A practical guide to

Support Vector Machine
and the

Kernel Based Learning Platform

(KeLP)

Danilo Croce
University of Roma, Tor Vergata

Deep Learning 2025

Support Vector Machines

m | et us consider a binary classification problem
where example are represented in a “input”
space X < 9" and the output space Y={—-1, 1}
® Training set S={(x3, y2),... (x, M} € (XX Y)

= We want to derive a relation binding Xand Y

® |n a classification problem, we want to induce a
decision function f that, given a new example x,
produces a label -1 or +1, depending on the
assigned class

Support Vector Machines

® A binary classifier is can be
Implemented considering the function

mf XCSH' > I
mif f(x)=0 +1
mif f(x)<O0 -1

m And the final classification function is:
® sign(f(x))

SVM Optimization: trade-off between
training error and margin

The soft-margin SVM allows + sovrappeso O non-sovrappeso
classification errors in the 190
training set
= The regularization parameter C
need to appropriately chosen 180

= A very high value of C
corresponds to the hard margin

SVM 1’70
e . 1 =112 | 60

Minimize: §||w|| +C Z:Ek

subject to: VEk : yk[if - Tk + b] >1- gk 150

0 32,5 65 97,5 130

SVM OPTIMIZATION: Adjusting the cost of
false positives vs. false negatives

 Aswe can deal with unbalanced numbers of
positive and negative examples, two different
cost factors C, and C. are employed.

L Lo
Minimize: §||w|| + C-'_.Zéi - C._ij
2y;i=1 Jiy;j=—1
subject to: VEk:yp[w -2 +b] > 1 =&

« They adllow to adjust the cost of false positives vs.
false negatives

A practical example

N
Positive Ex. 7T -
al (1,1)
a2 (0,1)
a3 (0,2) -
a4 (0,3) @') -
Negative
Ex.g N o @ -
bl (3,1)
b2 (2,2)
b3 (2,3)
b4 (4,2) . @ -
b5 (4,4)
i % % I >
1 2 3 4 5
q COORD
We apply the SYM sV, 0.222 (0,3)
learning algorithms » SV, 0.889 (1,1)
A ~1.111 (2,2)

A practical example

v -
Q; COORD
SV, 0.222 (0, 3) mt-l-}
SV, 0.889 (1,1)
SV3 -1.111 (2,2)
N 4 -
b 3

Hyperplane Equation:
w'x+b=0

A

W=D Qs =

w =0.222 - (0,3) + 0.889 -
(1,1)-1.111-(2,2)

-1.3334 - x; - 0.6667 - x, +3=0
w = (-1.3334, -0.6667)

A Kernel-based Learning
Platform

m KelP is a Java open source Machine Learning

platform focusing on Kernel machines
m hitp://sag.art.uniroma?.it/demo-software/kelp/kelp-installation/

m Kernel are decoupled from learning algorithmes,
through the definition of specific interfaces

m Support for the following learning tasks, e.g. Classification,
Regression, Learning over sequences, Clustering...

m Several learning algorithms are implemented for
m Batch Learning: SVM, Pegasos, ...
®= Online Learning: Perceptron, Passive-Aggressive, ...

http://sag.art.uniroma2.it/demo-software/kelp/kelp-installation/

Kelp and Maven

® You can import the KelP library via Maven

m |nstructions are available at:
http://sag.art.uniroma?.it/demo-software/kelp/kelp-installation/

m The source code is open-source and you can download it from
hitps://github.com/SAG-KelLP

m KelP is divided in four java projects

m kelp-core: it contains the core interfaces and classes for algorithmes,
kernels and representations. (It contains the stands SVM)

B kelp-additional-kernels: it contains additional kernel functions,
such as the Tree Kernels.

B kelp-additional-algorithms: it contains additional learning
algorithms

m kelp-full:it aggregates via Maven all the above projects.

http://sag.art.uniroma2.it/demo-software/kelp/kelp-installation/
https://github.com/SAG-KeLP

Examples/Representation/Algorithms
and Java Objects

m Fach example is stored in the Example object and
it is characterized by
m A set of Labels reflecting one or more classes

m A list of Representations each identified by a string
m Examples are collected in Datasets

m Severdl LearningAlgorithms have been
implemented

® BinaryCSvmClassification implements the SVM
learning algorithm seen in previous lessons

A Class Diagram of main

objects

<<interface>>

ExamplePair Example Label
D regressionLabels
0.*
+ getLeftExample():Example "
+ getRightExample():Example 0..
1.

