Corso di Intelligenza Artificiale, a.a. 2024-25

R. Basili

O Programma del MidTerm

O Esempi di domande arisp. mulfiple
O Introduzione all’ Al
O Agenti
O Scopi e metodologie
O Ambiente
O Conoscenza e Modelli

O Problem Solving: Ricerca Semplice
O Problem Solving: Ricerca Informata
O Tecniche avanzate diricerca
O Logica: Sintassi e Modelli

O Esempi domande aperte

O Alitri Esercizi libro

O Progettazione di Agenti: Vacuum Agent World

O Il MidTerm insistera’ sulle seguenti tematiche (vedi AIMA book)
O Introduzione all’ Al (Chapt. 1)
O Agenti (Chapt 2)
O Scopi e metodologie
O Ambiente

O Conoscenza e Modelli
O Problem Solving: Ricerca Semplice (Chapt. 3, 3.1-3.4)
O Problem Solving: Ricerca Informata (Capt. 3, 3.5-3.4)
O Tecniche avanzate diricerca (Capt. 4, 4.1, 4.4, Chapt. 5, 5.1-5.3)

O Logica Proposizionale: Sintassi e Semantica

Domane a Risposte Chiuse

Esame di Intelligenza Artificiale
Prima Prova MidTerm (a.a. 2019-2020)

14 Novembre 2019
Docente: R. Basili

Rispondente alle sequenti domande marcando le risposte che ritenete corrette. Tem-
po a disposizione: 30 minuti. In sede di valutazione, ogni risposta sbagliata abbassa il
punteqqio.

1. Quale tra queste definizioni di IA e Human-centered e caratteristica dell’agire
intelligente:

(A) Lo studio delle facolta’ algoritmiche attraverso I'uso di modelli cognitivi [—0]

(B) L’arte di creare algoritmi che svolgono funzioni su macchine che richiedono
intelligenza quando svolte da esseri umani [—0]

(C) L’arte di creare macchine che svolgono funzioni che richiedono intelligenza quando
svolte da esseri umani [—0]

(D) Lo studio delle facolta’ mentali attraverso I'uso di modelli computazionali [—0]

Domande a Risposte Chiuse (2)

2. Un agente e’ razionale:

1. perche’ prende decisioni in analogia con le decisioni dell'uomo (esperto)

2. perche’ conosce con completezza I'ambiente circostante in cui agisce
3. perche’ agisce con i suoi attuatori in un ambiente
4. perche’ agisce massimizzando un vantaggio in analogia con I’esperto umano

5. perche’ persegue un obbiettivo usando le azioni ad esso disponibili in modo da
minimizzare costi e rischi

(A)Lal,la2elad. [-0]
(B) Lal,ladela5. [-0]
(C) Lal,la2ela 3. [-0]
(D) La2,la3ela4. [0

D

O\

kO

)

m

OhE B ;‘_j

a

| AN O AR R Ol ® s s mm INN

~ Dis o~ o £ ' r N &
[nae a D @*1..,,,0)2;51'{[@? onijuse :<~; O‘T/JT
_ 4 s I - | __4 - _4 ___d - = B __ D4 - [\- - ,‘.

3. Un simulatore di ambienti e’ uno strumento software che consente:

1. La generazione di stimoli per gli agenti
La valutazione delle prestazioni degli agenti
La acquisizione delle azioni di risposta dagli agenti

4. La attuazione di azioni che modificano ¢li agenti
e} })

(A) Falso. [—0]

(B) Vero solo se escludiamo la 4. [—0]
(C) Vero sempre. [—0]

(D) Falso se escludiamo la 4. [—0]
(E) Nessuna delle altre risposte. [—0]

Domande a Risposte chiuse (4)

4. Date le due configurazione del gioco dell’8 puzzle qui sotto rappresentate

Start State Goal State
si determini la affermazione corretta:
(A) La distanza euclidea tra le due configurazione conta il quadrato del numero di mosse
che porta la prima nella seconda [—0)]
(B) Una euristica possibile considera il numero di caselle che sono ordinate nello stato
corrente [—0]
(C) Una euristica possibile (Manhattan distance) conta il numero di spostamenti (oriz-
zonatli e verticali) da applicare alle diverse caselle dello Start State per condurle tutte
nella posizione ad esse assegnata nel Goal State finale. [—0)]

(D) La combinazione lineare di euristiche diverse non A" una euristica valida [—0]

DAY IR - s
Domande a Ri:

5. L’algoritmo di A* non e’ ottimale:
(A) Sempre vero. | |

(B) Dipende dal problema | |

(C) Nessuna delle alternative | |

(

(

D) In genere ¢’ falso poiche’ la funzione euristica e’ un criterio approssimato. |
E) In genere e’ vero per euristiche ammissibili. | |

