STRING KERNEL

Given two strings, the number of matches between their substrings is computed

E.g. Bank and Rank

= B, a, n, k, Ba, Ban, Bank, an, ank, nk

= R, a,n, k Ra, Ran, Rank, an, ank, nk

String kernel over sentences and texts

Huge space but there are efficient algorithms

= Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). " Text classification
using string kernels". Journal of Machine Learning Research: 419-444.
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STRING KERNEL

= A function that give two strings s and t is able to compute a real number k(s,t) such that

= two vectors exist § and ¢

= Sandft are unique forsandt

= (the vectors represents strings by embedding their crucial properties!!)
= kst =§xt

= We will see how vectors § and f are defined in R®, as the numer of strings of arbitrary length over
an alphabet is infinite

= |DEA: Define a space whereas each substring is a dimension
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KERNEL TRA BANK E RANK

B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

R. a. n. k. Ra. Ran. Rank. an. ank. nk. Rn. Rnk. Rk and ak are the

¥

substrings of Rank.

p(Bank)=(A , 0, A, A, A, A2, A2, M, 0, A, 0 , A2, A, A,
#(Rank)=(0 , A, A, A, A, 0,0, 0, A, 0 , A+, A, M, A\,

B, R, a, n , k, Ba, Ra, Ban, Ran, Bank, Rank, an, ank , ak ...

e Common substrings:
- a, h, K, an, ank, nk, ak

=Notice how these are the same subsequences as between
sSchrianak and Rank
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FORMALLY ...

Sottosequenza di indici ordinati e non

contigui di (1, ... |s])

T B—
L u = s[I] ,substring of s defined by I

T =| (31, ey Gju)
pu(s)= 3 ND con I(I)=iju —i+1
f:u:s[_j
=Y du(s) du®)= > 3 ND Z Al
ucH* u€X* ., s[ J u=t[J

S Y DD
- - o Ccon Y — U yn

uEX® Tiy—s [fj ._T:u=t[.ﬂ
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AN EXAMPLE OF STRING KERNEL COMPUTATION

$a(Bank) = ¢a(Rank) = Alit—it+l) = 3(2=2+1) _ )

bn(Bank) = ¢p(Rank) = A@1—irth) — A\(3=3+1) _ )

dx(Bank) = ¢x(Rank) = Ai1—ittl) — \(4—4+1) _ )

$an(Bank) = ¢an(Rank) = A2+l = \3=2+1) = )2,

= éan]{(Bank) = ﬁf}an}{(Rank) e Qs il = A%,
bk (Bank) = ¢ (Rank) = Al —i2+1l) — \(4=3+1) — )2,
bax(Bank) = dax(Rank) = Alir—i2+1) = y(4=2+1) — )3,

It follows that K (Bank, Rank) = (X, A, A, A2, A3, A2, A3)- (A, A, 0, A2, A3, 02, 09)
— 3X2 L 224 L 275,
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LEARNING UNDER KNOWLEDGE REPRESENTATION
CONSTRAINTS

LINGUISTIC KERNELS AND LANGUAGE LEARNING




TREE KERNELS

= String kernels adopt a structured approach to kernel estimation and are very
useful in NLP and Web Mining tasks

= However, what has been defined over sequences can be profitably exploited also
in the treatment of more complex structures

= Trees whose parent relationship determine subsequences in terms of
= Multiple paths from the root to the leaves
® QOrdered sets of children (i.e. sequences of immediately dominated nodes) of every node in the tree

= Graphs, whose structure can be captured by several trees (subgraphs) and thus characterized
by multiple subsequences
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TREE KERNELS

= Applications are related to text processing tasks such as

® Syntactic parsing, when SVM classification is useful to select the best parse
tree among multiple legal grammatical interpretations

= Question Classification, where SVM classification is applied to the recognition
of the target of a question (e.g. a person such as in “Who is the inventor of the
light?” vs. a place as in “Where is Taji Mahal?”

or to pattern recognition (e.g. in bioinformatics the classification of
protein structures)
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TREE KERNELS

Modeling syntax in Natural Language learning task is complex, e.g.
®=  Question Classification

= Semantic role relations within predicate argument structures 51
. |
= Dialogue structures SBARQ
3 . T N
= Sense Hierarchies WH|NP SIQ |
WP VP 7
| ™
who::w VE‘iD N‘P
kill::v NNP
gandhi::n

Tree kernels are natural way to exploit syntactic information from sentence parse trees
= useful to engineer novel and complex features.



