A practical guide to
Support Vector Machine
and the
Kernel Based Learning Platform
(KeLP)

Danilo Croce University of Roma, Tor Vergata

Deep Learning 2025

Support Vector Machines

- Let us consider a binary classification problem where example are represented in a "input" space $X \subseteq \Re^n$ and the output space $Y = \{-1, 1\}$
 - Training set $S = \{(x_1, y_1), \dots (x_l, y_l)\} \in (X \times Y)$
- We want to derive a relation binding X and Y
- In a classification problem, we want to induce a decision function f that, given a new example x, produces a label -1 or +1, depending on the assigned class

Support Vector Machines

- A binary classifier is can be implemented considering the function
- $\blacksquare f: X \subseteq \mathcal{R}^n \to \mathcal{R}:$
 - $\bullet \text{ if } f(x) \ge 0 + 1$
 - $\bullet \text{ if } f(x) < 0 \qquad -1$
- And the final classification function is:
 - \blacksquare sign(f(x))

SVM Optimization: trade-off between training error and margin

The soft-margin SVM allows classification errors in the training set

- The regularization parameter C need to appropriately chosen
- A very high value of C corresponds to the hard margin SVM

Minimize: $\frac{1}{2}||\vec{w}||^2 + C\sum_k \xi_k$ subject to: $\forall k: y_k[\vec{w} \cdot \vec{x_k} + b] \ge 1 - \xi_k$

SVM OPTIMIZATION: Adjusting the cost of false positives vs. false negatives

• As we can deal with unbalanced numbers of positive and negative examples, two different cost factors **C**₊ and **C**₋ are employed.

Minimize:
$$\frac{1}{2} ||\vec{w}||^2 + C_+ \sum_{i:y_i=1} \xi_i + C_- \sum_{j:y_j=-1} \xi_j$$

subject to: $\forall k: y_k [\vec{w} \cdot \vec{x_k} + b] \ge 1 - \xi_k$

 They allow to adjust the cost of false positives vs. false negatives

A practical example

Positive Ex.

a1 (1,1)

a2 (0,1)

a3 (0,2)

a4 (0,3)

Negative

Ex.

b1 (3,1)

b2 (2,2)

b3 (2,3)

b4 (4,2)

b5 (4,4)

We apply the SVM learning algorithms

	\mathbf{a}_{i}	COORD
sv ₁	0.222	(0,3)
SV ₂	0.889	(1,1)
sv ₃	-1.111	(2,2)
b	3	

A practical example

	α_{i}	COORD
sv ₁	0.222	(0,3)
SV ₂	0.889	(1,1)
SV ₃	-1.111	(2,2)
b	3	

Hyperplane Equation: $w \cdot x + b = 0$

$$W = \sum Q_i \cdot SV_i =$$

$$W = 0.222 \cdot (0,3) + 0.889 \cdot (1,1) - 1.111 \cdot (2,2)$$

$$w = (-1.3334, -0.6667)$$

$$-1.3334 \cdot x_1 - 0.6667 \cdot x_2 + 3 = 0$$

A **Ke**rnel-based **L**earning **P**latform

- **KeLP** is a Java open source Machine Learning platform focusing on Kernel machines
 - http://sag.art.uniroma2.it/demo-software/kelp/kelp-installation/
- Kernel are decoupled from learning algorithms, through the definition of specific interfaces
 - Support for the following learning tasks, e.g. Classification, Regression, Learning over sequences, Clustering...
 - Several learning algorithms are implemented for
 - Batch Learning: SVM, Pegasos, ...
 - Online Learning: Perceptron, Passive-Aggressive, ...

Kelp and Maven

- You can import the KeLP library via Maven
 - Instructions are available at:

http://sag.art.uniroma2.it/demo-software/kelp/kelp-installation/

- The source code is open-source and you can download it from https://github.com/SAG-KeLP
- KeLP is divided in four java projects
 - kelp-core: it contains the core interfaces and classes for algorithms, kernels and representations. (It contains the stands SVM)
 - kelp-additional-kernels: it contains additional kernel functions, such as the Tree Kernels.
 - kelp-additional-algorithms: it contains additional learning algorithms
 - kelp-full: it aggregates via Maven all the above projects.

