INTRODUCTION TO

PAC LEARNING

by: alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml

Postedited by: R. Basili

a.a. 2020-21

Overview

- PAC learnability
- The Vapnik-Chervoniensky dimension
- Model selection in ML methods
 - Error and Model Complexity
- Structural Risk Minimization
- VC-dimension vs. other Model Optimization methods

Learning a Class from Examples

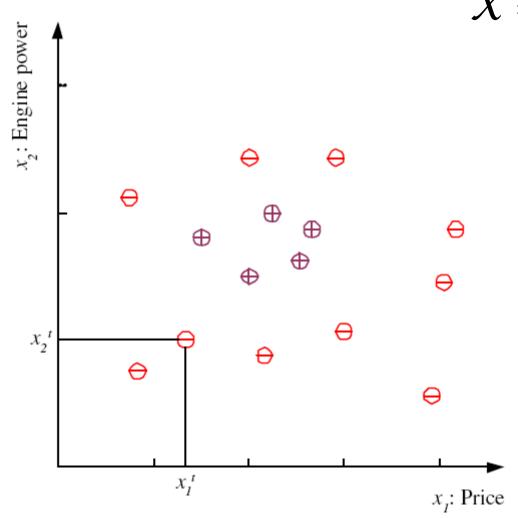
- Class C of a "family car"
 - Prediction: Is car x a "family car"?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

Training set X

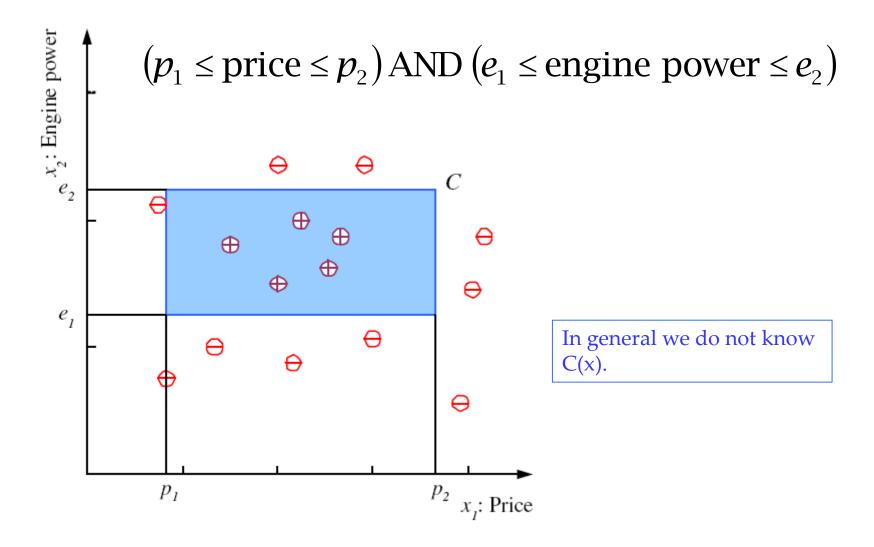


$$\mathcal{X} = \{\boldsymbol{x}^t, \boldsymbol{r}^t\}_{t=1}^N$$
 label

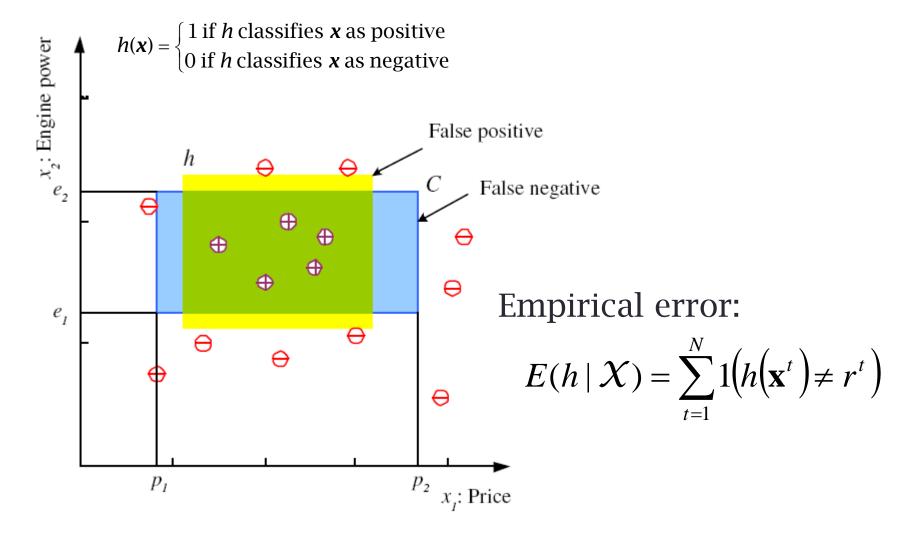
$$\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix}$$

$$r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is positive} \\ 0 & \text{if } \mathbf{x} \text{ is negative} \end{cases}$$