<<interface>>
Representation

SimpleExample ‘

0..<>

+ setDataFromText(description:String):void NumericLabel StringLabel
+ getTextFromData():String

Zﬁ /\
<<interface>>

<<interface>> Normalizable
Vector

+ normalize():void
+ getNorm():float
+ scale(factor:float):void

SequenceRepresentation

TreeRepresentation

DirectedGraphRepresentation

DenseVector SparseVector

Input Data

m A dataset can be stored in a textual file (this is not true for graphs)
m Eachrow of a dataset represents an Example according to the following format
labell ... labelN | Btypel:namel | descrip. | Etypel | |Btype2:name2| descrip. |Etype?2 |

m The list of strings labell ... labelN identifies the classes

= An example can be represented through multiple representations, whose
type must be specified:

m V: Vector (default is sparse vector)
= DV:Dense Vector

" T:.Tree

S: String

m SQ: Sequence

m Fach representation has a name used by the kernel function for a proper
selection

m A representation starts with a tab B (e.g., BV) and is closed with a tag E (e.g., EV)

Let us consider the Question
Classification task...

m Question classification consists in assigning a question to a class
reflecting the intention of the question.

Example: “What is the widfth of a football fielde” - Number

m A QC dataset is available aft:
http://cogcomp.cs.illinois.edu/Data/QA/QC/
m Train dataset: 5,452 questions

m Test dataset: 500 questions

® Two setfings:
m Coarse-Grained: 6 classes € We will focus on this setting
m Fine-grained: 50 classes

[1] Xin Li, Dan Roth, Learning Question Classifiers. COLING'02, Aug., 2002.

http://cogcomp.cs.illinois.edu/Data/QA/QC/

Multiple ways to represent a

NUM |BV:bow| what w:1.0 a d:1.0 field n:1.0 football n:1.0
_the d:1.0 be wv:1.0 width n:1.0 of 1:1.0 2 .:1.0 |EV| |BT:grct|

(SYNT##root (POSH#H#WP (LEX##what::w)) (SYNTH##cop (POS##VBZ (LEX##be::v))) (SYNT##nsu
bj (SYNT##det (POS##DT (LEX##the::d))) (POS##NN (LEX##width::n)) (SYNT##prep_Of (SYN
TH#i#det (POSH#H#DT (LEX##a::d))) (SYNT##nn (POSH##NN (LEX##football::n))) (POSH##NN (LEX#
#field::n))))) |ET|

|BS:quest| What is the width of a football field ?|ES|

ROOT

= NUM is the class assigned to the question e

= |BV:bow| _what_w:1.0_a_d:1.0 ... |EV| WP be:NMOD NN NMoOD |
it is a vector (V) called bow (do you remember the Bag-of-word whatw DT widten N PMOD o,
representation?) e JﬂN%EE?B%;;\Eﬁ

m | BT:grct| (SYNT##root(POS##WP(LEX##what:w)) ... |EV| bT NN field:n
it is a tree (T) derived from the dependency parsing of the question a:d football::n
written in parenthetic form Grammatical Relation Centered Tree

(GRCT)

= |BS:quest| What is the width of a football field 2 | ES | Roberto Bosi shucired loccal

Itis a string (S). It is not used by kernel functions but it can be used to Similarity via Convolution Kernels on

Dependency Trees. In proceedings of

comment examples. EMNLP 2011: pages 1034-1046

Handling datasets

m Given a dataset in a file, we can load the dataset with
String datasetFilePath=%gc train.klp”
SimpleDataset trainingSet = new SimpleDataset();
trainingSet.populate (datasetFilePath);

m We can access the examples and representations
for (Example e: trainingSet.getExamples()) {

Representation rep = e.getRepresentation ("bow");

}

m We can shuffle the dataset
SimpleDataset shDataset = trainingSet.getShuffledDataset ()

m We can split the dataset in two datasets according to a split rate
float splitRate=0.8f;
SimpleDataset[] split = trainingSet.split(splitRate);

m Check if an example is associated to a class
StringLabel stringlLabel = new StringLabel ("NUM") ;

boolean isNum = e.isExampleOf (stringLabel) ;