Examples/Representation/Algorithms and Java Objects

- Each example is stored in the Example object and it is characterized by
 - A set of Labels reflecting one or more classes
 - A list of Representations each identified by a String
- Examples are collected in Datasets
- Several LearningAlgorithms have been implemented
 - BinaryCSvmClassification implements the SVM learning algorithm seen in previous lessons

A Class Diagram of main objects

Input Data

- A dataset can be stored in a textual file (this is not true for graphs)
- Each row of a dataset represents an Example according to the following format label1 ... labelN | Btype1:name1 | descrip. | Etype1 | | Btype2:name2 | descrip. | Etype2 |
- The list of strings label 1 ... label N identifies the classes
- An example can be represented through multiple representations, whose type must be specified:
 - V: Vector (default is sparse vector)
 - DV: Dense Vector
 - T: Tree
 - S: String
 - SQ: Sequence
- Each representation has a name used by the kernel function for a proper selection
 - A representation starts with a tab B (e.g., BV) and is closed with a tag E (e.g., EV)

Example: "What is the width of a football field?" → Number

A QC dataset is available at:

http://cogcomp.cs.illinois.edu/Data/QA/QC/

- Train dataset: 5,452 questions
- Test dataset: 500 questions
- Two settings:
 - Coarse-Grained: 6 classes We will focus on this setting
 - Fine-grained: 50 classes

[1] Xin Li, Dan Roth, Learning Question Classifiers. COLING'02, Aug., 2002.


```
NUM |BV:bow| _what__w:1.0 _a__d:1.0 _field__n:1.0 _football__n:1.0
_the__d:1.0 _be__v:1.0 _width__n:1.0 _of__i:1.0 _?__.:1.0 |EV| |BT:grct|
(SYNT##root(POS##WP(LEX##what::w)) (SYNT##cop(POS##VBZ(LEX##be::v))) (SYNT##nsu
bj(SYNT##det(POS##DT(LEX##the::d))) (POS##NN(LEX##width::n)) (SYNT##prep_of(SYN
T##det(POS##DT(LEX##a::d))) (SYNT##nn(POS##NN(LEX##football::n))) (POS##NN(LEX#
#field::n))))) |ET|
|BS:quest| What is the width of a football field ?|ES|
```

- NUM is the class assigned to the question
- | BV:bow | _what__w:1.0 _a__d:1.0 ... | EV |
 it is a vector (V) called bow (do you remember the Bag-of-word representation?)
- | BT:grct | (SYNT##root(POS##WP(LEX##what::w)) ... | EV |
 it is a tree (T) derived from the dependency parsing of the question written in parenthetic form
- BS:quest | What is the width of a football field ? | ES | It is a string (S). It is not used by kernel functions but it can be used to comment examples.

Grammatical Relation Centered Tree (GRCT)

see Danilo Croce, Alessandro Moschitti, Roberto Basili: Structured Lexical Similarity via Convolution Kernels on Dependency Trees. In proceedings of EMNLP 2011: pages 1034-1046

Handling datasets

- Given a dataset in a file, we can load the dataset with String datasetFilePath="qc_train.klp" SimpleDataset trainingSet = new SimpleDataset(); trainingSet.populate(datasetFilePath);
- We can access the examples and representations for (Example e: trainingSet.getExamples()) { Representation rep = e.getRepresentation("bow"); }
- We can shuffle the dataset
 SimpleDataset shDataset = trainingSet.getShuffledDataset();
- We can split the dataset in two datasets according to a split rate float splitRate=0.8f; SimpleDataset[] split = trainingSet.split(splitRate);
- Check if an example is associated to a class StringLabel stringLabel = new StringLabel("NUM"); boolean isNum = e.isExampleOf(stringLabel);

Kernels

- KeLP implements the following kernels seen in the previous lessons
- Linear Kernel

```
String vectorRepName = "bow";
Kernel linearKernel = new LinearKernel(vectorRepName);
```