= | |
. N = Y . : - (| 3
\ A L A A A { . A | L 4
- 5 y A y) o ' h 4 ‘ ‘ v . / |
4 4 v '
|

A <« o7 l v |) j) ’v)
. | N A\ v vv n
A \ | |) \ — | ' \
J \ < 1 \ g h . _ -

Albero di Ricerca Uninformed

Dato il seguente spazio di stati: determinare tra le seguenti la sequenza generata

,-"-- - -\"'-,\\‘I
n2)
~—

-

-

[n6))|) ([nh9) (' n10) (n11)
_ . / o S " Py ~— A

|

Y
. e,

—— ~— ——

dall’algoritmo di depth-first nella ricerca del nodo n3:
(A) nl,n2.n3
(B) n1,n2,n6,n7,n8 n4,n9,n5n10.n11,n3.

(C) Non & possibile stabilirlo perche’ manca la euristica o il costo utilizzati.
(D) n1,n2n6,n7,n8 n3.
(E) Nessuna delle altre risposte.

1. Quale tra queste definizioni di IA e Human-centered e caratteristica dell’agire
intelligente:

(A) Lo studio delle facolta’ algoritmiche attraverso 1'uso di modelli cognitivi [—0)]

(B) L’arte di creare algoritmi che svolgono funzioni su macchine che richiedono
intelligenza quando svolte da esseri umani [—0]

(C) L’arte di creare macchine che svolgono funzioni che richiedono intelligenza quando
svolte da esseri umani [—0]
(D) Lo studio delle facolta” mentali attraverso I'uso di modelli computazionali [—0]

R a domanda 1

1. Quale tra queste definizioni di IA e Human-centered e caratteristica dell’agire
intelligente:

(A) Lo studio delle facolta” algoritmiche attraverso I'uso di modelli cognitivi [—1]
(B) L’arte di creare algoritmi che svolgono funzioni su macchine che richiedono
intelligenza quando svolte da esseri umani |[—1]

(C) L’arte di creare macchine che svolgono funzioni che richiedono intelligenza quando
svolte da esseri umani [+3]
(D) Lo studio delle facolta” mentali attraverso 1'uso di modelli computazionali [—1]

R a domanda 2

2. Un agente e’ razionale:

1. perche’ prende decisioni in analogia con le decisioni dell’'uomo (esperto)

perche’ conosce con completezza I'ambiente circostante in cui agisce
perche’ agisce con i suoi attuatori in un ambiente
perche’ agisce massimizzando un vantaggio in analogia con l'esperto umano

perche’ persegue un obbiettivo usando le azioni ad esso disponibili in modo da
minimizzare costi e rischi

(A) Lal la2elad4.
(B) Lal,la4elab.
(C) Lal,la2ela3.
(D) La 2, 1a 3 e la 4.

R a domanda 2

2. Un agente e’ razionale:

1. perche’ prende decisioni in analogia con le decisioni dell’'uomo (esperto)

perche’ conosce con completezza I'ambiente circostante in cui agisce
perche’ agisce con i suoi attuatori in un ambiente
perche’ agisce massimizzando un vantaggio in analogia con l'esperto umano

perche’ persegue un obbiettivo usando le azioni ad esso disponibili in modo da
minimizzare costi e rischi

(A) Lal, la2 4. [—
(B)Lalla4ela |
(C)La,lla‘7ela3 —
(D) La2,la3elad. [—

9

«.
)

NnNaaa .

3. Un simulatore di ambienti e’ uno strumento software che consente:
La generazione di stimoli per gli agenti
La valutazione delle prestazioni degli agenti
La acquisizione delle azioni di risposta dagli agenti

La attuazione di azioni che modificano gli agenti

(A) Falso.

(B) Vero solo se escludiamo la 4.
(C) Vero sempre.

(D) Falso se escludiamo la 4.
(E) Nessuna delle altre risposte.

9

«.
)

NnNaaa .

3. Un simulatore di ambienti e’ uno strumento software che consente:
La generazione di stimoli per gli agenti
La valutazione delle prestazioni degli agenti
La acquisizione delle azioni di risposta dagli agenti

La attuazione di azioni che modificano gli agenti

(A) Falso. O |

(B) Vero solo se escludiamo la 4. [+3
(C) Vero sempre. [—1]

(D) Falso se escludiamo la 4. [—1]
(E) Nessuna delle altre risposte. [—1]

NN /ﬂ SAAMALAANRLRRRANE RSN
R A AQoMmanaa

.

L’algoritmo di A* non ¢’ ottimale:

B) Dipende dal problema

A) Sempre vero.
C) Nessuna delle alternative
D) In genere e’ falso poiche’ la funzione euristica e’ un criterio approssimato.