TREE STRUCTURES AND NATURAL LANGUAGE

= PARSING: Breaking down a text into its component parts of speech (according to a formal
grammar) with an explanation of the form, function, and syntactic relationship of each part

VP
= INPUT: gives a talk / |
A%

NP

AN

= Qutput: a costituency tree gives D

|
a talk

Chomsky, N. 1957. Syntactic Structures. The Hague/Paris: Mouton.




A DIGRESSION: NL SYNTAX AND SEMANTICS

Lesson 1: March 1°, 2023




SYNTANCTIC PARSING AND CFG

= Formal Definition: a context free grammar (CFG) is a 4-tuple
G=(N, 2, R, S)

where:
= N is a set of non-terminal symbols

® ' is a set of terminal symbols

= R is a set of production rules of the form X — Y,Y, - Y
for n=20, XEN, Y.€(N U %)

= S € N isa distinguished start symbol

n
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SYNTANCTIC PARSING AND CFG (2)

= N={S,NP,VP,PP,DT, Vi, Vt, NN, IN)

= S=5, 2={sleeps, saw, gives, man, woman, telescope, talk, with, in}

S > NP VP Vi - sleeps
ST— = VP—NP Vvt -  saw Ve
. Note
V
. t - gives / I S
b= v VP=verb phrase
R= |vPp > vt NP NN - man NP NP=noun phrase
[PERES NP NN - woman | / \ PP=prepositional phr.
. DT=determiner
e 1205 s " " Vi=intransitive verb
NP - DT NN | | Vt=transitive verb
NP - NP PP DT - the a talk NN=noun
DT > a IN=preposition
A= N NP
IN - with
IN & in
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SYNTAX: PHRASE STRUCTURE GRAMMARS (cHomsky, 75)

“The firm holds some stakes”
Symbol Vocabulary: Vn={S,NP,VP,Det,N}, Axiom:S
Productions: {S—NP VP, VP—V NP, NP—Det N}

A Derivation is the repreesentation of the cascade of rules used to rewrite S, e.g. :

= S>NPVP>DetNVP>The NVP > The firm VP > The firm V NP > The firm holds NP > The firm holds
Det N > The firm holds some N > The firm holds some stakes

The,, firm4 holds,, some; stakes,



CONSTITUENT-BASED PARSING (WITH MARKED HEADS)

= Marked Heads denote semantic elements of the sentence and facilitate meaning extraction

S
/\
/Ni’ /VP\
N 1 /V_P\ K
Mortgage N V Adv P NP

i

approvals fell sharply in June




DIFFERENT GRAMMATICAL THEORIES CORRESPOND TO DIFFERENT TREES:
CONSTITUENCY-RELATIONS VS. DEPENDENCY RELATIONS

S
/\
NP, VP, v
D N V, VP; N \Y%
et /\ T | : :
DA N, = b ]i D A
This tree is illustfating the constituency relation. This tree |s illusérating the dependency relation.

Constituency relation (PSG) Dependency relation



MARKING GRAMMATICAL NODES FIRST: GRCTs

ROOT
- D S
SBJ] VBZ PRD P

I I — T
WP be::v NMOD NN NMOD I
what::w DT width::n IN PMOD 8
| | Pl s S0
the::d of::i NMOD NMOD NN

| I |
DT NN field::n
| I
a::d football::n

Grammatical Relation Centered Tree
(GRCT)



GRAMMARS & AMBIGUITY
| ate some dessert with a fork.
S
. S
NP VP s T
| NP VP
Y NP |
| S Y, NP PP
ate NP PP | T~ |

| | ate some dessert with a fork




A TRUTH-CONDITIONAL PROGRAM FOR NL SEMANTICS

= To define a representation for the semantics of sentences in natural languages correspond to producing:

= Quantified Logical Forms

= Relational Forms (ground, data record in DataBases)

