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An hyperplane has equation :

is the vector of the instance to be classified
is the hyperplane gradient

Classification function: 

LINEAR CLASSIFIERS (1)
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LINEAR CLASSIFIERS (2)

 Computationally simple.

 Basic idea: select an hypothesis that makes no mistake over training-set.

 The separating function is equivalent to a neural net with just one neuron 
(perceptron)



PERCEPTRON
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WHICH HYPERPLANE?



NOTATION

 The functional margin of an example

with respect to an hyperplane is:

 The distribution of functional margins of an hyperplane with respect to a 
training set S is the distribution of margins of the examples in S.

 The functional margin of an hyperplane with respect to S is the minimum 
margin of the distribution
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GEOMETRIC MARGIN



INNER PRODUCT AND COSINE DISTANCE

 From

 It follows that:

 Norm of      times      cosine     , i.e. the projection of        onto 
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NOTATIONS (2)

 By normalizing the hyperplan equation, i.e.

 we get the geometrical margin

 The geometrical margin corresponds to the distance of points in S from the hyperplane.

 For example in 2
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Geometrical margin                         Training set margin
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GEOMETRIC MARGIN VS.  DATA POINTS IN THE TRAINING SET 



NOTATIONS (3)

 The margin of the training set S is the maximal geometric margin among every 
hyperplane.

 The hyperplane that corresponds to this (maximal) margin is called maximal 
margin hyperplane



MAXIMAL MARGIN VS OTHER MARGINS



PERCEPTRON: ON-LINE ALGORITHM

𝑤଴ ← 0; 𝑏଴ ← 0; 𝑘 ← 0; 𝑅 ← maxଵஸ௜ஸ௟ | |𝑥⃗௜||
RE P E A T

       FOR i =  1 TO ℓ
         IF 𝑦௜(𝑤௞ ⋅ 𝑥⃗௜ + 𝑏௞) ≤ 0 T H E N

                  𝑤௞ାଵ = 𝑤௞ + 𝜂𝑦௜𝑥⃗௜

                  𝑏௞ାଵ = 𝑏௞ + 𝜂𝑦௜𝑅ଶ

                 k = k + 1

          ENDIF

      ENDFOR

UNTIL no error is found
RETURN k,(𝑤௞, 𝑏௞) 

Classification Error

adjustments



THE MECHANICS OF PERCEPTRON:  ON-LINE LEARNING



PERCEPTRON: THE MANAGEMENT OF AN INDIVIDUAL INSTANCE X



ADJUSTING THE (HYPER)PLANE DIRECTIONS



ADJUSTING THE DISTANCE FROM THE ORIGINS



CONSEQUENCES

 The Novikoff theorem states that whatever is the length of the geometrical
margin, if data instances are linearly separable, then the perceptron is able
to find the separating hyperplane in a finite number of steps.

 This number is inversely proportional to the square of the margin.

 This bound is invariant to the scale of individual patterns.

 The learning rate is not critical but only affects the rate of convergence.



 The decision function of linear classifiers can be written as follows:

as well the adjustment function

 The learning rate     impacts only in the re-scaling of the hyperplanes, and does not influence the algorithm    
(         )

 Training data only appear in the scalar products!!

1. 


ℎ(𝑥) = sgn( 𝑤 ⋅ 𝑥⃗ + 𝑏) = sgn( ෍ 𝛼௝

௝ୀଵ...௠

𝑦௝𝑥⃗௝ ⋅ 𝑥⃗ + 𝑏) = sgn( ( ෍ 𝛼௝

௜ୀଵ...௠

𝑦௝𝑥⃗௝ ⋅ 𝑥⃗) + 𝑏)

if  𝑦௜( ෍ 𝛼௝

௝ୀଵ...௠

𝑦௝𝑥⃗௝ ⋅ 𝑥⃗௜ + 𝑏) ≤ 0    then  𝛼௜ = 𝛼௜ + 𝜂

DUALITY



FIRST PROPERTY OF SVMS

 DUALITY is the first property of Support Vector Machines

 The SVMs are learning machines of the kind:

 It must be noted that (input, i.e. training & testing instances) 
data only appear in the scalar product

 The matrix                               is called Gram matrix of the 
incoming distribution 
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LIMITATIONS OF LINEAR CLASSIFIERS

 Problems in dealing with non linearly separale data 

 Treatment of Noisy Data

 Data must be in real-value vector formalism, i.e. a underlying metric space topology is required



SOLUTIONS

 Artificial Neural Networks (ANN) approach: augment the number of neurons, and 
organize them into layers  multilayer neural neworks  Learning through the Back-
propagation algorithm (Rumelhart & McLelland, 91).