Kernels

m KelLP implements the following kernels seen in the previous lessons

m | inear Kernel
String vectorRepName = "bow";

Kernel linearKernel = new LinearKernel (vectorRepName) ;

m Polynomial Kernel

String vectorRepName = "bow";
int exp=2;
Kernel linearKernel = new LinearKernel (vectorRepName) ;

Kernel polynKernel = new PolynomialKernel (exp, linearKernel);

Kernels (2)

® Tree kernel (Vishwanathan and Smola, 2003)

String treeRepresentationName = "grct";
float lambda = 0.4f;

Kernel tkgrct = new SubSetTreeKernel (lambda,
treeRepresentationName) ;

m [inear combination

String vectorRepresentationName = "bow";
String treeRepresentationName = "grct";
float lambda = 0.4f;

Kernel linearKernel = new LinearKernel (vectorRepresentationName) ;
Kernel tkgrct = new SubSetTreeKernel (lambda,
treeRepresentationName) ;

LinearKernelCombination combination = new LinearKernelCombination () ;
combination.addKernel (0.7, linearKernel);
combination.addKernel (0.3, tkgrct);

Kernels (2)

m Kernel Normalization

Kernel
Kernel

linearKernel = new LinearKernel (vectorRepName) ;
normLinearKernel = new NormalizationKernel (linearKernel);

m Kernel Normalization and Combination

Kernel
Kernel

Kernel
Kernel

linearKernel = new LinearKernel (vectorRepName) ;
normLinearKernel = new NormalizationKernel (linearKernel);

treeKernel = new SubSetTreeKernel (lambda, treeRepName) ;
normTreeKernel = new NormalizationKernel (treeKernel);

LinearKernelCombination comb = new LinearKernelCombination ()
comb (0.7, normLinearKernel);
comb (0.3, normTreeKernel);

Binary Learning Algorithms

// define the positive class

StringlLabel positiveClass = new StringlLabel ("+1");

// instantiate a learning algorithm
BinaryCSvmClassification learningAlgo = new
BinaryCSvmClassification () ;

// indicate to the learner what is the positive class
learningAlgo.setlLabel (positiveClass) ;

// set the regularization parameters
learningAlgo.setCp(c) ;

learningAlgo.setCn(c) ;

// set the kernel function
Kernel linearKernel = new LinearKernel ("repr name");

learningAlgo.setKernel (linearKernel) ;

// learn and get the prediction function
learningAlgo.learn(trainingSet) ;
Classifier classifier = learningAlgo.getPredictionFunction();

From binary to multi-class
classifiers

® When multiple classes are involved, we can combine several
binary classifiers to build a multi-class classifier

®» We adopt the One-VS-All classification schema
m We adopt in competition as many classifiers as involved classes

® Training: af furn, a binary classifier is trained over the training
set, with the set of examples of a class considered as positive
examples

® The remaining examples are considered negative examples

m Test: the example is classified with each binary classifier and
the class associated to the classifier with the maximum
classification score is selected

Multiclass classification function
The One Vs All Schema

List<Label> labels = trainingSet.getClassificationlLabels();

// instantiate the basic binary learning algorithm.

// NO need of setting the labels

BinaryCSvmClassification baseAlgo = new BinaryCSvmClassification();
// set the regularization parameters

baseAlgorithm.setCp (c) ;

baseAlgorithm.setCn (c) ;

// set the kernel function

Kernel linearKernel = new LinearKernel ("repr name");
baseAlgorithm.setKernel (linearKernel) ; N

OneVsAllLearning ovalearning=new OneVsAllLearning() ;

// set the binary classification function
ovalearning.setBaseAlgorithm (baseAlgorithm) ;

// set the targeted classes

ovalearning.setLabels (labels);

// learn and get the prediction function

ovalearning.learn (trainingSet) ;

// get the classification function

OneVsAllClassifier ovaCl = ovalearning.getPredictionFunction();

Caching kernel evaluations

® The runningz’rime of some kernel-based learning algorithm can be
almost O(n?)

m These algorithms evaluate the kernel function between two
examples mulfiple tfimes