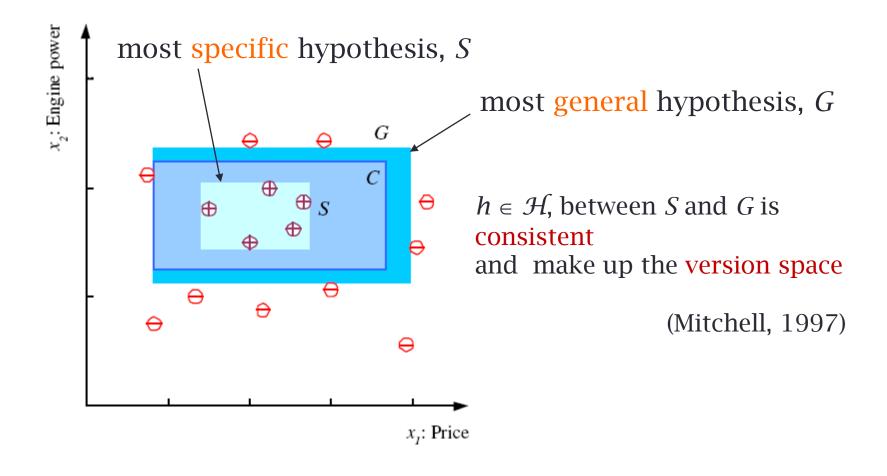
Class C



Hypothesis class ${\mathcal H}$



S, G, and the Version Space



Probably Approximately Correct (PAC) Learning

- How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, will probably be approximately correct?
 - We want to be *confident* (above a level) that
 - ... the *error probability is bounded* by some value
- A concept class C is called PAC-learnable if there exists a PAC-learning algorithm such that, for any $\varepsilon>0$ and $\delta>0$, there exists a fixed sample size such that, for any concept $c \in C$ and for any probability distribution on X, the learning algorithm produces a probably-approximately-correct hypothesis h
- a (PAC) probably-approximately-correct hypothesis h is one that has error at most ε with probability at least 1- δ .

Probably Approximately Correct (PAC) Learning

In PAC learning, given a class C and examples drawn from some unknown but fixed distribution p(x), we want to find the number of examples N, such that with probability at least 1 - δ, h has error at most ε?
(Blumer et al., 1989)

$$P(C\Delta h \leq \varepsilon) \geq 1-\delta$$

where $C\Delta h$ is (area of the) "the region of difference between C and h", and $\delta > 0$, $\varepsilon > 0$.

PAC Learning

- How many training examples m should we have, such that with probability at least 1δ , h has error at most ε ?
- Let prob. of a + ex. in each strip be at most $\varepsilon/4$
- Pr that a random ex. misses a strip: 1- $\varepsilon/4$
- Pr that *m* random instances miss a strip:

$$(1 - \varepsilon/4)^m$$

- Pr that m random instances instances miss 4 strips: $4(1 \varepsilon/4)^m$
- We want $1-4(1-\varepsilon/4)^m \ge 1-\delta$ or $4(1-\varepsilon/4)^m \le \delta$
- Using $1-x \le e^{-x}$ an even stronger condition is:

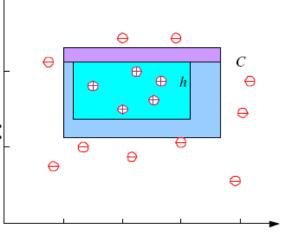
$$[(1-\varepsilon/4) \le \exp(-\varepsilon/4) \text{ so } (1-\varepsilon/4)^m \le \exp(-\varepsilon/4)^m = \exp(-\varepsilon m/4)]$$

$$4e^{-\varepsilon m/4} \le \delta$$
 OR

• Divide by 4, take *ln*... and show that

$$m \ge (4/\varepsilon)ln(4/\delta)$$

(Blumer et al., 1989)



Probably Approximately Correct (PAC) Learning

How many training examples m should we have, such that with probability at least 1 - δ , h has error at most ϵ ?