E) In genere e’ vero per euristiche ammissibili.

ONNA AR

flofo]

P

R a domc

.

L’algoritmo di A* non ¢’ ottimale:

B) Dipende dal problema [—1]
C) Nessuna delle alternative [+3]

A) Sempre vero. |—1]
D) In genere e’ falso poiche’ la funzione euristica e’ un criterio approssimato. [—1]

E) In genere e’ vero per euristiche ammissibili. [—1]

R. Algoritmi di Ricerca non informata

Dato il seguente spazio di stati: determinare tra le seguenti la sequenza generata

/"'; N
(n5)
S

né |)|) ([nh9) (n10) (
- . / . \ S/

~ .
— —_—— — e

L

/

nll)

|
Y
.

dall’algoritmo di depth-first nella ricerca del nodo n3:
(A) nl,n2.n3
(B) n1,n2,n6,n7,n8 n4,n9,n5n10.n11,n3.

(C) Non & possibile stabilirlo perche’ manca la euristica o il costo utilizzati.
(D) n1,n2n6,n7,n8 n3.
(E) Nessuna delle altre risposte.

R. Algoritmi di Ricerca Informata

Dato il seguente spazio di stati: determinare tra le seguenti la sequenza generata

dall’algoritmo di uniform cost per la ricerca del nodo n7, con la funzione f(n) = g(n):
(A) nl, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11 [—1]

(B) nl, n2, n6, n7, n8, n4, n9, n5, n10, nl1, n3. [—1]

(C) Non ¢ possibile stabilirlo perche’ ¢ definita la euristica utilizzata. [—1]

(D) nl, n3, n4, n9, n5, n10, n2, n11, n7. [+3]

(E) Nessuna delle altre risposte. [—1]

O Discutere la relazione tra la nozione di agente e di ambiente in Al. Si esplicitino esempi di
applicazioni di Al in cui distinguere le due nozioni. Si facciano esempi di applicazioni che
caratterizzano i diversi tipi di ambiente e di agente.

O Data un puzzle dan celle (ad es. 9), definire su tale gioco la nozione di agente e di
ambiente; di percezione e di azione; si determini lo spazio degli stati (dell’ambiente). Si
determinino le azioni dell’agente i caso di agente semplice dotati diriflessi o di agente a
comportamento randomizzato. Si definisca un insieme di euristiche possibili. Si discuta
infine facoltativamente un algoritmo di ricerca euristica per la soluzione del gioco.

O Sidiscuta la nozione di algoritmi di Ricerca non Informati per il Problem Solving ed in
particolare si discuta le proprietd di completezza, e ottimalita per tali algoritmi. Si
confrontino tra loro almeno due algoritmi.

O Sidiscuta l'algoritmo di A* e se ne esemplifichi la applicazione ad almeno due problemi
diversi (es. labirinto/mappa e gioco dell’8).

O Si confrontino tra loro gli algoritmi di Breadth-first, Depth-first e di Greedy Best First: si uftilizzi
un esempio di applicazione ad un problema (ad es. le 8 regine)

O Sidiscuta la nozione diricerca on-line con due esempi di algoritmi utili alla ricerca di una
soluzione possibile.

Altri esempi di modellazione e domande

chiuse:

Problemi ed Agenti

Riempire e
giustificare la
seguente tabella

TAXI Driver

Giocatore Sudoku

Robot cameriere in
una sala ristorante

Motore diricerca su
Facebook (ricerca
post e altri utenti)

Speech recognizer
(e.g. SIRI)

Arrivare alla
destinazione, sicuro,
veloce, ligio alla
legge, viaggio
confortevole, minimo
consumo di benzing,
profitti massimi

pedoni, clienti

Strada, altri veicoli,

Sterzo, acceleratore,

freni, frecce, clacson,

schermo di
interfaccia o sintesi
vocale

Telecamere, sensori a
infrarossi e sonar,
tachimetro, GPS,
contachilometri,
acelerometro, sensori
sullo stato del
motore, tastiera o
microfono

Agenti: formalizzazione del PEAS model

Osservazione
dell'intero
stato del
puzzle

Ordinare il puzzle con il minimo tempo t (o

. Il puzzle da 81 celle Spostamento celle
numero di mosse, n)

Due opzioni:

Una matrice M 3x3 con valoriin * Muovi un qualsiasi m; in

m; {1, ..., 8, blank} dove blank (se possible)
V(ij)=(kl) my=my * Blank-left, ..., Blank-down

Dato lo stato S di partenza, applica la

sequenza di azioni P=(A,, A, ..., A,)) per

raggiungere il Goal G in modo che:
n=mine (A, °(An ---A°(A(S))...)=G

Tutta la

8-puzzle matrice M

Vacuum World
Cleaner con due
stanze

Ricerca diun
percorso Start-Goal
in un a mappa
connessa di N cittd

Caratterizzazione ambienti di agenti
razionali

2.4 For each of the following activities, give a PEAS description of the task environment
and characterize it in terms of the properties listed in Section 2.3.2.

