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OUTLINE

 Statistical Learning Theory 
 PAC learnability

 VC dimension

 Learning Machines

 Model Optimization and Concept Class complexity

 Model Optimization via Cross-Validation

 Towards perceptrons and SVMs


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FROM STATISTICAL LEARNING THEORY TO SVMS



LEARNİNG A CLASS FROM EXAMPLES

 Class C of a “family car”

 Prediction: Is car x a “family car”?

 Knowledge extraction: What do people expect from a family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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CLASS C
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In general we do not know C(x).
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HYPOTHESİS CLASS H
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Empirical error:
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S, G, AND THE VERSİON SPACE
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most specific hypothesis, S

most general hypothesis, G

Every hH, between S and G is consistent
and make up the version space

(Mitchell, 1997)



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, 
will probably be approximately correct?

 We want to be confident (above a level) that 

 … the error probability is bounded by some value

 A  concept  class  C is  called  PAC-learnable if  there  exists  a  PAC-learning  algorithm  such that,  
for  any ε>0  and δ>0,  there  exists  a fixed  sample  size  such  that,  for  any  concept  c C and  
for  any  probability  distribution  on  X,  the  learning  algorithm  produces  a  probably-
approximately-correct hypothesis h

 a  (PAC) probably-approximately-correct hypothesis h is one that  has error at most  ε with  
probability  at least   1-δ.
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PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 In PAC learning, given a class C and examples drawn from some unknown but fixed 
distribution p(x), we want to find the number of examples N, such that with probability at 
least 1-δ, h has error at most ε ? (Blumer et al., 1989)

P( CDh   )  1-

 where CDh is (area of the) “the region of difference between C and h”,  and δ>0, ε>0.
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PAC LEARNİNG How many training examples m should we 
have, such that with probability at least 1 - δ, h

has error at most ε ? (Blumer et al., 1989)

11

• Let prob. of a +ex. in each strip be at most ε/4

• Pr that a random ex. misses a strip: 1- ε/4

• Pr that m random instances miss a strip: 
(1 - ε/4)m

• Pr that m random instances instances miss 4 strips: 
4(1 - ε/4)m

• We want 1-4(1 - ε/4)m ≥ 1-δ or 4(1 - ε/4)m ≤ δ 

• Using 1-x ≤ e-x an even stronger condition is: 
[(1-ε/4) ≤ exp(-ε/4) so (1-ε/4) m≤exp(-ε/4) m = exp(-εm/4)]    

4e –εm/4≤ δ OR

• Divide by 4, take ln... and show that m ≥ (4/ε)ln(4/δ) 



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

How many training examples m should we have, such that with probability at least 1 - δ, our
hypothesis h has error at most ε ? (Blumer et al., 1989)

m ≥ (4/ε)ln(4/δ)

 m increases slowly with 1/ε and 1/δ

 Say ε=1% with confidence 95%, pick m  1752

 Say ε=10% with confidence 95%, pick m  175
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MODEL COMPLEXİTY VS. NOISE

 Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (lower variance – Occam’s razor)
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MULTIPLE CLASSES, Cİ İ=1,...,K
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VC-DIMENSION

 Are the finite samples that are sufficient to learn a concept even if it insists on a 
infinte domain



VC (VAPNİK-CHERVONENKİS) DİMENSİON

 N points can be labeled in 2N ways as +/–

 H shatters N if there exists a set of N points such that hH is consistent with all of these possible labels: 

 Denoted as: VC(H ) = N

 Measures the capacity of H

 Any learning problem definable by N examples can be learned with no error by a hypothesis drawn 
from H
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What is the VC dimension of axis-aligned rectangles?



FORMAL DEFİNİTİON

 DEFINITION. The VC dimension of a set of functions H={h(x,)} is d if and only if
there exists a set of points {xi}, with i=1….d, such that these points can be labeled
in all the possible 2d configurations, and for each labeling, a member of the set H
can be found which correctly assigns those labels, but no set {xi}, with i=1….q, 
where q>d, can be found satisfying this property. 
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VC (VAPNİK-CHERVONENKİS) DİMENSİON

 H shatters N if there 

exists N points and hH such that 

h is consistent for any labelings 

of those N points.

 VC(axis aligned rectangles) = 4
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VC (VAPNİK-CHERVONENKİS) DİMENSİON

 What does this say about using rectangles as our hypothesis class?