= (Document) Bag-of-Word Vectors (in the style of Rocchio-like models)
= Two TASKS

= |nterpretation: To determine a procedure for (automatically) generating such a (selected) representation

Decision-making from textual data: To (formally) support the different inferences based on the representation that are harmonic with
the ones caried out by speakers and hearers of the language

Automatic Theorem Proving (NL Inference, Paraphrasing, Entity Extraction, Summarization)

= Automatic compilation of SQL queries from natural language questions (Text-to-SQL task)

= (Cl fanno addestrare i classificatori per categorizzare i testi



A TRUTH CONDITIONAL SEMANTICS

S Wa / g :
=y [/ iR
== Sam saw Kim
NP VP
= [ X : saw(x,K)}
3 { <xy>:saw(x.y)} k
saw Kim

{ <x,y>:saw(x,y)} K



Saws(s K) COMPOSITIONAL PROCESSING
Ax.saw(x,k)(s) THROUGH LAMBDA ESPRESSIONS
NP/\VPK Sam watched Kim
Ax.saw(x,k) Sam was screeing Kim
S Ay. Ax.saw(x,y) (k)
Kim was seen by Sam
/\ John’s son watched Kim
5 Y NP £ Jane’s daugh
S /Iy. ﬂx.saw(x,y) k am saw Jane’s daughter

saw (s, k)

?-saw (X, k) .

saw Kim X=s
Ay. Ax.saw(x,y) K



NLP: THE STANDARD PROCESSING CHAIN (E.c. spAcY)

IIlgtex’[

Lexical Analysis

Tokens+
features

—

Syntactic Analysis

Parse
tree

—

Semantic Analysis

Logic
Form

Pragmatics/ Application

Interpretation/Plan

World
Model

Task
Model



INTERPRETATION TASKS BEYOND PARSING:
NAMED ENTITY RECOGNITION & COREFERENCE

Named Entity Recognition:

[Person] [ORDINAL |  (Eocation)
1 President Xi J|npmg of Chma on his first state visit to the United States, showed off his familiarity with
[Misc] (Date] [Timi

American history and pop culture on Tuesday nlght

Coreference:

M‘? R e R Cm?f"“"""“"""‘"fﬁl
1 President Xi Jinping of Chma on his first state visit ta the United States showed off his familiarity with American
history and pop culture on Tuesday night.

Basic Dependencies:

nsubj:

nmod
nmnd uuss CASE
cHpend d’ /I Lo} ig‘;n ound
[ﬂ—ﬂﬂf/_ Compoun el Ilecase e LJIIN 1 tﬂmpnun nor@r/ler p _\_@
1| President Xi Jinping of Chma on his first state wsﬁ to the United States,
=—nsubj
ﬁmadtmnc
od
% nmaod
dobj %§ —c
__\_ITBT) campnund:prtﬁ.l..mﬂmcdpn% 0 Jﬂ }-amod- _:C..TCC Imp-cmm;vm.mﬂ\ lINr.,-—:ase
showed off his familiarity wnh American hlstory and pop culture on

nmod:tmaod
—nmod
—case

Tuesday nlght




... GOING BACK TO LEARNING APPROACHES

KERNEL MACHINES FOR INTERPRETATION AND INFERENCE TASKS OVER LINGUISTIC DATA

Lesson 1: March 1°, 2023



THE COLLINS AND DUFFY’S TREE KERNEL

VP
v NP

AN

gives D

a talk

Given a costituency tree



THE OVERALL FRAGMENT SET

= We can explode the syntactic tree in all syntactically motivated fragments

® For each node the production rules must be respected, i.e. we can remove “O or

all children at a time”

" |tis also known as Syntactic Tree Kernel

. Lo bdd 2l NP NP
9 | /| /| D N D ND N
'iv NP v NP VvV NP | | | |
BN . a ak  a talk
ves D ND N D N !
aives ] ‘ | | i - 5 I\l.
v = M I D‘:‘  1\' l talk
r . 5 gives : 7
VP VP VP VP '
V NPy NPV NPV
RN T ™ \| NP V NP vy \[_P
l|) N D T\l g’i\'eS D N Q\rcs D N ‘ - | \
| £IvVEsS gves D N
a
ik & talk




EXPLICIT FEATURE SPACE

= Can we build a feature vector accounting on all this information?

