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SUPPORT VECTOR MACHINES
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 Support Vector Machines (SVMs) are a machine learning paradigm 
based on the statistical learning theory [Vapnik, 1995]

 No need to remember everything, just the discriminating instances (i.e. the 
support vectors, SV)

 The classifier corresponds to the linear combination of SVs
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Only the dot product is required
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LINEAR CLASSIFIERS AND SEPARABILITY
 In a R2 space, 3 point can always be separable by a linear classifier

 but 4 points cannot always be shattered [Vapnik and Chervonenkis(1971)]

 One solution could be a more complex classifier

 Risk of over-fitting

?



LINEAR CLASSIFIERS AND SEPARABILITY (2)

 … but things change when projecting instances in a higher 
dimension feature space through a function 

 IDEA: It is better to have a more complex feature space instead a 
more complex function (i.e. learning algorithm)



THE KERNEL FUNCTION

 In perceptrons and SVMs the learning algorithm only depends on the scalar product over 
pairs of example instance vectors

 Basically only the Gram-matrix is involved. In general, we call kernel the following function:

 

 The kernel corresponds to a scalar product over the transformed of initial objects x and z

 If the mapping  corresponds to the identity then the kernel is equal to the standard scalar 
product.

 Notice that the training in most learning machines (such as the perceptron) makes use of 
instances only through the kernel
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FIRST ADVANTAGE: 
MAKING INSTANCES LINEARLY SEPARABLE
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Input space Implicit kernel space



 Two masses m1 and m2 , one is constrained

 A force fa is applied to the mass m1

 Instead of applying an analyitical law we want to experiment 

 The Features of individual experiments are masses  m1, m2 and the appropriate orce  fa

 It is clear that the Newton law of gravity is involved:

 The task corresponds to determine if    f(m1, m2, r) < fa

AN EXAMPLE: A MAPPING FUNCTION
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AN EXAMPLE: A MAPPING FUNCTION (2)
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This  law cannot be expressed linearly. A change of space:

(𝑓௔, 𝑚ଵ, 𝑚ଶ, 𝑟) → (𝑘, 𝑥, 𝑦, 𝑧) = (ln 𝑓௔ , ln 𝑚ଵ , ln 𝑚ଶ , ln 𝑟)

ln 𝑓 (𝑚ଵ, 𝑚ଶ, 𝑟) = ln 𝐶 + ln 𝑚ଵ + ln 𝑚ଶ − 2 ln 𝑟 = 𝑐 + 𝑥 + 𝑦 − 2𝑧

(1,1,-2,-1) (ln m1,ln m2,ln r, ln fa)+ ln C = 0, 

We can decide with no error if masses             get closer or not

holds as:

ln 𝑓௔ − ln 𝑚ଵ − ln 𝑚ଶ + 2 ln 𝑟 − ln 𝐶 = 0

The following hyperplane is the requested function h():

𝑥⃗ = 𝑥ଵ, … , 𝑥௡ →  𝑥⃗) = (ଵ 𝑥⃗ , … ,௞ (𝑥⃗)

21,mm



FEATURE SPACES AND KERNELS
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• Feature Space
• The input space is mapped into a new space F with 

scalar product (called feature space) through a (non 
linear) trasformation 

• The kernel function 
• The evaluation require the computation of the scalar 

product over the trasformed vectors          but not the 
feature vectors themselves 

• The scalar product is computed by a specialized 
function called kernel
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CLASSIFICATION FUNCTION: THE DUAL FORM

On the right form, instances only appear in the scalar product

The ony thing that is needed is the Gram matrix, 

i.e. the explicit computation of the scalar product over any pair 
of training instances 
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ℎ 𝑥 = 𝑠𝑔𝑛  𝑤 ȉ 𝑥 + 𝑏 = 𝑠𝑔𝑛(෍ 𝛼௝𝑦௝𝑥௝ ȉ 𝑥⃗ + 𝑏)
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A KERNELIZED PERCEPTRON

We can rewrite the decision function of a perceptron by taking into account a 
kernel:

… and during training the on-line adjustment steps become:
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KERNELS IN SUPPORT VECTOR MACHINES 

 In Soft Margin SVMs we need to maximize :

• By using kernel functions we rewrite the problem as:



WHAT MAKES A FUNCTION A KERNEL FUNCTION?

Only such type of functions support implicit mappings such as

𝑥⃗ = 𝑥ଵ, … , 𝑥௡ ∈ 𝑅௡  →    𝑥⃗) = (ଵ 𝑥⃗ , … ,௠ (𝑥⃗) ∈ 𝑅௠



WHAT MAKES A FUNCTION A KERNEL FUNCTION? (2)
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WHAT MAKES A FUNCTION A KERNEL FUNCTION? (3)

 IDEA: If the Gram matrix is positive semi-definite then the mapping , such that F is 
an inner-product space whose scalar product corresponds to the kernel k(.,.), exists

 In F the separability should be easier
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KERNEL FUNCTIONS: OTHER EXAMPLES

An example of non linear classification

 ଵ ଵ
ଶ

ଶଵ ଶ
ଶ

଴ (ellipsis in ଶ)

 For example circles (of radius r)

 𝑔 𝑥⃗ = 𝑥ଵ
ଶ + 𝑥ଶ

ଶ −  𝑟ଶ

 Can it be made linear in some space?