. Playing soccer.
. Exploring the subsurface oceans of Titan. Task Environment Observable Agents Deterministic Episodic ~ Static Discrete
. Shopping for used Al books on the Internet.

. Playing a tennis match. 2.4 Many of these can actually be argued either way, depending on the level of detail and

. Practicing tennis against a wall. .
g & abstraction.

. Performing a high jump.))))))
- _ . Partially observable, stochastic, sequential, dynamic, continuous, multi-agent.
. Knitting a sweater. o _) ' ' . _ o
o : : . Partially observable, stochastic, sequential, dynamic, continuous, single agent (unless
~ Bidding on an item at an auction. i } =
there are alien life forms that are usefully modeled as agents).
. Partially observable, deterministic, sequential, static, discrete, single agent. This can be
multi-agent and dynamic if we buy books via auction, or dynamic if we purchase on a

long enough scale that book offers change.

. Fully observable, stochastic, episodic (every point is separate), dynamic, continuous,
multi-agent.

. Fully observable, stochastic, episodic, dynamic, continuous, single agent.

. Fully observable, stochastic, sequential, static, continuous, single agent.

. Fully observable, deterministic, sequential, static, continuous, single agent.

. Fully observable, strategic, sequential, static, discrete, multi-agent.

2.6 This exercise explores the differences between agent functions and agent programs.
a. Can there be more than one agent program that implements a given agent function?
Give an example, or show why one is not possible.
b. Are there agent functions that cannot be implemented by any agent program?

¢. Given a fixed machine architecture, does each agent program implement exactly one
agent function?

d. Given an architecture with n bits of storage, how many different possible agent pro-
grams are there?

e. Suppose we keep the agent program fixed but speed up the machine by a factor of two.
Does that change the agent function? 2.6 Although these questions are very simple, they hint at some very fundamental issues.

Our answers are for the simple agent designs for sfafic environments where nothing happens
while the agent is deliberating; the issues get even more interesting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statements that do not affect the output.

° b. Yes; the agent function might specify that the agent print frue when the percept is a
Ag e nIIII e Turing machine program that halts, and false otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the rational agent function may not be

C o m p I eSSi'I'a implementable; e.g., the agent function that always plays a winning move, if any, in a

game of chess.)
c. Yes; the agent’s behavior is fixed by the architecture and program.

d. There are 2" agent programs, although many of these will not run at all. (Note: Any
given program can devote at most 7 bits to storage, so its internal state can distinguish
among only 2" past histories. Because the agent function specifies actions based on per-
cept histories, there will be many agent functions that cannot be implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the environment is dynamic, speed-
ing up the machine may mean choosing different (perhaps better) actions and/or acting
sooner. If the environment is static and the program pays no attention to the passage of
elapsed time, the agent function is unchanged.

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)
a. Can a simple reflex agent be perfectly rational for this environment? Explain.
b. Can a simple reflex agent with a randomized agent function outperform a simple reflex
agent? Design such an agent and measure its performance on several environments.
¢. Can you design an environment in which your randomized agent will perform poorly?
Show your results.
d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent
and measure its performance on several environments. Can you design a rational agent
of this type?

V q (: U U m ‘ I e q n e r function GOAL-BASED-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model, a description of how the next state depends on current state and action
goal, a description of the desired goal state

plan, a sequence of actions to take, initially empty

action, the most recent action, initially none

state < UPDATE-STATE(state, action, percept, model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is empty then
plan — PLAN(state,goal,model)
action < FIRST(plan)
plan — REST(plan)
return action

Figure S2.1 A goal-based agent.

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)

- DN bt

Vacuum Cleaner

!

a. Can a simple reflex agent be perfectly rational for this environment? Explain.
b. Can a simple reflex agent with a randomized agent function outperform a simple reflex
agent? Design such an agent and measure its performance on several environments.

. Can you design an environment in which your randomized agent will perform poorly?
Show your results.

. Can a reflex agent with state outperform a simple reflex agent? Design such an agent
and measure its performance on several environments. Can you design a rational agent
of this type?

O (a) and (b)

O a. No. Geography matters, and no rational behaviour is possible in blind situation.

b. One possible design cleans up dirt and otherwise moves randomly:

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept
(cond ((eq status ’'Dirty) ’Suck)
(t (random-element ’(Left Right Up Down))))))

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)

Vacuum Cleaneg®

Can a simple reflex agent be perfectly rational for this environment? Explain.
Can a simple reflex agent with a randomized agent function outperform a simple reflex

agent? Design such an agent and measure its performance on several environments.