¥ =(0, ..,1,..,0,..,1, ..,0,..,1,..,0 .,1,..,0,..,1, ..,0,..,1,..,0)I
/ | / ’ / I D/ & B S D/ \N

V NP V NP | | | |
/o \ \

X, * X, counts the number of common substructures




IMPLICIT REPRESENTATION

Can we estimate the tree kernel in an implicit space?

* We can implicitly count the number of common subtrees

* We prevent to define feature vectors that consider ALL POSSIBLE
SUBTREES, i.e. thousand of features

* The final model will not contain feature vectors, but TREES

%%, = (1) ¢(Ty) = K(T,.T,) =

= 2 ;A(rzl s )
n, 1 H: 2

[Collins and Duffy, ACL 2002] evaluate A in O(n?2):

A(n,,n,) =0, if the productions are different else
A(n,,n,) =1, if pre-terminals else

nc(n

)
A(n,n,) = H(l + A(ch(n,, j),ch(n,,j)))




WEIGHTING IN GRAMMATICAL TREE KERNELS

In the kernel estimation different subtrees are taken in account

different times

* Es:in the following trees, one fragment will contribute twice to the
overall kernel

/ VP
|
\’/ NP

gives [|) | \N ‘ [‘) I\‘]




WEIGHTING

A decay factor can be used, so the contribution of the
embedded trees is reduced.

 The normalization of Tree Kernel estimation corresponds to
the normalization of the explicit feature vector

Decay factor

A(n,,n,) = A, if pre-terminals else

ne(n;

)
A(ny,ny) = A ]](1 + A(ch(ny, j),ch(n,, ))))
K(T,.T,)

Normalization K'(T,,T,) =
VKT, T)xK(T,,T,)




LEARNING UNDER KNOWLEDGE REPRESENTATION
CONSTRAINTS

NATURE AND TYPES OF TREE KERNELS: C&D KERNEL, PARTIAL TREE KERNEL, COMPOSITIONALITY




PARTIAL TREE (moscHITTI, 2006)

A Syntactic Tree satisfies completely a grammar rule, i.e. the constraint
is “remove O or all children at a time”.

Partial Tree Kernel (PTK) relaxes such constraint we get more general
substructures

* |t allows gaps in the production rules in the same fashion of the
sequence kernel

VP VP VP VP VP VP VP VP
e e | | .
V NP \Y NP NP NP NP NP NP NP
|/ = /\ /\ /N /] \

gives D N D N D N D ND D N

| | | | | |~ NP NP
a talk a talk a talk a a / \ /



PARTIAL TREE KERNEL
- if the node labels of ny and no are different then
A(ny, ng) = 0;

- else [(J1

)
A(nl,nz) — ].+ Z H A(C-nl[']li]acng[']?i])

By adding two decay factors we obtain:

B (1)
IUJ()\QJr Z 2\ é(J1)+d(J2) H A(Cnl[Ju:LCng[Jzi]))
i=1

J1,do,1(J1)=1(J3)




GRAMMATICALLY CENTERED TREE KERNELS

ROOT
s vz mo
WIFP bel: :VNMMOD |
whalt::w D|T widlth::n IMOD ?:I:.
th!-::d oflzzﬂ*JMMN

| | |
DT NN field:n

a:d football::n

Lesson 1: March 1°, 2023



LEXICALIZED TREE KERNELS

play::v
ffM
_a—'—'_'_'_'_'_ T ——
Instrument::n do::v Hendrix::n VB root

PN ANNA

what::w NN dobj VBZ aux NNP nsubj

WDT det

Figure 1: Lexical centered tree of the sentence “Whar instrument does Hendrix play?”

Lesson 1: March 1°, 2023



LEXICALIZED AND COMPOSITIONAL TREE KERNELS

root (play::v.*::*)

EW————H =

o e _‘_\___:‘_—_—‘_—_‘_‘—ﬁ'—-—\_._\_\___'—i_____\kx_

- — _\_‘_\_‘_‘_‘—‘——._,_\_\_\_ —
dobj{play::v.instrument::n) aux(play::v.do::v) nsubj(play::v.Hendrix::n) root VB play::v

il S Y 4 e T

det (instrument::n,what::w) dobj NN instrument::n aux VBZ do::v nsubj NNP Hendrix::n

T

det WDT what::w

Figure 2: Compositional Lexical Centered Tree (CLCT) of the sentence “What instrument does Hendrix play?”