Polynomial Kernel

```
String vectorRepName = "bow";
int exp=2;
Kernel linearKernel = new LinearKernel(vectorRepName);
Kernel polynKernel = new PolynomialKernel(exp, linearKernel);
```

Kernels (2)

Tree kernel (Vishwanathan and Smola, 2003)

```
String treeRepresentationName = "grct";
float lambda = 0.4f;
Kernel tkgrct = new SubSetTreeKernel(lambda,
treeRepresentationName);
```

Linear combination

```
String vectorRepresentationName = "bow";
String treeRepresentationName = "grct";
float lambda = 0.4f;

Kernel linearKernel = new LinearKernel(vectorRepresentationName);
Kernel tkgrct = new SubSetTreeKernel(lambda,
treeRepresentationName);

LinearKernelCombination combination = new LinearKernelCombination();
combination.addKernel(0.7, linearKernel);
combination.addKernel(0.3, tkgrct);
```

Kernels (2)

Kernel Normalization

```
Kernel linearKernel = new LinearKernel(vectorRepName);
Kernel normLinearKernel = new NormalizationKernel(linearKernel);
```

Kernel Normalization and Combination

```
Kernel linearKernel = new LinearKernel(vectorRepName);
Kernel normLinearKernel = new NormalizationKernel(linearKernel);
Kernel treeKernel = new SubSetTreeKernel(lambda, treeRepName);
Kernel normTreeKernel = new NormalizationKernel(treeKernel);
LinearKernelCombination comb = new LinearKernelCombination();
comb (0.7, normLinearKernel);
```

Binary Learning Algorithms

```
// define the positive class
StringLabel positiveClass = new StringLabel("+1");
// instantiate a learning algorithm
BinaryCSvmClassification learningAlgo = new
BinaryCSvmClassification();
// indicate to the learner what is the positive class
learningAlgo.setLabel(positiveClass);
// set the regularization parameters
learningAlgo.setCp(c);
learningAlgo.setCn(c);
// set the kernel function
Kernel linearKernel = new LinearKernel("repr name");
learningAlgo.setKernel(linearKernel);
// learn and get the prediction function
learningAlgo.learn(trainingSet);
Classifier classifier = learningAlgo.getPredictionFunction();
```

From binary to multi-class

- When multiple classes are involved, we can combine several binary classifiers to build a multi-class classifier
- We adopt the One-VS-All classification schema
 - We adopt in competition as many classifiers as involved classes
- Training: at turn, a binary classifier is trained over the training set, with the set of examples of a class considered as positive examples
 - The remaining examples are considered negative examples
- **Test**: the example is classified with each binary classifier and the class associated to the classifier with the maximum classification score is selected

Multiclass classification function The One Vs All Schema

```
abels();
```

```
List<Label> labels = trainingSet.getClassificationLabels();
// instantiate the basic binary learning algorithm.
// NO need of setting the labels
BinaryCSvmClassification baseAlgo = new BinaryCSvmClassification();
// set the regularization parameters
baseAlgorithm.setCp(c);
baseAlgorithm.setCn(c);
// set the kernel function
Kernel linearKernel = new LinearKernel("repr name");
baseAlgorithm.setKernel(linearKernel);
OneVsAllLearning ovaLearning=new OneVsAllLearning();
// set the binary classification function
ovaLearning.setBaseAlgorithm(baseAlgorithm);
// set the targeted classes
ovaLearning.setLabels(labels);
// learn and get the prediction function
ovaLearning.learn(trainingSet);
// get the classification function
OneVsAllClassifier ovaCl = ovaLearning.getPredictionFunction();
```

Caching kernel evaluations

- The running time of some kernel-based learning algorithm can be almost O(n²)
- These algorithms evaluate the kernel function between two examples multiple times
- To reduce the learning time we can save some kernel computations

KernelCache cache=new FixIndexKernelCache(cacheSize);
usedKernel.setKernelCache(cache);

- Useful in the training phase
- In testing it is not useful for binary classification but it can be useful for Multi-class classification
- Be careful when using the cache during training over datasets with hundred of thousands examples
- To switch the cache off: usedKernel.disableCache();

