix.

In order for a non-zero vector x to satisfy this equation, A−λ I must not be
invertible(see next slide).
The consequence is that the determinant of A−λ I must equal 0. This
function is p(λ ) = det(A−λ I), called the characteristic polynomial of A.
The eigenvalues of A are simply the roots of the characteristic polynomial of
A.
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Eigenvalues, eigenvectors and some properties: Proof

A−λ I must not be invertible: Why?

A−λ I must not be invertible, as otherwise, if A−λ I has an inverse, and

(A−λ I)−1(A−λ I)x = (A−λ I)−10x

Ix = 0.

the zero vector is derived. This is not admissibile as, by definition, x 6= 0.
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Eigenvalues and eigenvectors

An example: computing eigenvalues

Let A =

(
2 −4
−1 −1

)
. Then

p(λ ) = (2−λ )(−1−λ )− (−4)(−1) = λ 2−λ −6 = (λ −3)(λ +2)
The eigenvectors are then the solution of the linear equation system given by
(A−λ I)x = 0.
Given the first eigenvalue λ1 = 3, (A−3I)x = 0 gives the following system:{

−x1−4x2 = 0
−x1−4x2 = 0

This suggests that all vectors of the form αx1 are eigenvectors with
xT

1 = (−4,1). The span of the vector (−4,1)T is the eigenspace
corresponding to λ1 = 3. Correspondingly, the span of the vector
x2 = (1,1)T corresponds to the eigenspace of λ2 =−2.
Notice that x1 and x2 are linearly independent, so they can form a basis.
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Eigenvalues and eigenvectors

Eigenvectors of Symmetric matrices

A symmetric non singular real-valued matrix A is such that A = AT , and on
two dimensions, this means that :

i) a11,a22 6= 0
ii) a12 = a21 = a

In order for A to have two real eigenvalues the following must hold:

p(λ ) = (a11−λ )(a22−λ )−a2 =

= λ
2− (a11 +a22)λ +a11a22−a2 = 0

from which eigenvalues are distinct iff:

(a11−a22)
2 +4a2 ≥ 0

The above inequality is always satisfied, with the 0 case only when A = I.
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Eigenvalues and eigenvectors

Eigenvectors and orthogonality

Whenever a matrix A has n distinct eigenvectors xi with all real-valued and
distinct eigenvalues λi, it is called non-degenerate.

A non degenerate matrix A has all the eigenvectors mutually orthogonal.

In fact, given two any eigenvectors x1 6= x2, with Axi = λixi (i = 1,2), it
follows that

λ1(x1,x2) = (Ax1,x2) = (x1,Ax2) = λ2(x1,x2)

from which it follows that (λ1−λ2)(x1,x2) = 0

However as λ1 6= λ2, and x1, x2 were arbitrarily chosen, the result is that

∀i, j = 1, ...,n (xi,xj) =

{
‖xi‖2 i = j
0 i 6= j
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Spectral Theorem

Spectral theorem

For every self-adjoint matrix A on a finite dimensional inner product space
Vn, there correspond real valued numbers α1, ...,αr, and orthonormal
projections E1, ...,Er,with r ≤ n, such that:

(1) all αl are pairwise distinct

(2) all Ej are not null (i.e. ∀j,Ej 6= 0)
(3) ∑

r
j=1 Ej = I

(4) A = ∑
r
j=1 αjEj

Notice that the set of self-adjoint matrices whenever the underlying field is
the set of real numbers consists of the set of symmetric matrices. The
spectral theorem suggests that a possible basis where to diagonalize them is
always available through their eigenvectors.
Applications: document similarity matrices where aij = sim(di,dj).
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Eigen/Diagonal Decomposition

Spectral theorem and non degenerate matrices

The spectral theorem over the set of symmetric matrices imply a special kind
of decomposition such that the eigenvectors corresponds to a new
(orthogonal) basis and the eigen values are the factors of a transformation
able to reconstruct the original matrix.

This is called Eigen decomposition of a non-degenerate matrix.
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Eigen/Diagonal Decomposition

Spectral theorem and Eigen Decomposition

Let S be a square matrix with m linearly independent eigenvectors (a
’non-degenerate’ matrix).
Theorem: it exists an eigen decomposition

S = UΛU−1

such that (cf. matrix diagonalization theorem)
Columns of U are eigenvectors of S
Λ is a diagonal m×m matrix whose diagonal elements are the m
eigenvalues of S, with λi ≥ λi+1, ∀i = 1, ...,m−1
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Eigen/Diagonal Decomposition: an example

Eigen Decomposition

Given the matrix U where the columns correpond to m eigenvectors v1, ...,vm

of S, i.e. Let U =

 v1 ... vm

 then it follows that:

SU = S

 v1 ... vm

=

 λ1v1 ... λmvm

= v1 ... vm

 λ1
...

