

Lesson 1: March 1°, 2023

LINEAR CLASSIFIERS (1)

An hyperplane has equation :

 $f(\vec{x}) = \vec{x} \cdot \vec{w} + b, \quad \vec{x}, \vec{w} \in \Re^n, \ b \in \Re$

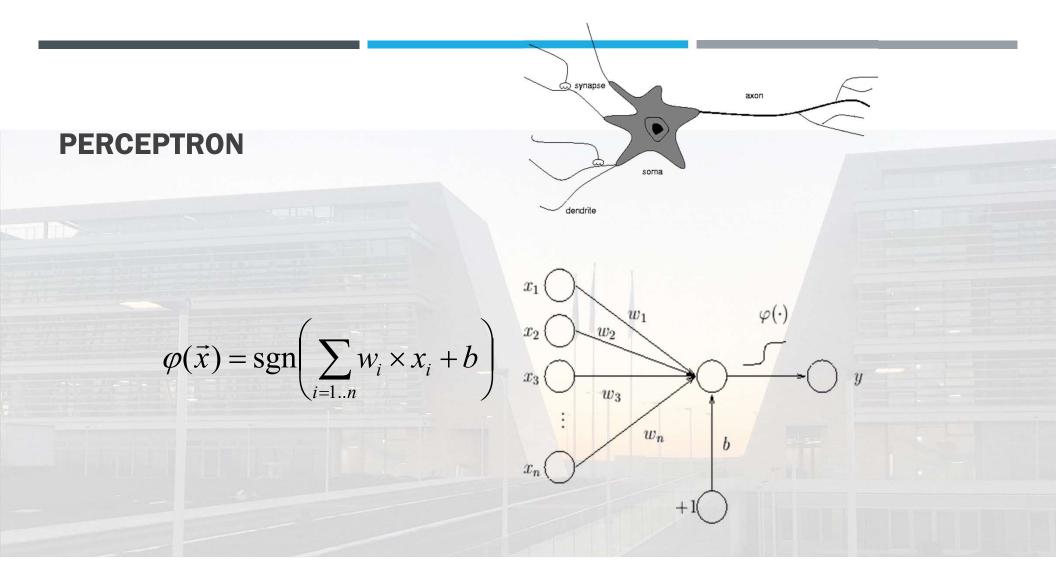
 \vec{x} is the vector of the instance to be classified \vec{w} is the hyperplane gradient

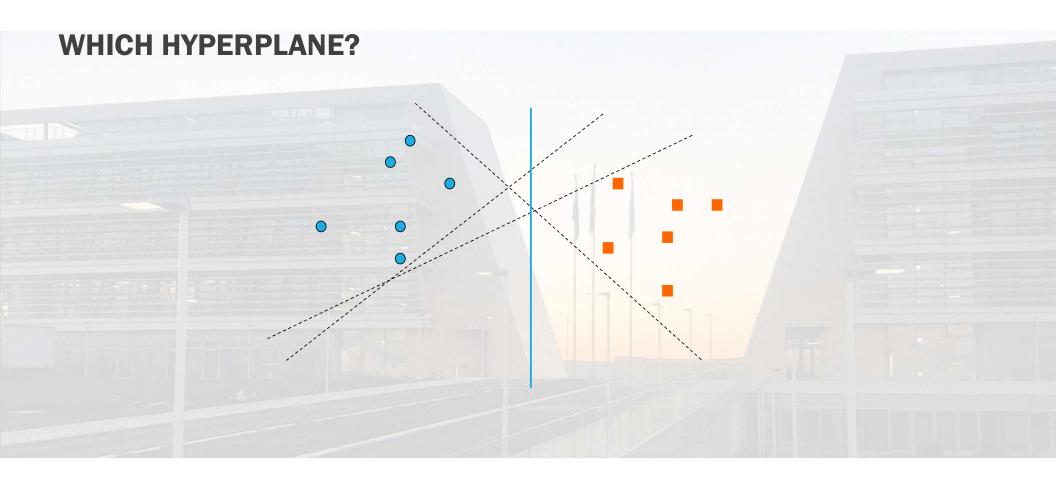
Classification function:

 $h(x) = \operatorname{sign}(f(x))$

LINEAR CLASSIFIERS (2)

- Computationally simple.
- Basic idea: select an hypothesis that makes no mistake over training-set.
- The separating function is equivalent to a neural net with just one neuron (perceptron)