Can you design an environment in which your randomized agent will perform poorly?

Show your results.

A complex environment
requested in C.

Figure S2.3
the squares.

An environment in which random motion will take a long time to cover all

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)

> a. Can a simple reflex agent be perfectly rational for this environment? Explain.
Vacuum Cleaner [ty iommonimbi

. Can a simple reflex agent with a randomized agent function outperform a simple reflex
agent? Design such an agent and measure its performance on several environments.

. Can you design an environment in which your randomized agent will perform poorly?
Show your results.

. Can a reflex agent with state outperform a simple reflex agent? Design such an agent
and measure its performance on several environments. Can you design a rational agent
of this type?

d. A reflex agent with state can build a map (see Chapter 4 for details). An online depth-
first exploration will reach every state in time linear in the size of the environment;
therefore, the agent can do much better than the simple reflex agent.

Vacuum Cleaner: DFS

function ONLINE-DFS-AGENT(s’) returns an action
inputs: s’, a percept that identifies the current state
persistent: result, a table indexed by state and action, initially empty
d, a table that lists, for each state, the actions not yet tried
backtracked, a table that lists, for each state, the backtracks not yet tried
s, a, the previous state and action, initially null

if GOAL-TEST(s’) then return stop
if s’ is a new state (not in untried) then untried[s’] «+— ACTIONS(s")
if s 1s not null then
result[s, a] < s’
add s to the front of unbacktracked[s’]
if untried[s’] is empty then
if unbacktracked[s'] is empty then return stop
else a < an action b such that result[s’, b] = POP(unbacktracked[s'])
else a < PoP(untried[s’])
S — SI

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent is appli-
cable only in state spaces in which every action can be “undone” by some other action.

function GOAL-BASED-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state
model, a description of how the next state depends on current state and action

goal, a description of the desired goal state

; ! EC @ l U E ! n I @[C[@gc {t })lun,a sequence of actions to take, initially empty
4 ‘ oy
action, the most recent action, initially none

state < UPDATE-STATE(state, action, percept, model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is empty then
plan «— PLAN(state,goal ,model)
action <— FIRST(plan)
plan — REST(plan)
return action

Figure S2.1 A goal-based agent.

O Adattare il programma tabellare dell’agente alla situazione in cui:

O Esistono 3 stanze (non due sole)
O Monodirezionale ma lungo tre e non piu due stanze
O Inizializzazione randomica dello stato delle stanze

O L'agente ha una percezione «completan dell’ambiente, cioe I'intero insieme di stanze

O L'agente € GoalBased e quindi puo

O Elaborare un piano rispetto alla situazione iniziale
O Eseguire il piano ad ogni passo
O Si confrontino il comportamento di

O Breadth-first Search
O A* (basati su una euristica, ad es. numero di stanze sporche)

Exercise 3.25

3.25 The heuristic path algorithm (Pohl, 1977) i1s a best-first search in which the evalu-
ation function is f(n) = (2 — w)g(n) + wh(n). For what values of w is this complete?
For what values is it optimal, assuming that / is admissible? What kind of search does this
perform for w = 0, w = 1, and w = 27

3.25 Itis complete whenever 0 < w < 2. w = 0 gives f(n) = 2¢g(n). This behaves exactly

like uniform-cost search— the factor of two makes no difference in the ordering of the nodes.
w = 1 gives A" search. w = 2 gives f(n) = 2h(n), i.e., greedy best-first search. We also
have

w

f(n) = (2 —w)lgn) + 5——h(n)

— W

which behaves exactly like A" search with a heuristic s==/(n). For w < 1, this is always

less than i (n) and hence admissible, provided h(n) is itself admissible.

Exercise 4.1

4.1 Give the name of the algorithm that results from each of the following special cases:

a. Local beam search with & = 1.
b. Local beam search with one initial state and no limit on the number of states retained.
¢. Simulated annealing with 7" = 0 at all times (and omitting the termination test).

d. Simulated annealing with 7" = oo at all times.

ill-climbing search.

. Local beam search with one 1nitial state and no limit on the number of states retained,
resembles breadth-first search in that it adds one complete layer of nodes before adding
the next layer. Starting from one state, the algorithm would be essentially identical to
breadth-first search except that each layer is generated all at once.

. Simulated annealing with 7" = 0 at all times: ignoring the fact that the termination step
would be triggered immediately, the search would be identical to first-choice hill climb-
ing because every downward successor would be rejected with probability 1. (Exercise
may be modified in future printings.)

. Simulated annealing with 7" = oc at all times is a random-walk search: it always
accepts a new state.