Lesson 1: March 1°, 2023



LINEAR CLASSIFICATION IN THE KERNEL SPACE

 Let try to rewrite the definintion for g()

 ଵ ଵ
ଶ

ଶ ଶ
ଶ

଴= ଵ ଵ ଶ ଶ ଴

= ଵ ଵ ଶ ଶ ଴

( ଵ ଶ ଵ
ଶ

ଶ
ଶ )

 G is linear in the -transformed space!

Lesson 1: March 1°, 2023



FEATURE SPACES AND KERNELS

 Another example of Kernel

 The Polynomial kernel

 If   d=2 and 
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POLYNOMIAL KERNEL 
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https://www.youtube.com/watch?v=3liCbRZPrZA



POLYNOMIAL KERNEL (N DIMENSIONS)
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GENERAL POLYNOMIAL KERNEL (N DIMENSIONS)
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POLYNOMIAL KERNEL AND 
THE CONJUNCTION OF FEATURES 

• The initial vectors can be mapped into a higher dimensional space 
(c=1)

• More expressive, as                encodes original feature pairs, e.g. 

stock+market vs. downtown+market

are contributing (when occurring) togheter

• We can smartly compute the scalar product as
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THE ARCHITECTURE OF AN SVM
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• It is a non linear classifier (based on a kernel)

• Decision function:

𝑓(𝑥)    

= sgn( ෍ 𝑣௜(𝜑(𝑥) ⋅ 𝜑(𝑥௜)) + 𝑏

௟

௜ୀଵ

)

   = sgn( ෍ 𝑣௜𝑘(𝑥, 𝑥௜) + 𝑏

௟

௜ୀଵ

)

𝜑(𝑥௜) 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝑠 𝑒𝑣𝑒𝑟𝑦

  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑥௜

𝑣௜ = 𝛼௜𝑦௜

𝑣௜ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
  𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 

The mapping function is never computed, 
but is implict in the kernel estimation



OTHER EXAMPLES OF KERNEL FUNCTIONS 

 Linear: 

 Polynomial (degree p): 



 Gaussian (radial-basis function network):

 Perceptron (two stages): 
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KERNEL COMBINATION AND NORMALIZATION

 Kernels can be easily combined so that the evidences captured by several kernel 
functions can contribute to the learning algorithm

 Linear operations on kernel functions preserve the kernel properties

 The sum of kernels is a valid kernel

 The product of kernels is a valid kernel

 We can also normalize the implicit space operating directly only the kernel 
function 



STRING KERNEL

 Given two strings, the number of matches between their substrings is computed

 E.g. Bank and Rank

 B, a, n, k, Ba, Ban, Bank, an, ank, nk

 R, a , n , k, Ra, Ran, Rank, an, ank, nk

 String kernel over sentences and texts

 Huge space but there are efficient algorithms

 Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; Cristianini, Nello; Watkins, Chris (2002). "Text classification 
using string kernels". Journal of Machine Learning Research: 419–444.
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STRING KERNEL

 A function that give two strings s and t is able to compute a real number k(s,t) such that 

 two vectors exist  𝑠 and   𝑡

 𝑠 and 𝑡 are unique for s and t

 (the vectors represents strings by embedding their crucial properties!!)

 k(s,t) = 𝑠 × 𝑡

 We will see how vectors 𝑠 and 𝑡 are defined in ℝஶ, as the numer of strings of arbitrary length over 
an alphabet is infinite

 IDEA: Define a space whereas each substring is a dimension 
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KERNEL TRA BANK E RANK
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•Common substrings:
– a, n, k, an, ank, nk, ak

Notice how these are the same subsequences as between 
Schrianak and Rank

B , R, a, n , k, Ba, Ra, Ban, Ran, Bank, Rank, an, ank , ak ...

ϕ(Bank)= ( λ ,  0,   λ ,  λ ,  λ ,  λ2 ,   λ2,   λ3   ,   0   ,    λ4     ,    0     ,    λ2 ,    λ3  , λ3  , ...

ϕ(Rank)= ( 0  ,  λ,   λ ,  λ ,  λ ,  0   ,   0 ,   0   ,    λ3  ,    0     ,    λ4 ,    λ2 ,    λ3  ,   λ3  ,  …





FORMALLY …
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,  con 1

,  con

, substring of s defined by I

Sottosequenza di indici ordinati e non 
contigui di (1, … |s|)



AN EXAMPLE OF STRING KERNEL COMPUTATION
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