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Information Theory

Let ξ be a discrete stochastic variable with a finite range
Ωξ = {x1, ...,xM} and let pi = p(xi) be the corresponding
probabilities.

How much information is there in knowing the outcome of ξ ?

Or equivalently:

How much uncertainty arises if the outcome ξ is unknown?

This is the information needed to specify which of the xi has
occurred. The problem is writing ξ .
Let us assume further that we only have a small set of symbols
A = {ak : k = 1, ...D}, that is a coding alphabet.
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Information Theory

Thus each xi will be represented by a string over A.
Let us assume that ξ is uniformly distributed, i.e.

pi =
1
M ∀i = 1, ...,M,

and that the coding alphabet is exactly A = {0,1}.

Thus, each xi will be represented by a binary number. To use N
binary digits to specify which xi actually occurred means:

N : 2N−1 < M ≤ 2N

Thus we need N = ⌈log2 M⌉ digits.
So what if the distribution is nonuniform, i.e., if the pis are not
all equal?
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Information Theory

How much uncertainty does a possible outcome with
probability introduce?

The basic assumption is that pi will introduce equally much
uncertainty regardless of the rest of the probabilities pj with
j ̸= i.
We can thus reduce the problem to the case where all outcomes
have probability pi. In this case, there are 1

pi
= Mpi possible

outcomes.
Example: if pi ≈ 1 then Mpi ≈ 1.
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Entropy

Uncertainty of ξ

The uncertainty introduced by the random variable ξ will be
taken to be the expectation value of the number of digits
required to specify its outcome.

This is the expectation value of − log2 P(ξ ), i.e.

E[− log2 P(ξ )] = ∑
i
−pi log2 pi
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Entropy

Entropy

The entropy H[ξ ] of ξ is precisely the amount of uncertainty
introduced by the random variable ξ and it is more often
referred to a natural logarithm ln(.), so that

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) =
M

∑
i
−pi lnpi
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Entropy

Example 1: Dice

In the Dado example, ∀i = 1, ...,6, it follows that pi =
1
6 .

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 6 · 1
6

ln6 = 1,792

Example 2: the Loosing Dice
A loosing Die: p1 = 1.00, and ∀i = 2, ...,6, pi = 0.

H[ξ ] = E[− lnp(ξ )] = ∑
xi∈Ωξ

−p(xi) lnp(xi) = 1ln1 = 0
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Entropy

Consequence

Given a distribution pi (i = 1, , ...,M) for a discrete random
variable ξ then for any other distribution qi (i = 1, , ...,M)
over the same sample space Ωξ it follows that:

H[ξ ] =−
M

∑
i

pi lnpi ≤−
M

∑
i

pi lnqi

where equality holds iff the two distribution are the same, i.e.
∀i = 1, ...,M pi = qi
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Joint-Entropy

Given two random variable ξ and η :

Joint-Entropy

the joint entropy of ξ and η is defined as:

H[ξ ,η ] =−
M

∑
i=1

L

∑
j=1

p(xi,yj) lnp(xi,yj)

= H[η ,ξ ]
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Conditional-entropy

Conditional Entropy

the conditional entropy H[ξ |η ] of ξ and η is defined as:

H[ξ |η ] = −
L

∑
j=1

p(yj)
M

∑
i=1

p(xi|yj) lnp(xi|yj) =

= −
L

∑
j=1

M

∑
i=1

p(xi,yj) lnp(xi|yj)
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Conditional and joint entropy

Conditional and Joint Entropy
The conditional and joint entropies are related just like the
conditional and joint probabilities:

H[ξ ,η ] = H[η ]+H[ξ |η ]

Conveyed Information

The information conveyed by η , denoted I[ξ |η ], is the
reduction in entropy of ξ by finding out the outcome of η . This
is defined by:

I[ξ |η ] = H[ξ ]−H[ξ |η ]
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Mutual Information

Given two random variable ξ and η :

Mutual Information

the mutual information between ξ and η is defined as:

MI[ξ ,η ] = E[ln
P(ξ ,η)

P(ξ ) ·P(η)
] =

= ∑
(x,y)∈Ω(ξ ,η)

f(ξ ,η)(x,y) ln
f(ξ ,η)(x,y)
fξ (x) · fη(y)
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Mutual Information

Mutual Information measures the amount of information about
a random variable ξ an observer receives when the outcome of
a random variable η is available.

