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Overview

• Progettiamo un agente logico in Prolog

• Progettiamo la sua base di conoscenza, con l’intento di ottimizzarne la capacità di raggiungere l’obbiettivo

• Osserviamo il comportamento autonomo dell’agente

• Ci porremo il problema: può la conoscenza dell’agente essere appresa e non codificata manualmente?

• Vedremo come collezionare esempi (positivi) del comportamento dell’agente (i.e. scelte della azione)

• Introdurremo un’ambiente per acquisire modelli di classificazione mediante Machine Learning: Weka

• Applicando Weka al caso del nostro agente, acquisiremo un modello decisionale (regole) attraverso 

l’apprendimento di una funzione di classificazione mediante Decision trees.

• Vedremo le analogie tra   la base di conoscenza (Prolog) progettata top-down e il modello di azioni (albero delle 

decisioni) indotto dai dati dal DTL.



Mouse And Cheese

Nel mondo proposto, è necessario animare un piccolo topolino a raccogliere 

i pezzi di formaggio in caduta dall’alto in un ambienet 3x3 (vedi figura a 

lato).

Si progetti in Prolog il mondo del topolino (ambiente, sensori e mondi 

possibili) in modo da poter programmare le azioni del topolino che 

massimizzano l’utilità del goal: 

mangiare il numero massimo di pezzetti di formaggio.

Definire la strategia di scelta delle azioni separatamente dalla applicazione 

delle azioni, in modo da favorire lo sviluppo di stategie diverse.

Si usi il predicato random/1 per generare a caso le posiizoni del topolino e 

del formaggio di volta in volta.



Describing the state

The world corresponds to a 3x3 Map, where coordinates X (row) and 

Y (column) define an individual position.

There are two main objects in a map:

Cheese Position: predicate cheese(X,Y)

Mouse Position: predicate     mouse(X,Y)

The State is thus defined as a pair (Prolog list)

[cheese(XC,YC), mouse(XM, YM)]

At every time stamp, the State list (i.e. the pair) represents the 

current state of the environment. 

“There is only one cheese at a time” is implied by the fact that there 

is only ONE cheese(X,Y) predicate in the State declaration.



Goal & Utility

Goal: The mouse stops when there is no further cheese that is falling down

As   [cheese(XC,YC), mouse(XM, YM)]

describes the State of the World, any value YC outside the [1,3] range is a valid 

indicator of the fact that there is no bit of cheese falling.

Default: When YC == 0, assume the Goal has been satisfied and the mouse stop 

acting.

Moreover, as the mouse does not jump, at each time stamp XM == 1.

Eating is possible when the mouse is under the falling column of the cheese, and 

at the time the cheese touches the ground he is able to reach the same cell. 

The EATing action is possible thus ONLY WHEN for some YC=YM<>0,  

XC == XM == 1.   

Utility: The mouse has to maximize the bit of cheese he is able to eat when 

they are on the ground (i.e. XC=1). 



The Mouse as an agent: requirements

The following notions have to be specified:

• Initialization of the world (Use random/1)

• Synchronization of the world changes (i.e. the stepwise falling 

process of the cheese) with the mouse observations and 

actions

• The actions is selected by the mouse at each step in the 

attempt to maximize the utility

• Goal-satisfaction check at each step



The Mouse as an agent: requirements

Main problem instance cycle:

• Syncronize each requirements above in a step-by-step process. In Prolog:

run_problem_instance :-

init_the_world( YC, YM),

solve([cheese(3,YC), mouse(1,YM)], 0, Feed),

write("\n Task carried out: !!"),nl, write("The mouse has eaten "), 

write(Feed), write(" cheese bits!!\n"), nl.

where:

init_the_world(CheeseNextColumn, MouseNextColumn)  :-

random_pos_the_cheese(CheeseNextColumn), 

random_pose_the_mouse(MouseNextColumn).



Solving the task

Two major actions:

• Check if the goal has been reached (no more cheese)

• OBSERVE/DECIDE/ACT cycle

Main solve cycle:

• In Prolog:

solve([cheese(XC,YC), mouse(_,_)], CurrFeed, CurrFeed) :-

check_goal_satisfaction(cheese(XC,YC)),

!.

solve([cheese(XC,YC), mouse(XM, YM)], CurrFeed, AllFeeds) :-

decide_rule( [cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule),

apply_action(Rule, [cheese(XC,YC), mouse(XM, YM)], CurrFeed, NewState, NewFeed),

env_step(NewState, NextState),

!,

solve( NextState, NewFeed, AllFeeds).

where:

env_step([cheese(1, _), mouse(XM, YM)], [cheese(3, NewYC), mouse(XM, YM)]) :-

/* generate a new starting position at column NewYC */

random_pos_the_cheese(NewYC),

env_step([cheese(XC, YC), mouse(XM, YM)], [cheese(NewXC, YC), mouse(XM, YM)]) :- /* falling down ...*/

XC > 1, NewXC is XC-1.



Decision Rules for acting

decide_rule( [cheese(1, Y), mouse(1,Y)], _, eat) :-

!.

decide_rule( [cheese(_anyXC, Y), mouse(_anyXM, Y)], _, stand) :-

\+(_anyXC == _anyXM),

!.

decide_rule( [cheese(_, NewYC), mouse(_, YM)], _, moveright) :-

NewYC > YM,

!.

decide_rule( [cheese(_, NewYC), mouse(_, YM)], _, moveleft) :-

NewYC < YM,

!.

decide_rule( _anyState, _anyFeed, _, stand).