Prediction Functions

Binary Classifier

```
ClassificationOutput p = classifier.predict(testExample);
float getClassificationScore=p.getScore(positiveClass);
if(getClassificationScore>0)
```

Multi Class Classifier

```
ClassificationOutput pred = ovaClassifier.predict(testExample);
List<Label> predictedClasses = pred.getPredictedClasses();
Label predictedLabel = predictedClasses.get(0);
...
```

Evaluators

- To support the evaluation phase, KeLP implements evaluators for:
 - The binary scenario
 - The multi-class scenario

```
//Building the evaluation function
BinaryClassificationEvaluator evaluator = new
BinaryClassificationEvaluator(positiveClass);

// Classify examples and compute the accuracy
for (Example e : testSet.getExamples()) {
        ClassificationOutput p = classifier.predict(e);
        evaluator.addCount(e, p);
}

// Get evaluation metrics
float accuracy = evaluator.getAccuracy();
float precision = evaluator.getPrecision();
float recall = evaluator.getRecall();
float f1 = evaluator.getF1();
```

Evaluators for the Multi-class classification schema

```
//Building the evaluation function
List<Label> labels = trainingSet.getClassificationLabels();
MulticlassClassificationEvaluator evaluator = new
       MulticlassClassificationEvaluator(labels);
// Classify examples and compute the accuracy
for (Example e : testSet.getExamples()) {
       ClassificationOutput p = classifier.predict(e);
       evaluator.addCount(e, p);
// Get evaluation metrics
float accuracy = evaluator.getAccuracy();
for (Label label: labels) {
       float precision = evaluator.getF1For(label);
       float recall = evaluator.getF1For(label);
       float f1 = evaluator.getF1For(label);
```


Once the classifier has been learned it can be saved into a file

```
JacksonSerializerWrapper serializer = new JacksonSerializerWrapper();
serializer.writeValueOnFile(classifier, "classifer_file_name.klp");
```

And it can be also loaded

```
File inputFile=new File("classifer_file_name.klp");
Classifier classifier=serializer.readValue(inputFile, Classifier.class);
```

- But also kernel functions and learning algorithms can be serialized on file
- It means that you can build and tune the kernel/classifier without reading a single line of JAVA code

A learning algorithm in Json

```
"algorithm": "binaryCSvmClassification",
"c": 10,
                                                                  SVM
"kernel": {
 "kernelType": "linearComb",
                                                                  Linear
  "weights": [ 0.7, 0.3 ],
                                                               combination
  "toCombine": [
                                                           Kernel
      "kernelType": "norm",
                                                        normalizatio
      "baseKernel": {
        "kernelType": "sstk",
        "representation": "grct",
                                                         Partial Tree
        "lambda": 0.4
                                                           Kernel
    },
      "kernelType": "linear",
                                                                         Linear
      "representation": "bow"
                                                                         Kernel
```

Homework

- In the folder you will find a README with the instructions to compile and execute the JAVA code
- For Homework you are required to:
 - parameterize the kernel functions with a 5-fold schema
 - 2. learn the classifier maximizing the F1 metrics for the HUMAN class
 - 3. evaluate the classifiers without a direct use of the evaluators

Homework – A Glimpse into Future Lessons

We will soon explore how to encode sentences using **neural networks**.

This allows us to obtain **dense embeddings** for full sentences, such as questions.

Embeddings from BERT

- For this assignment, we provide datasets where each question is enriched with an embedding obtained using a pre-trained BERT model (msmarco_distilbert):
 - qc_train_with_embeddings.klp
 - qc_test_with_embeddings.klp
- These dense vector representations can be used just like other representations in KeLP.

Combining Embeddings with Kernels

You can experiment with:

- ova_lin_embeddings.klp: A linear kernel over the BERT embeddings
- ova_lin_embeddings_norm.klp: A normalized linear kernel over the embeddings
- ova_comb_lin-bow_lin_embeddings.klp: A combination of linear kernel on Bag-of-Words and on BERT embeddings

This allows you to compare traditional and neural representations within the same learning framework.