(Blumer et al., 1989)

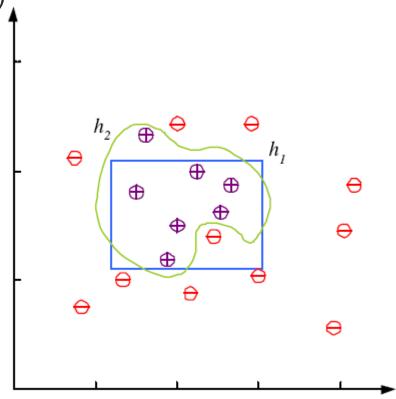
$$m \ge (4/\varepsilon)ln(4/\delta)$$

- *m* increases slowly with $1/\varepsilon$ and $1/\delta$
- Say ε =1% with confidence 95%, pick $m \ge 1752$
- Say ε =10% with confidence 95%, pick $m \ge 175$

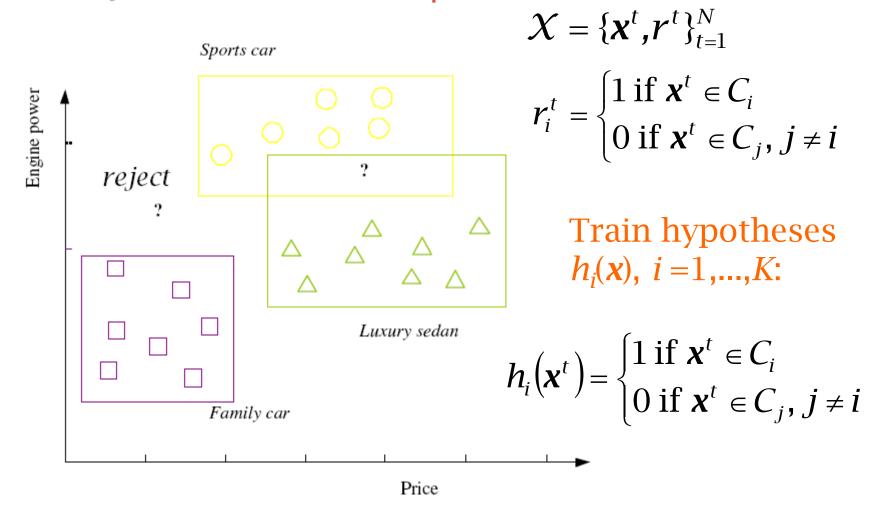
Model Complexity vs. Noise

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance - Occam's razor)



Multiple Classes, C_i i=1,...,K



Regression

$$\mathcal{X} = \{x^{t}, r^{t}\}_{t=1}^{N} \qquad g(x) = w_{1}x + w_{0} \\
r^{t} \in \Re \qquad g(x) = w_{2}x^{2} + w_{1}x + w_{0} \\
E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - g(x^{t})]^{2} \\
E(w_{1}, w_{0} \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - (w_{1}x^{t} + w_{0})]^{2}$$

** milage

VC (Vapnik-Chervonenkis) Dimension

- N points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists a set of N points such that $h \in \mathcal{H}$ is consistent with all of these possible labels:
 - Denoted as: $VC(\mathcal{H}) = N$
 - Measures the capacity of H
- Any learning problem definable by N examples can be learned with no error by a hypothesis drawn from H

Formal Definition

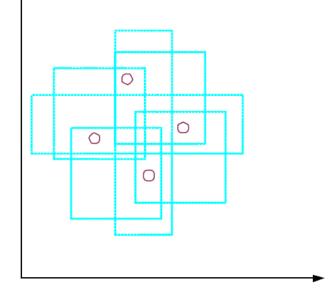
The VC Dimension

Definition: the VC dimension of a set of functions $H = \{h(\mathbf{x}, \alpha)\}$ is d if and only if there exists a set of points $\{x^i\}_{i=1}^d$ such that these points can be labeled in all 2^d possible configurations, and for each labeling, a member of set H can be found which correctly assigns those labels, but that no set $\{x^i\}_{i=1}^q$ exists where q > d satisfying this property.