Exercise 4.1: recap Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current «<— MAKE-NODE(problem.INITIAL-STATE)
fort=1tooccdo
T — schedule(t)
if 7' = 0 then return current
next < a randomly selected successor of current
AL «— next.VALUE — current. VALUE
if AF > 0 then current < neuxt

else current — next only with probability e2£/7

Figure4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. Downhill moves are accepted readily early in the anneal-
ing schedule and then less often as time goes on. The schedule input determines the value of
the temperature 7' as a function of time.

Exercise 4.12

4.12 Suppose that an agent is in a 3 X 3 maze environment like the one shown in Fig-
ure 4.19. The agent knows that its initial location 1s (1,1), that the goal 1s at (3,3), and that the
actions Up, Down, Left, Right have their usual effects unless blocked by a wall. The agent
does not know where the internal walls are. In any given state, the agent perceives the set of
legal actions; it can also tell whether the state is one it has visited before.

a. Explain how this online search problem can be viewed as an offline search in belief-state
space, where the initial belief state includes all possible environment configurations.
How large is the initial belief state? How large is the space of belief states?

b. How many distinct percepts are possible in the initial state?

c¢. Describe the first few branches of a contingency plan for this problem. How large
(roughly) is the complete plan?

Notice that this contingency plan is a solution for every possible environment fitting the given
description. Therefore, interleaving of search and execution is not strictly necessary even in
unknown environments.

Exercise 4.12 (a ...)

4.12 This question is slightly ambiguous as to what the percept is—either the percept is just
the location, or it gives exactly the set of unblocked directions (i.e., blocked directions are
illegal actions). We will assume the latter. (Exercise may be modified in future printings.)
There are 12 possible locations for internal walls, so there are 2'? = 4096 possible environ-
ment configurations. A belief state designates a subset of these as possible configurations;
for example, before seeing any percepts all 4096 configurations are possible—this is a single
belief state.

a. Online search is equivalent to offline search in belief-state space where each action
in a belief-state can have multiple successor belief-states: one for each percept the
agent could observe after the action. A successor belief-state is constructed by taking
the previous belief-state, itself a set of states, replacing each state in this belief-state
by the successor state under the action, and removing all successor states which are
inconsistent with the percept. This is exactly the construction in Section 4.4.2. AND-OR
search can be used to solve this search problem. The initial belief state has 2'0 = 1024
states in it, as we know whether two edges have walls or not (the upper and right edges
have no walls) but nothing more. There are 92" possible belief states, one for each set
of environment configurations.

Exercise 4.12 (... a - b)

We can view this as a contingency problem in belief state space. After each ac-
tion and percept, the agent learns whether or not an internal wall exists between the
current square and each neighboring square. Hence, each reachable belief state can be
represented exactly by a list of status values (present, absent, unknown) for each wall
separately. That is, the belief state is completely decomposable and there are exactly 3!

reachable belief states. The maximum number of possible wall-percepts in each state
is 16 (2%), so each belief state has four actions, each with up to 16 nondeterministic
SUCCESSOTS.

. Assuming the external walls are known, there are two internal walls and hence 22 =4
possible percepts.

Exercise 4.12 (c) I

Figure S4.4 The 3 x 3 maze exploration problem: the initial state, first percept, and one
selected action with its perceptual outcomes.

c. The initial null action leads to four possible belief states, as shown in Figure S4.4. From
each belief state, the agent chooses a single action which can lead to up to 8 belief states
(on entering the middle square). Given the possibility of having to retrace its steps at
a dead end, the agent can explore the entire maze in no more than 18 steps, so the
complete plan (expressed as a tree) has no more than 8'® nodes. On the other hand,
there are just 3'2 reachable belief states, so the plan could be expressed more concisely
as a table of actions indexed by belief state (a policy in the terminology of Chapter 17).

Oo—e—O O—e—O

Oo—e—O Oo—o—@ ket

! 88
O

(a) (b) (c)

Figure 3.9 The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid
problem. The frontier (white nodes) always separates the explored region of the state space
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In (b), one leaf node has been expanded. In (c), the remaining successors of the root
have been expanded in clockwise order.

3.26 Consider the unbounded version of the regular 2D grid shown in Figure 3.9. The start
state is at the origin, (0,0), and the goal state is at (x, y).

a. What is the branching factor b in this state space?

How many distinct states are there at depth £ (for & > 0)?

What is the maximum number of nodes expanded by breadth-first tree search?

What is the maximum number of nodes expanded by breadth-first graph search?

Is h = |u — x| + |v — y| an admissible heuristic for a state at (u, v)? Explain.

How many nodes are expanded by A* graph search using h?

Does h remain admissible if some links are removed?

S0 om0 e T

Does h remain admissible if some links are added between nonadjacent states?