Lesson 1: March 1°, 2023



Ag(ni,nz)=pAo(ni,n2), where ni and no
are leaves, else

ﬂ.g(n],ng):'u.ﬂ'(?l]_,'HZ}(Az + Z
I, (1 )=1(13)

SEMANTIC SMOOTHING OF PTKs

_ ~ I(T1) e =
2 d(T1)+d(I2) H ﬂg(cnl(flj),cnz(-{zj)))

i=1

Lesson 1: March 1°, 2023




TREE KERNELS ARE ... EMBEDDING TOOLS

= Semantic Tree Kernels allows generating vectors that reflect syntactic/semantic
information of sentences

= Who is the tallest man in the world?

root< *:: * who::w>

___/r———/_—’)\

cop<who::w,be::v> nsubj<who::w,man::n>

VBZ cop be:v det<man:nthe::d> amod<man:ntallest:j> prep-in<man::n,world::n> NN nsubj man:n

DT det thexd JIS amod tallest:j det<world::n,the::d> NN prep-in world:n

DT det ihed
= Which most similar sentences/trees/vectors? A .
=  Who is the richest woman in the world? : g T
= Who is the richest person in the world?
= Who is the fastest swimmer in the world? m " =
=  Who was murdered yesterday by the terrorist group? -

A 4



As(n1,n2)=pAo(ni,n2), where ni and no

are leaves, else

COMPOSITIONALITY Ao(ni,no)=po(ni,nz) (M + 3

rlfrzaf(rl)=”r2)

_ - I(I1) s 5
Ad{fl)—l—d{h) H &U(CHI(ILJ),CHQ (IQJ)})

3=1

= Tree nodes correspond to head-modifier pairs

= |ndividual contributions to the three kernels can be modeled as similarity scores
in the (implict) embedding spaces

= First (m4,h,) and (m,,h,) pairs are mapped into the space, and then the similairty
at each node is computed as a combination of the cosine similarity estimates in
the suitable subspaces (Annesi et al, CIKM 2014)

Lesson 1: March 1°, 2023



Algorithm 1 o (74, ny, lw) Compositional estimation of the lex-
ical contribution to semantic tree kernel

o, +— 0,

I*Matching between simple lexical nodes*/

if n, = (lex,::pos) and n, = (lex,::pos) then
COMPOSITIONALLY SMOOTHED o7 ¢ oLpx (N, ny)

end if

PA RT I A L TR E E K E R N E L I*Matching between identical grammatical nodes,

e.g. POS rags™/
if (n, = pos or n, = dep) and n, = n, then

root (play::v,*::*) T+ lw
7_77_)7{_7_,,_7—7———7—:""/—/‘%“3‘;';%5%-— — end if

dob i (play::v.instrument::n) aux(play::v.do::v) nsubi(play::v

T N TN T

if ngy = (dn,m; (liz)) and ny = (dp m, (liy)) then
. ! J #“Matching between compositional nodes:
det (instrument::n.what::w) dobj NN instrument::n  aux VBZ do::v.  nsubj NNP Hendrix::n r
/

both maodifiers are missing™/
e ngT o if li, = (hy::pos) and li, = (h,::pos) then
Or UCJ‘om‘p((hr)s (hy)) = JLEX('HI~ ﬂy)
end if
I*Matching between compositional nodes:
one modifier is missing™®/
if liz = (h.posy) and li, = (hy::posy, my:pos,,) then
o e 1 crcomp((hx, b)), (R my))
end if
/*Matching between compositional nodes:
the general case™/
ifli, = (h,::posp, m,::pos,,) and
li, = (hy::posp, My posy, ) then
O — Ucomp((h.x, tinr)y By my))
end if
end if
return o-

Figure 2: Compositional Lexical Centered Tree (CLCT) of the sentence “What instrument does Hendrix play?”