VC (Vapnik-Chervonenkis) Dimension

• \mathcal{H} shatters N if there exists N points and $h \in \mathcal{H}$ such that h is consistent for any labelings of those N points.

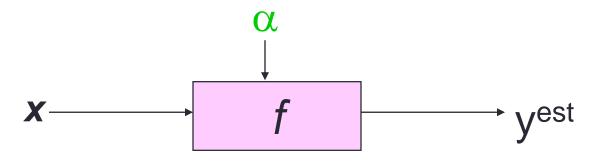
VC(axis aligned rectangles) = 4



VC (Vapnik-Chervonenkis) Dimension

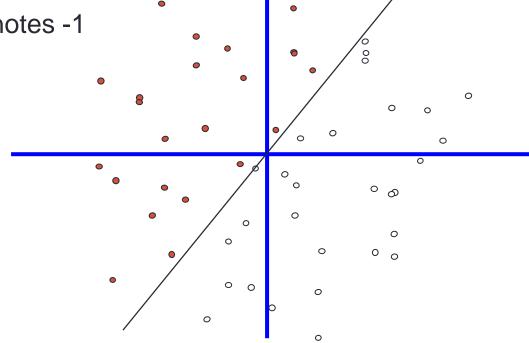
- What does this say about using rectangles as our hypothesis class?
- VC dimension is pessimistic: in general we do not need to worry about all possible labelings
- It is important to remember that one can choose the arrangement of points in the space, but then the hypothesis must be consistent with all possible labelings of those fixed points.

Examples

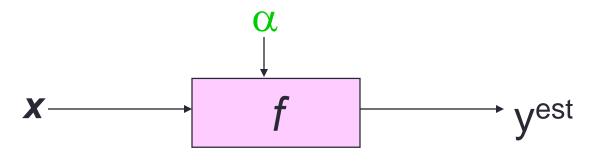


$$f(x,w) = sign(x.w)$$

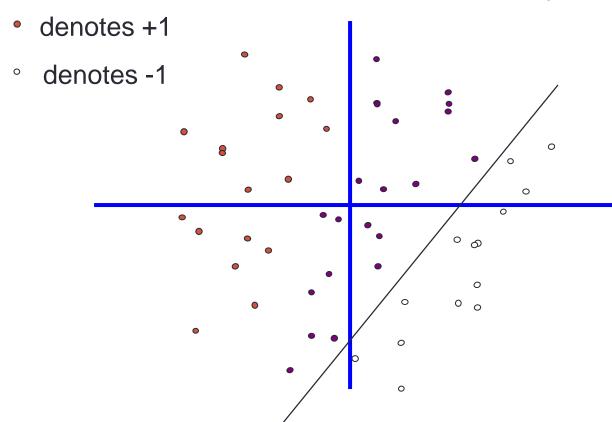
- denotes +1
- denotes -1



Examples

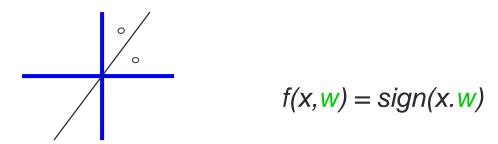


$$f(x, w, b) = sign(x.w+b)$$

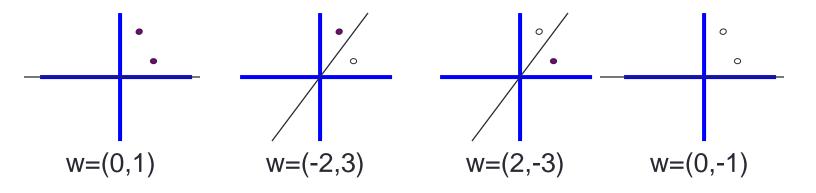


Shattering

Question: Can the following f shatter the following points?