Risposte

3.10 Define in your own words the following terms: state, state space, search tree, search
node, goal, action, transition model, and branching factor.

3.10 A state is a situation that an agent can find itself in. We distinguish two types of states:
world states (the actual concrete situations in the real world) and representational states (the
abstract descriptions of the real world that are used by the agent in deliberating about what to
do).

A state space 1s a graph whose nodes are the set of all states, and whose links are
actions that transform one state into another.

A search tree is a tree (a graph with no undirected loops) in which the root node is the
start state and the set of children for each node consists of the states reachable by taking any
action.

A search node is a node in the search tree.

A goal 1s a state that the agent is trying to reach.

An action is something that the agent can choose to do.

A successor function described the agent’s options: given a state, it returns a set of
(action, state) pairs, where each state is the state reachable by taking the action.

The branching factor in a search tree is the number of actions available to the agent.

Risposte

3.9 The missionaries and cannibals problem is usually stated as follows. Three mission-
aries and three cannibals are on one side of a river, along with a boat that can hold one or
two people. Find a way to get everyone to the other side without ever leaving a group of mis-
sionaries in one place outnumbered by the cannibals in that place. This problem is famous in
Al because it was the subject of the first paper that approached problem formulation from an
analytical viewpoint (Amarel, 1968).

a. Formulate the problem precisely, making only those distinctions necessary to ensure a
valid solution. Draw a diagram of the complete state space.

b. Implement and solve the problem optimally using an appropriate search algorithm. Is it
a good 1dea to check for repeated states?

¢. Why do you think people have a hard time solving this puzzle, given that the state space
is so simple?

3.9 The missionaries and cannibals problem is usually stated as follows. Three mission-
aries and three cannibals are on one side of a river, along with a boat that can hold one or
two people. Find a way to get everyone to the other side without ever leaving a group of mis-
sionaries in one place outnumbered by the cannibals in that place. This problem is famous in

Ri s o Ste AT because it was the subject of the first paper that approached problem formulation from an
p analytical viewpoint (Amarel, 1968).

. Formulate the problem precisely, making only those distinctions necessary to ensure a
valid solution. Draw a diagram of the complete state space.

. Implement and solve the problem optimally using an appropriate search algorithm. Is it
a good idea to check for repeated states?

39 . Why do you think people have a hard time solving this puzzle, given that the state space
* is so simple?

a. Here is one possible representation: A state is a six-tuple of integers listing the number
of missionaries, cannibals, and boats on the first side, and then the second side of the
river. The goal is a state with 3 missionaries and 3 cannibals on the second side. The
cost function is one per action, and the successors of a state are all the states that move
1 or 2 people and 1 boat from one side to another.

. The search space is small, so any optimal algorithm works. For an example, see the
file "search/domains/cannibals.lisp". It suffices to eliminate moves that
circle back to the state just visited. From all but the first and last states, there is only
one other choice.

. It 1s not obvious that almost all moves are either illegal or revert to the previous state.
There 1s a feeling of a large branching factor, and no clear way to proceed.

3.14 Which of the following are true and which are false? Explain your answers.

a. Depth-first search always expands at least as many nodes as A" search with an admissi-
ble heuristic.

I i
Rls pos e . h(n) = 0 is an admissible heuristic for the 8-puzzle.
. A" 1s of no use in robotics because percepts, states, and actions are continuous.
. Breadth-first search is complete even if zero step costs are allowed.

. Assume that a rook can move on a chessboard any number of squares in a straight line,
vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an
admissible heuristic for the problem of moving the rook from square A to square B in
the smallest number of moves.

. False: a lucky DFS might expand exactly d nodes to reach the goal. A* largely domi-
nates any graph-search algorithm that 1s guaranteed to find optimal solutions.

. True: h(n) = 0 is always an admissible heuristic, since costs are nonnegative.

. False A* search 1s often used in robotics; the space can be discretized or skeletonized.
. True: depth of the solution matters for breadth-first search, not cost.

. False: a rook can move across the board in move one, although the Manhattan distance
from start to finish is 8.

Risposte

3.15 Consider a state space where the start state is number 1 and each state £ has two
successors: numbers 2k and 2k + 1.
. Draw the portion of the state space for states 1 to 15.

. Suppose the goal state 1s 11. List the order in which nodes will be visited for breadth-
first search, depth-limited search with limit 3, and iterative deepening search.

. How well would bidirectional search work on this problem? What is the branching
factor in each direction of the bidirectional search?

. Does the answer to (¢) suggest a reformulation of the problem that would allow you to
solve the problem of getting from state 1 to a given goal state with almost no search?

. Call the action going from £ to 2k Left, and the action going to 2k + 1 Right. Can you
find an algorithm that outputs the solution to this problem without any search at all?

numbers 2k and 2k + 1.