 VC dimension is pessimistic: in general we do not need to worry about all possible 
labelings

 It is important to remember that one can choose the arrangement of points in the space, 
but then the hypothesis must be consistent with all possible labelings of those fixed 
points.
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EXAMPLES
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f x



yest

denotes +1

denotes -1

f(x,w) = sign(x.w)=∑ 𝑤௜𝑥௜
௡
ூୀଵ



EXAMPLES
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f x



yest

f(x,w,b) = sign(x.w+b)

denotes +1

denotes -1



SHATTERING

 Question: Can the following f shatter the following points?
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f(x,w) = sign(x.w)

 Answer: Yes. There are four possible training set types to consider:

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)



VC DIM OF LINEAR CLASSIFIERS IN M-DIMENSIONS

If input space is m-dimensional and if f is sign(w.x-b), what is the VC-
dimension?

h=m+1

 Lines in 2D can shatter 3 points

 Planes in 3D space can shatter 4 points

 ...
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EXAMPLES
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f x



yest

f(x,b) = sign(x.x – b)
denotes +1

denotes -1

rb1



Diapositiva 25
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SHATTERING

 Question: Can the following f shatter the following points?
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f(x,b) = sign(x.x-b)

Answer: Yes. Hence, the VC dimension of circles on the origin is at least 2.



MODEL SELECTİON & GENERALİZATİON

 Learning is an ill-posed problem; data is not sufficient to find a unique solution

 The need for inductive bias, assumptions about H

 Generalization: How well a model performs on new data

 Different machines have different amounts of “power”.

Tradeoff between:
 More power: Can model more complex classifiers but might overfit.

 Less power: Not going to overfit, but restricted in what it can model.

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f
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TRIPLE TRADE-OFF

 There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of H, c(H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As N,E

 As c(H) ,first Eand then E
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WHY CARE ABOUT COMPLEXITY?

 A quantitative measure of complexity is useful to determine the relationship between the training 
error (that we can observe during training) and the test error (which we want to minimize) 
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COMPLEXİTY

 “Complexity” is a measure of a family of classifiers, not of any specific (fixed) classifier

 There are many possible measures for complexity

 degrees of freedom (e.g. number of parameters in polinomials)

 description length

 Vapnik-Chervonenkis (VC) dimension

 etc.
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EXPECTED AND EMPİRİCAL ERROR
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LEARNING AND THE VC DIMENSION

LECTURE NOTES FOR E ALPAYDIN 2004 INTRODUCTİON TO MACHİNE LEARNİNG © THE 
MIT PRESS (V1.1)

32



MODEL SELECTION
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VC DIMENSION AND STRUCTURAL RISK MINIMIZATION
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STRUCTURAL RISK MINIMIZATION
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SUMMARY: A LEARNING MACHINE

 A learning machine f takes an input x and transforms it, 
somehow using factors (as weights) , into a predicted 
output yest = +/- 1
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f x



yest

 is some vector of 
adjustable parameters



VC-DIMENSION AS MEASURE OF COMPLEXİTY
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i fi TRAINERR VC-Conf Probable upper bound 
on TESTERR

Choice

1 f1

2 f2

3 f3 

4 f4

5 f5

6 f6

TESTERR(𝛼⃗) ≤ TRAINERR(𝛼⃗) +
𝑑௏஼(log( 2𝑛/𝑑௏஼) + 1) − log( 1/(4𝛿))

𝑛



USING VC-DIMENSIONALITY

 People have worked hard to find VC-dimension for ...
 Decision Trees

 Perceptrons

 Neural Nets

 Decision Lists

 Support Vector Machines

 …and many many more

 All with the goals of
 Understanding which learning machines are more or less powerful under which circumstances

 Using Structural Risk Minimization for to choose the best learning machine



ALTERNATIVES TO VC-DIM-BASED MODEL SELECTION

Cross Validation

 To estimate generalization error, we need data unseen during 
training. We split the data as:
 Training set (50%) M1 M2 train(M2) < train(M1)

 Validation set (25%) test(M1, Vs) = P1     test(M2, VS) = P2  P2>P1

 Test (publication) set (25%)

 Resampling when there is few data

 N-fold cross-validation: N-2 fold for training, 1 fold as validation set and 1 
fold for testing (N*(N-1) tests) 
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ALTERNATIVES TO VC-DIM-BASED MODEL SELECTION

 What could we do instead of the scheme below?
Cross-validation
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i fi TRAINERR 10-FOLD-CV-ERR Choice

1 f1

2 f2

3 f3 
4 f4

5 f5

6 f6



EXTRA COMMENTS

 Further Readings:

 An excellent tutorial on VC-dimension and Support Vector Machines: C.J.C. Burges. A tutorial on 
support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 
2(2):955-974, 1998.

M. J. Kearns, U. V. Vazirani, Introduction to Computational Learning Theory, MIT Press, 1994 (Chapter 1).
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WHAT YOU SHOULD KNOW

 Definition of PAC learning

 The definition of a learning machine: f(x,) 

 The definition of Shattering

 Be able to work through simple examples of shattering

 The definition of VC-dimension

 Be able to work through simple examples of VC-dimension

 Structural Risk Minimization for model selection

 Awareness of other model selection methods
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