Answer: Yes. There are four possible training set types to consider:



VC dim of linear classifiers in m-dimensions

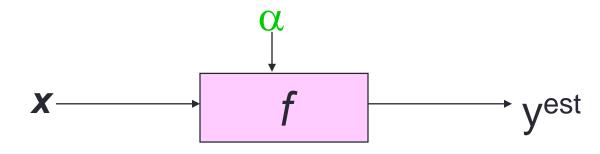
If input space is *m-dimensional* and if **f** is sign(w.x-b), what is the VC-dimension?

h=m+1

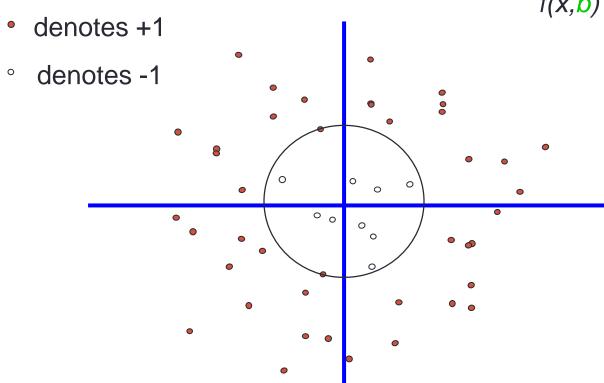
- Lines in 2D can shatter 3 points
- Planes in 3D space can shatter 4 points

• ...

Examples

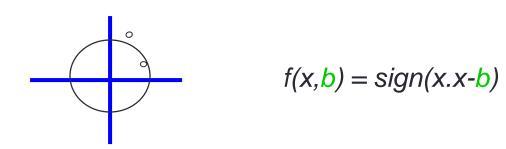


$$f(x,b) = sign(x.x - b)$$

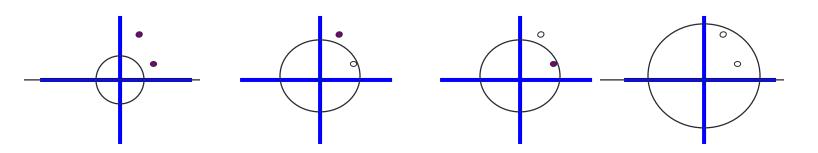


Shattering

Question: Can the following f shatter the following points?



Answer: Yes. Hence, the VC dimension of circles on the origin is at least 2.



- Note that if we pick two points at the same distance to the origin, they cannot be shattered. But we are interested if all possible labellings of some n-points can be shattered.
- How about 3 for circles on the origin (Can you find 3 points such that all possible labellings can be shattered?)?

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Different machines have different amounts of "power".

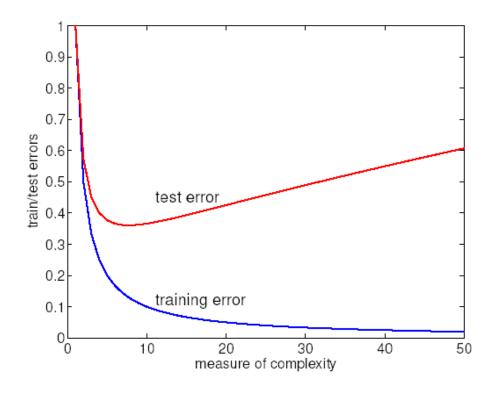
Tradeoff between:

- More power: Can model more complex classifiers but might overfit.
- Less power: Not going to overfit, but restricted in what it can model.
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, *N*,
 - 3. Generalization error, E, on new data
- □ As N↑, E↓
- \square As $c(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$

Why Care about Complexity?



 We need a quantitative measure of complexity in order to be able to relate the training error (which we can observe) and the test error (that we'd like to optimize)

Complexity

- "Complexity" is a measure of a set of classifiers, not any specific (fixed) classifier
- Many possible measures
 - degrees of freedom
 - description length
 - Vapnik-Chervonenkis (VC) dimension
 - · etc.

Expected and Empirical error

$$\hat{\mathcal{E}}_n(i) = \frac{1}{n} \sum_{t=1}^n \widehat{\mathsf{Loss}}(y_t, h_i(\mathbf{x}_t)) = \text{empirical error of } h_i(\mathbf{x})$$

$$\mathcal{E}(i) = E_{(\mathbf{x}, y) \sim P} \{ \mathsf{Loss}(y, h_i(\mathbf{x})) \} = \text{expected error of } h_i(\mathbf{x})$$

Learning and the VC dimension

• Let d_{VC} be the VC-dimension of our set of classifiers F.