Figure S3.1 The state space for the problem defined in Ex. 3.15.

a. See Figure S3.1.

b. Breadth-first: 1234567891011
Depth-limited: 1248951011
Iterative deepening: 1;123;1245367;1248951011

c. Bidirectional search is very useful, because the only successor of n in the reverse direc-
tion is |(n/2)]. This helps focus the search. The branching factor is 2 in the forward
direction; 1 in the reverse direction.

3.15 Consider a state space where the start state is number 1 and each state £ has two
successors: numbers 2k and 2k + 1.

. Draw the portion of the state space for states I to 15.

. Suppose the goal state is 11. List the order in which nodes will be visited for breadth-
first search, depth-limited search with limit 3, and iterative deepening search.

. How well would bidirectional search work on this problem? What is the branching
factor in each direction of the bidirectional search?

Figure S3.1 The state space for the problem defined in Ex. 3.15.

. Does the answer to (¢) suggest a reformulation of the problem that would allow you to
solve the problem of getting from state 1 to a given goal state with almost no search?

a. See Figure S3.1.
b. Breadthfirst: 123456789 10 11 . Call the action going from £ to 2k Left, and the action going to 2k + 1 Right. Can you

Depth-limited: 12489510 11 find an algorithm that outputs the solution to this problem without any search at all?
Iterative deepening: 1;123;1245367;1248951011
c. Bidirectional search is very useful, because the only successor of 7 in the reverse direc-
tion is | (n/2)]. This helps focus the search. The branching factor is 2 in the forward
direction; 1 in the reverse direction.

d. Yes; start at the goal, and apply the single reverse successor action until you reach 1.

e. The solution can be read off the binary numeral for the goal number. Write the goal
number in binary. Since we can only reach positive integers, this binary expansion
beings with a 1. From most- to least- significant bit, skipping the initial 1, go Left to
the node 2n if this bit is 0 and go Right to node 2n + 1 if it is 1. For example, suppose
the goal 1s 11, which is 1011 in binary. The solution is therefore Left, Right, Right.

Oo—e—O O—e—O

Oo—e—O Oo—o—@ ket

! 88
O

(a) (b) (c)

Figure 3.9 The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid
problem. The frontier (white nodes) always separates the explored region of the state space
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In (b), one leaf node has been expanded. In (c), the remaining successors of the root
have been expanded in clockwise order.

3.26 Consider the unbounded version of the regular 2D grid shown in Figure 3.9. The start
state is at the origin, (0,0), and the goal state is at (x, y).

a. What is the branching factor b in this state space?

How many distinct states are there at depth £ (for & > 0)?

What is the maximum number of nodes expanded by breadth-first tree search?

What is the maximum number of nodes expanded by breadth-first graph search?

Is h = |u — x| + |v — y| an admissible heuristic for a state at (u, v)? Explain.

How many nodes are expanded by A* graph search using h?

Does h remain admissible if some links are removed?

S0 om0 e T

Does h remain admissible if some links are added between nonadjacent states?

P

Hill Climbing

S .

Figure 3.31 A scene with polygonal obstacles. .S and & are the start and goal states.

4.13 In this exercise, we examine hill climbing in the context of robot navigation, using the
environment in Figure 3.31 as an example.

a. Repeat Exercise 4.11 using hill climbing. Does your agent ever get stuck in a local
minimum? Is it possible for it to get stuck with convex obstacles?

b. Construct a nonconvex polygonal environment in which the agent gets stuck.

¢. Modify the hill-climbing algorithm so that, instead of doing a depth-1 search to decide
where to go next, it does a depth-£ search. It should find the best k-step path and do
one step along it, and then repeat the process.

d. Is there some k for which the new algorithm is guaranteed to escape from local minima?
. Explain how LRTA" enables the agent to escape from local minima in this case.

=
Xz

Hill Climbing

(a) (b)

Figure S4.5 (a) Getting stuck with a convex obstacle. (b) Getting stuck with a nonconvex
obstacle.

4.13 Hillclimbing is surprisingly effective at finding reasonable if not optimal paths for very
little computational cost, and seldom fails in two dimensions.

a. Itis possible (see Figure S4.5(a)) but very unlikely —the obstacle has to have an unusual
shape and be positioned correctly with respect to the goal.

b. With nonconvex obstacles, getting stuck 1s much more likely to be a problem (see Fig-

ure S4.5(b)).

c. Notice that this is just depth-limited search, where you choose a step along the best path
even if it 1s not a solution.

d. Set £ to the maximum number of sides of any polygon and you can always escape.

e. LRTA* always makes a move, but may move back if the old state looks better than the
new state. But then the old state is penalized for the cost of the trip, so eventually the
local minimum fills up and the agent escapes.