Run the program

The program is accessible in file: Mouse.pl

Use the predicate

?- run_problem_instance.

to run the agent.

The program includes:

- Messages to inspect the Mouse behaviour

- The (hand coded) decision rules that are optimal

- Logging of examples  (see Machine Learning approach next slides)



Training (Logical) Mouses

Adopting Machine Learning to design logical decisions
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How can we train the Mouse to the proper decisions?

Let’s for a while imagine that we got no decision rule, and that the system 

is blind, i.e. forced to decide randomly. e.g.

/* RANDOM, i.e. Non intelligent CHOICE */

decide_rule( _anyState, _AnyFeed, Action) :-

N is random(4)+1,

select_ith(N, [eat,left,moveleft,moveright], Action).

Can we do better by Machine Learning the rules?

Where to start?

IDEA: Let’s start running the Mouse.pl program and collect its behavior 

(i.e. actions taken when the mouse observe States) and try to learn the 

Prolog code for decision rules.

What we need: collecting examples and a learning algorithm



Training the Mouse: collecting examples

Few lines of Prolog code (see file Mouse_to_Learn.pl) allow us to 

store the examples of State-Action choices.

After having decided to act the Prolog agent can store the 

choice (through dynamic predicates) by memorizing as examples 

every chosen State-Action pair.

storerules([cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule) :-

example(N, _, _, _),  /* <== a dynamic predicate */

NewN is N+1,

asserta(example(NewN, [cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule)),

!.

storerules([cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule) :-

asserta(example(1, [cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule)),

!.



Training the Mouse: collecting examples

Can we make the example/4 predicate facts available in a machine 

learning platform, such as Weka?

We need to store every example in terms of features (i.e. the observable 

properties of each recorded step) and associate to them the chosen 

action (as the target classification choice).

Features are states of the world, i.e. positions of cheese bits and mouses.

The action is the target decision 

The learning is devoted to induce a classification function from states to 

actions.

In order to write on file all the meaningful attributes of the examples:

?- tell(‘Esempi2.data’), 

example(_, [cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule),

write(XC),write(‘,’),write(YC), write(‘,’),write(XM),write(‘,’),write(YM),write(‘,’),

write(CurrFeed), write(‘,’),write(Rule),nl,

fail.

?- told.



Training the Mouse: collecting examples

?- tell(‘Esempi2.data’), 

example(_, [cheese(XC,YC), mouse(XM, YM)], CurrFeed, Rule),

write(XC),write(‘,’),write(YC), write(‘,’),write(XM),write(‘,’),write(YM),write(‘,’),

write(CurrFeed), write(‘,’),write(Rule),nl,

fail.

?- told.

This is the outcome in an ARFF file (Mouse2.arff) … from the header:
@RELATION Mouse

@ATTRIBUTE cheesePosX INTEGER

@ATTRIBUTE cheesePosY INTEGER

@ATTRIBUTE mousePosX INTEGER

@ATTRIBUTE mousePosY INTEGER

@ATTRIBUTE eatenBits INTEGER

@ATTRIBUTE class {eat,moveleft,moveright,stand}

@DATA

1,2,1,2,13,eat

…

1,2,1,2,3,eat

2,2,1,2,3,stand

3,2,1,1,3,moveright

2,1,1,2,2,moveleft

…



Learning a decision tree

With Weka we can apply the J48 algorithm to 

induce the corresponding decision tree

The outcome is a model whose performance is 

98.37% as shown on the left

In the 2 errors the system predicted action 

stand in the case it needed to moveright (i.e. a 

possibel error in the training data)

In Weka, the model, i.e. the decision tree in this 

case, can be inspected by clicking (with the 

right side) on the Result list elements



The acquired decision tree

The decision tree acquired in the right hand side 

of the slide is very close to the Prolog code for 

the decide_rule/4 predicate.

Surprised?

The variables used to decide the action class by 

the tree are:

@ATTRIBUTE cheesePosX INTEGER
@ATTRIBUTE cheesePosY INTEGER
@ATTRIBUTE mousePosX INTEGER
@ATTRIBUTE mousePosY INTEGER

These do not include the eatenBits attribute 

that is in fact irrelevant to the decision: this has 

been rediscovered by the DT learning algorithm

As in the Prolog code, only the relative positions 

of the cheese and the mouse (i.e. mousePosX, 

mousePosY, cheesePosX, cheesePosY) are 

influencial to the decisions.



Examples of Prolog rules induced by the DT algorithm

weka_decide_rule([cheese(CheesePosX, _), mouse(_, _)], _, eat) :-

CheesePosX =< 1,

!.

weka_decide_rule([cheese(CheesePosX, CheesePosY), 

mouse(_, MousePosY)], _, moveright) :-

CheesePosX > 1,

CheesePosY > 2,

MousePosY =< 2,

!.



The acquired decision tree

Obviousy the learning machine has been 

exposed to the perfect behaviour of the hand-

coded Prolog program and it has been easy to 

rebuild such a simple model.

In case no such knowledge is available the 

question is: can we train the system? Where are 

the examples? We could use the estimated 

quality of individual moves (i.e. an empirical 

measure of their advantage), and then train the 

system to select the optimal move (e.g. a 

regression task)? Randomly selected actions 

could be used to gather training data.

Modify the provided Prolog code to formulate 

a quality estimate function and to train the 

random agent mouse from scratch.