Theorem: With probability at least $1-\delta$ over the choice of the training set, for all $h \in F$

$$\mathcal{E}(h) \le \hat{\mathcal{E}}_n(h) + \epsilon(n, d_{VC}, \delta)$$

where

$$\epsilon(n, d_{VC}, \delta) = \sqrt{\frac{d_{VC}(\log(2n/d_{VC}) + 1) + \log(1/(4\delta))}{n}}$$

Model Selection

- We try to find the model with the best balance of complexity and the fit to the training data
- Ideally, we would select a model from a nested sequence of models of increasing complexity (VC-dimension)

```
Model 1 d_1
```

Model 2 d_2

Model 3 d_3

where $d_1 \leq d_2 \leq d_3 \leq \dots$

 The model selection criterion is: find the model class that achieves the lowest upper bound on the expected loss

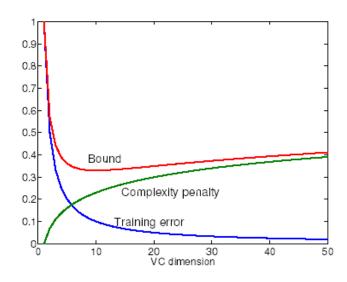
Expected error \leq Training error + Complexity penalty

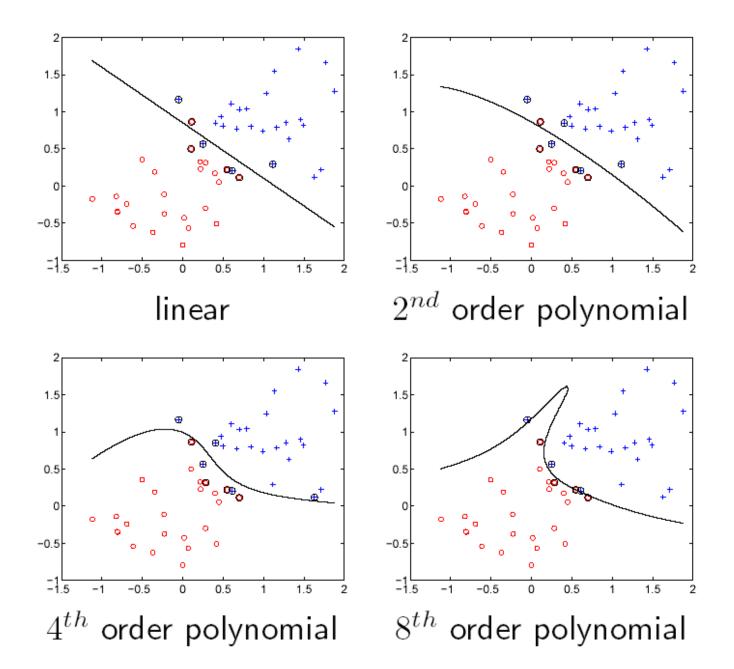
VC dimension and Structural Risk Minimization

• We choose the model class F_i that minimizes the upper bound on the expected error:

$$\mathcal{E}(\hat{h}_i) \le \hat{\mathcal{E}}_n(\hat{h}_i) + \sqrt{\frac{d_i(\log(2n/d_i) + 1) + \log(1/(4\delta))}{n}}$$

where \hat{h}_i is the best classifier from F_i selected on the basis of the training set.





Structural Risk Minimization

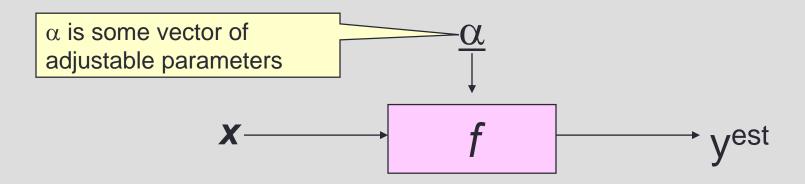
• Number of training examples n=50, confidence parameter $\delta=0.05$.

Model	d_{VC}	Empirical fit	$\epsilon(n, d_{VC}, \delta)$
1^{st} order	3	0.06	0.5501
2^{nd} order	6	0.06	0.6999
4^{th} order	15	0.04	0.9494
8^{th} order	45	0.02	1.2849

 Structural risk minimization would select the simplest (linear) model in this case.