λm

= UΛ

Decomposition

Thus: SU = UΛ and S = UΛU−1
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Eigen Decomposition

An example

Let S =

(
2 1
1 2

)
. The eigenvectors are the solutions of (A−λ I)x = 0.

Given the first eigenvalue λ1 = 1, all vectors of the form αv1 are
eigenvectors with vT

1 = (1,−1). Correspondingly, a second eigenvector
v2 = (1,1)T corresponds to λ2 = 3.
It follows that:

U =

(
1 1
−1 1

)
and U−1 =

( 1
2 − 1

2
1
2

1
2

)
So that:

S = UΛU−1 =

(
1 1
−1 1

)(
1 0
0 3

)( 1
2 − 1

2
1
2

1
2

)
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Symmetric Eigen Decomposition

Normalized eigenvectors

Notice that if we take normalized eigenvectors v1 and v2, i.e. respectively by

v1 =

(
1/
√

2
−1/
√

2

)
and v2 =

(
1/
√

2
1/
√

2

)
(with the normalized U written as Q)

Symmetric Eigen decomposition

Then

S = QΛQ−1 =

(
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

)(
1 0
0 3

)(
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
with Q orthogonal, i.e. such that QT = Q−1 and

S = QΛQT
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Symmetric Eigen Decomposition

Theorem
If S is a m×m real-valued symmetric matrix, then it exists a unique eigen
decomposition

S = QΛQT

where Q is orthogonal, i.e.

Q−1 = QT

The columns of Q are normalized eigenvectors
All the columns in Q are orthogonal.

Notice that everything is real.
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Symmetric Eigen Decomposition and SVD

Non square matrices

When A is a real-valued m×n matrix, its co-variance matrix AAT (as well
as ATA) is a symmetric matrix. By applying the symmetric eigen
decomposition to W = ATA we get:

∃! Q such that W = QΛQT

where λ1, ...,λr values corresponds to the different eigenvalues of the W
matrix, r is the range and Q is orthogonal.
Notice that: a similar Q′ exists for ATA.
We can keep as U (in SVD) the matrix Q and as V (in SVD) the matrix Q′.
They are the (left and right) normalized eigenvector matrices of AAT and
ATA, respectively.
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Singular Value Decomposition

SVD
For an m×n matrix A of rank r there exists a factorization called Singular
Value Decomposition (SVD) as follows:

A = U(m×r)Σ(r×r)VT
(n×r)

where
U expresses the normalized eigevectors of AAT

V expresses the normalized eigevectors of ATA
Σ is a diagonal matrix whose non-zero elements σi (i = 1, ...r) are
called singular values and are defined as

σi =
√

λi

with λi as eigenvalues of AAT (and ATA)
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Singular Value Decomposition

An example with m = 3, n = 2
Let

A =

 1 −1
0 1
1 0


Then the corresponding SVD is:

A = UΣV =

=

 0 2/
√

6 1/
√

3
1/
√

2 −1/
√

6 1/
√

3
1/
√

2 1/
√

6 −1/
√

3

 1 0
0
√

3
0 0

( 1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)

(OSS: The singular values are arranged in decreasing order. Moreover, the
diagonal elements of Λ are filled with 0 for the σi ∀i > r
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Singular Values and Eigenvectors

Eigenvalues of the Covariance Matrix

In the above example, where

A =

 1 −1
0 1
1 0


it is useful to compute the covariance matrix ATA, i.e.

ATA =

(
2 −1
−1 2

)

whose eigenvalues λi are: 3 and 1.

Covariance Matrix and singular values

Notice how the singular values of A σi are exactly the square roots of
eigenvalues for ATA, i.e. σi =

√
λ i i = 1, ...,r
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Singular Values and Eigenvectors

Eigenvalues of the Covariance Matrix

In the above example, given the covariance matrix ATA, i.e.

ATA =

(
2 −1
−1 2

)

and its eigenvalues λ1 = 3 and λ2 = 1, the corresponding eigenspaces
correspond to the rotations and stretching of the original (2) dimensions
along the direction of maximal variance.

Eigenspace

For the eigenvalue λ1 = 3, the corresponding direction is the one for which
ATAv = λ1v, i.e. ATAv = 3v:{

2x1− x2 = 3x1
−x1 +2x2 = 3x2

whose solution x2 =−x1 corresponds to: y =−x.
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Singular Values and Eigenvectors

The direction of Maximal Covariance
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Singular Values and Eigenvectors

Covariance and Dimensionality Reduction
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