 SVMs approach: Extend the representation by exploiting kernel functions (i.e. non linear 
often task dependent functions described by the Gram matrix).
 In this way the learning algorithms are decoupled from the application domain, that can be coded 

esclusively through task-specific kernel functions.
 The feature modeling does not necessarily have to produce real-valued vectors but can be derived from 

intrinsic properties of the training objects

 Complex data structures, e.g. sequences, trees, graphs or PCA-like decompositions (e.g. LSA), can be 
managed by individual kernels



WHICH HYPERPLANE?



MAXIMUM MARGIN HYPERPLANES

Var1

Var2
Margin

Margin

IDEA: Select the 
hyperplane that 
maximizes the margin



SUPPORT VECTORS
Var1

Var2

Margin

Support vectors



HOW TO GET THE MAXIMUM MARGIN?
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SCALING THE HYPERPLANE …
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THE OPTIMIZATION PROBLEM

 The optimal hyperplane satisfies:

 Minimize

 under:

 The dual problem is simpler
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DEFINITION OF THE LAGRANGIAN
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needed in the primal equation



DUAL OPTIMIZATION PROBLEM

Notice that the multipliers are not used in the dual optimization problem as no 
equality constrant is imposed in the primal form



GRAPHICALLY:

 Two examples of constrained optmization (with equalities) 
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TRANSFORMING INTO THE DUAL

 The Lagrangian corresponding to our problem becomes:

 In order to solve the dual problem we compute

 and then imposing derivatives to 0,  wrt w




TRANSFORMING INTO THE DUAL (CONT.)

 Imposing derivatives = 0 wrt

 and wrt b



w
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TRANSFORMING INTO THE DUAL (CONT.)

 … by substituting into the 
objective function



DUAL OPTIMIZATION PROBLEM

• The formulation depends on the set of variables  and not from w and  b

• It has a simpler form

• It makes explicit the individual contributions (i) of (a selected set of) examples (xi)



KHUN-TUCKER THEOREM 

 Necessary (and sufficent) conditions for the existence of the optimal solution are the following:

Karush-Kuhn-Tucker constraint



SOME CONSEQUENCES

 Lagrange constraints:

 Karush-Kuhn-Tucker constraints

 The support vector are     having not null , i.e. such that

 They lie on the frontier

 b is derived through the following formula
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SUPPORT VECTORS
Var1

Var2

Margin

Support Vectors



NON LINEARLY SEPARABLE TRAINING 
DATA
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function is penalized

i



SOFT MARGIN SVMS
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New constraints:

Objective function:

C is the trade-off
between 
margin and errors
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CONVERTING IN THE DUAL FORM

 deriving wrt and


,w b



PARTIAL DERIVATIVES



SUBSTITUTION IN THE OBJECTIVE FUNCTION



 of Kronecker ij



DUAL OPTIMIZATION PROBLEM (THE FINAL FORM)



SOFT MARGIN SUPPORT VECTOR MACHINES

 The algorithm tries to keep i =0 and then maximizes the margin.

 The algorithm minimizes the sums of distances from the hyperplane and 
not the number of errors (as it corresponds to an NP-complete problem)

 If C, the solution tends to conform to the hard margin solution

 ATT.!!!: if C = 0 then =0. Infact it is always possible to satisfy:

 If C grows, it tends to limit the number of tolerated errors. Infinite 
settings for C provide the number of errors to be 0, exactly as in the 
hard-margin formulation.
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ROBUSTNESS: SOFT VS HARD  MARGIN SVMS
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SOFT VS HARD MARGIN SVMS

 A Soft-Margin SVM has always a solution

 A Soft-Margin SVM is more robust wrt odd training examples

 Insufficient Representation (e.g. Limited Vocabularies)

 High ambiguity of (linguistic) features

 An Hard-Margin SVM requires no parameter