Summary: a learning machine

• A learning machine f takes an input x and transforms it, somehow using factors (as weights) α , into a predicted output $y^{est} = +/-1$



Back to test and empirical (training) error

- Given some machine f
- Define:

$$R(\vec{\alpha}) = \text{TESTERR}(\vec{\alpha}) = E\left[\frac{1}{2}|y - f(x, \vec{\alpha})|\right] = \frac{\text{Probability of}}{\text{Misclassification}}$$

$$R^{emp}(\vec{\alpha}) = \text{TRAINERR}(\vec{\alpha}) = \frac{1}{R} \sum_{k=1}^{R} \frac{1}{2} |y_k - f(x_k, \vec{\alpha})| = \frac{\text{Fraction Training}}{\text{Set misclassified}}$$

R = #training set data points

Vapnik-Chervonenkis dimension

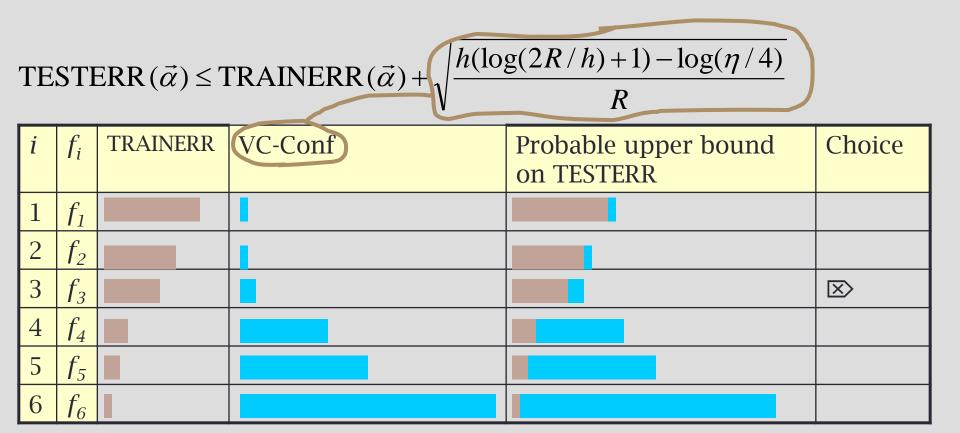
$$\text{TESTERR}(\vec{\alpha}) = E\left[\frac{1}{2}|y - f(x, \vec{\alpha})|\right] \quad \text{TRAINERR}(\vec{\alpha}) = \frac{1}{R}\sum_{k=1}^{R} \frac{1}{2}|y_k - f(x_k, \vec{\alpha})|$$

- Given some machine f, let h be its VC dimension (h does not depend on the choice of training set)
- Let R be the number of training examples
- Vapnik showed that with probability 1-η

TESTERR
$$(\vec{\alpha}) \le \text{TRAINERR}(\vec{\alpha}) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta/4)}{R}}$$

This gives us a way to estimate the error on future data based only on the training error and the VC-dimension of *f*

VC-dimension as measure of complexity



Using VC-dimensionality

People have worked hard to find VC-dimension for ...

- Decision Trees
- Perceptrons
- Neural Nets
- Decision Lists
- Support Vector Machines
- ...and many many more

All with the goals of

- Understanding which learning machines are more or less powerful under which circumstances
- Using Structural Risk Minimization for to choose the best learning machine

Alternatives to VC-dim-based model selection

- Cross Validation
- To estimate generalization error, we need data unseen during training. We split the data as:
 - Training set (50%) M1 M2 train(M2) < train(M1)
 - Validation set (25%) test(M1, Vs) = P1 test(M2, VS) = P2 P2>P1
 - Test (publication) set (25%)
- Resampling when there is few data
 - N-fold cross-validation: N-2 fold for training, 1 fold as validation set and 1 fold for testing (N*(N-1) tests)

Alternatives to VC-dim-based model selection

- What could we do instead of the scheme below?
 - 1. Cross-validation

i	f_i	TRAINERR	10-FOLD-CV-ERR	Choice
1	f_1			
2	f_2			
3	f_3			\boxtimes
4	f_4			
5	f_5			
6	f_6			

Extra Comments

 An excellent tutorial on VC-dimension and Support Vector Machines

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998.

What you should know

- Definition of PAC learning
- The definition of a learning machine: $f(x,\alpha)$
- The definition of Shattering
- Be able to work through simple examples of shattering
- The definition of VC-dimension
- Be able to work through simple examples of VCdimension
- Structural Risk Minimization for model selection
- Awareness of other model selection methods