How much information about the source output xi does an
observer gain by knowing the channel output yj?
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Mutual Information

MI and H
MI[ξ ,η ] = H[ξ ]−H[ξ |η ]

H[ξ ,η ] = H[η ,ξ ]
H[ξ ,η ] = H[η ]+H[ξ |η ], H[ξ |η ] = H[ξ ,η ]−H[η ]

Symmetry

Note that mutual information is symmetric in ξ and η , that is
MI[ξ ,η ] = MI[η ,ξ ], as

H[ξ ]−H[ξ |η ] = H[ξ ]+H[η ]−H[ξ ,η ] = H[η ]−H[η |ξ ]
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Pointwise Mutual Information

Another way to look to mutual information is about the
individual values (i.e. outcomes) ξ = xi and η = yj.

Pointwise Mutual Information

Given the two random variable ξ and η : the pointwise mutual
information between ξ = xi and η = yj is defined as:

MI[xi,yj] = f(ξ ,η)(xi,yj) ln
f(ξ ,η)(xi,yj)

fξ (xi) · fη(yj)
=P(xi,yj) ln

P(xi,yj)

P(xi) ·P(yj)
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Pointwise Mutual Information

Pointwise Mutual Information (pmi)

MI[xi,yj] = P(xi,yj) ln
P(xi,yj)

P(xi) ·P(yj)

Use of the pmi

If MI[xi,yj]>> 0, there is a strong correlation between xi and yj
If MI[xi,yj]<< 0, there is a strong negative correlation.
When MI[xi,yj]≈ 0 the two outcomes are almost independent.
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Perplexity

Perplexity

The perplexity of a random variable ξ is the exponential of its
entropy, i.e.

Perp[ξ ] = eH[ξ ]

Example
Predicting the next w of a sequence of n words wk ∈ Dict:

P(ξn = w|ξn−1 = wn−1,ξn−2 = wn−2, ...,ξ1 = w1)

What is Perp[(ξn, ...,ξ1)]?
OSS: In case of a uniform distribution P(ξn = w|...) = 1

|Dict| ...
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Cross-entropy

Cross-entropy

If we have two distributions (collections of probabilities) p(x)
and q(x) on Ωξ , then the cross entropy of p with respect to q is
given by:

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)

Minimality

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)≥− ∑
x∈Ωξ

p(x) lnp(x) ∀q

implies that the cross entropy of a distribution q w.r.t. another
distribution p is minimal when q is identical to p.
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Cross-entropy as a Norm

Cross-entropy

Hp[q] =− ∑
x∈Ωξ

p(x) lnq(x)

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]
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Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]

KL distance: properties

D[p||q]≥ 0 ∀q

D[p||q] = 0 iff q = p
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Cross-entropy and Norms

Relative Entropy (or Kullback-Leibler distance)

D[p||q] = ∑
x∈Ωξ

p(x) ln
p(x)
q(x)

= Hp[q]−H[p]

KL distance as a norm?
Unfortunately, as

D[p||q] ̸= D[q||p]

the KL distance is not a valid metric in the classical terms. It is
a measure of the dissimilarity between p and q.
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Norms, Similarity and Learning

Why ranking probability distributions is necessary?
During a learning process we need to figure out the
circumstances (i.e. the state of affairs of the world) under which
a certain concept/class/property manifest.

This make a direct reference to the probability of some
(stochastic) event. Stochastic events are used to describe
circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts
or previous classified examples, to rules, i.e. probability joint
distributions over decisions and circumstances
Learning in general means to induce the proper probability
distributions from the known examples. There are several
many ways to do it!!!
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circumstances and properties.
Moreover, learning proceeds from experience, i.e. known facts
or previous classified examples, to rules, i.e. probability joint
distributions over decisions and circumstances
Learning in general means to induce the proper probability
distributions from the known examples. There are several
many ways to do it!!!
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Why ranking probability distributions is necessary?
Consequences. In general, we need to compare different
inductive hypothesis (IH), that are different probability
distributions qi of the same decision,

In order to do it, we measure the agreement of our hypothesis
with the observations (i.e. a pool of annotated data kept aside,
the held out, to validate the different qi)
The result is an estimate of the similarity between the
probability qi induced at the i-th learning stage with the
probability p characterizing the known examples.
The KL divergence D[p||q] = Hp(q)−H(p) can be the suitable
dissimilarity function.
The probability q̂ (such that q̂ minimizes ∀iD[p||qi]) is returned.
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Norm
What makes a function a norm?

Any binary mapping m
between a set of objects D×D and the real numbes is a norm
iff:
Axioms

(Positive) m(X,Y)≥ 0 ∀X,Y ∈ D whereas
m(X,Y) = 0 → X = Y .
(Simmetry) m(X,Y) = m(Y,X) ∀X,Y ∈ D
(Triangle inequality)
m(X,Y)≤ m(X,Z)+m(Z,Y) ∀X,Y,Z ∈ D

Euclidean Norm

2

√
∑

x∈Ω(ξ )

(p(x)−q(x))2
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