= To reduce the learning fime we can save some kernel
computations

KernelCache cache=new FixIndexKernelCache (cacheSize) ;
usedKernel.setKernelCache (cache) ;

m Useful in the training phase

m |n festing it is not useful for binary classification but it can be useful for
Multi-class classification

m Be careful when using the cache during fraining over datasets with
hundred of thousands examples

m To switch the cache off: usedKernel .disableCache () ;

Prediction Functions

m Binary Classifier

ClassificationOutput p = classifier.predict (testExample);
float getClassificationScore=p.getScore (positiveClass);
1f (getClassificationScore>0)

m Multi Class Classifier

ClassificationOutput pred = ovaClassifier.predict (testExample);
List<Label> predictedClasses = pred.getPredictedClasses() ;
Label predictedLabel = predictedClasses.get (0);

Evaluators

m To support the evaluation phase, KelLP implements evaluators

for:

m The binary scenario
m The multi-class scenario

//Building the evaluation function
BinaryClassificationEvaluator evaluator = new
BinaryClassificationEvaluator (positiveClass) ;

// Classify examples and compute the accuracy

for (Example e : testSet.getExamples()) {
ClassificationOutput p = classifier.predict (e);
evaluator.addCount (e, p);

}

// Get evaluation metrics

float accuracy = evaluator.getAccuracy()
float precision = evaluator.getPrecision();
float recall = evaluator.getRecall ()

float f1 = evaluator.getF1 () :

Evaluators for the Multi-class
classification schema

//Building the evaluation function

List<Label> labels = trainingSet.getClassificationlLabels();

MulticlassClassificationEvaluator evaluator = new
MulticlassClassificationEvaluator (labels);

// Classify examples and compute the accuracy

for (Example e : testSet.getExamples()) {
ClassificationOutput p = classifier.predict(e);
evaluator.addCount (e, p);

// Get evaluation metrics

float accuracy = evaluator.getAccuracy()
for (Label label : labels) {
float precision = evaluator.getFlFor (label);

float recall = evaluator.getFlFor (label);
float £l = evaluator.getFlFor (label);

Saving/Loading the model

m Once the classifier has been learned it can be saved into a file
JacksonSerializerWrapper serializer = new JacksonSerializerWrapper (),

serializer.writeValueOnFile (classifier, "classifer file name.klp");

m And it can be also loaded

File inputFile=new File("classifer file name.klp");

Classifier classifier=serializer.readValue (inputFile, Classifier.class);

m But also kernel functions and learning algorithms can be
serialized on file

m [t means that you can build and tune the kernel/classifier without
reading a single line of JAVA code

A learning algorithm in Json

{
"algorithm": "binaryCSvmClassification",
llcll . 10 , — ’ SVM
"kernel": { ‘
"kernelType": "linearComb", ‘ .
"weights": [0.7, 0.3], » Linear
"toCombine": [‘ combination
\
i [
("kernelType": "norm", \‘ Kernel
"baseKernel": ({ \ ———» normalizatio
- - n
("kernelType": "sstk”, A [
"representation":”grct", Partial Tree
"lambda": 0.4 Kernel
} , AN S
{
"kernelType": "linear",
"representation": “bow” Linear
} Kernel

Homework

m |n the folder you will find a README with the
instructions to compile and execute the JAVA
code

m For Homework you are required to:

1.

parameterize the kernel functions with a 5-fold
schema

learn the classifier maximizing the F1 metrics for the
HUMAN class

evaluate the classifiers without a direct use of the
evaluators

Homework — A Glimpse Into
Future Lessons

We will soon explore how to encode sentences using neural
networks.

This allows us to obtain dense embeddings for full sentences,
such as questions.

Embeddings from BERT

m For this assignment, we provide datasets where each
question is enriched with an embeddin% obtained using a
pre-trained BERT model (msmarco_distilbert):

m gc_tfrain_with_embeddings.klp
m qc_test_with_embeddings.klp

m These dense vector representations can be used just like
other representations in KelLP.

Combining Embeddings
with Kernels

You can experiment with:

" ova lin embeddings.klp: A linear kernel over the
BERT embeddings

" ova lin embeddings norm.klp: A normalized
linear kernel over the embeddings

" ova comb lin-bow lin embeddings.klp: A
combination of linear kernel on Bag-of-Words and
on BERT embeddings

This allows you to compare traditional and neural
representations within the same learning framework.