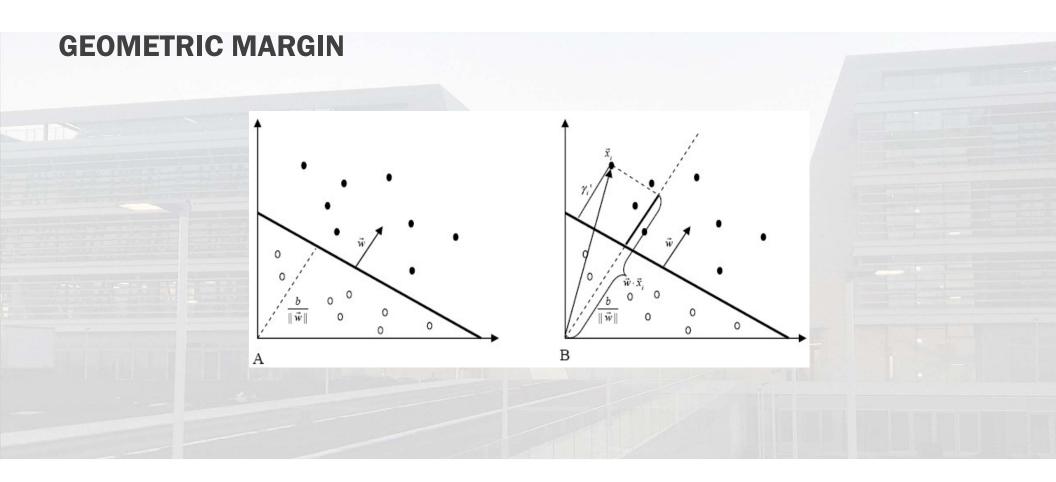


NOTATION

The functional margin of an example (\vec{x}_i, y_i) with respect to an hyperplane is:

$$\gamma_i = y_i (\vec{w} \cdot \vec{x}_i + b)$$

- The distribution of functional margins of an hyperplane (\vec{w}, b) with respect to a training set S is the distribution of margins of the examples in S.
- The functional margin of an hyperplane (\vec{w}, b) with respect to S is the minimum margin of the distribution



INNER PRODUCT AND COSINE DISTANCE

- From $\cos(\vec{x}, \vec{w}) = \frac{\vec{x} \cdot \vec{w}}{\|\vec{x}\| \cdot \|\vec{w}\|}$
- It follows that:

$$\| \vec{x} \| \cos(\vec{x}, \vec{w}) = \frac{\vec{x} \cdot \vec{w}}{\| \vec{w} \|} = \vec{x} \cdot \frac{\vec{w}}{\| \vec{w} \|}$$

Norm of \vec{x} times \vec{x} cosine \vec{w} , i.e. the projection of \vec{x} onto \vec{w}

NOTATIONS (2)

• By normalizing the hyperplan equation, i.e. $\left(\frac{\vec{w}}{\|\vec{w}\|}, \frac{b}{\|\vec{w}\|}\right)$

we get the geometrical margin

$$\gamma_i = y_i(\vec{w} \cdot \vec{x}_i + b)$$

The geometrical margin corresponds to the distance of points in S from the hyperplane.

For example in R²

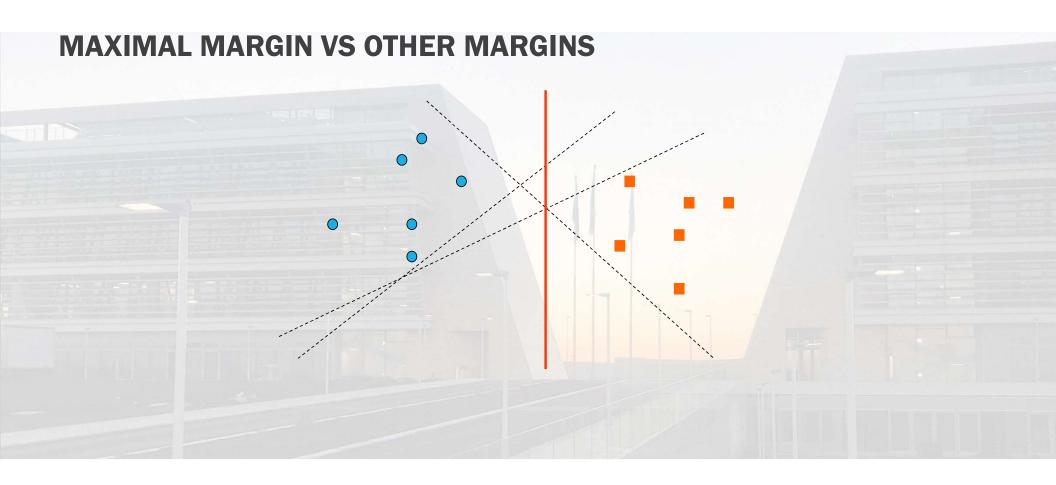
$$d(P,r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

GEOMETRIC MARGIN VS. DATA POINTS IN THE TRAINING SET



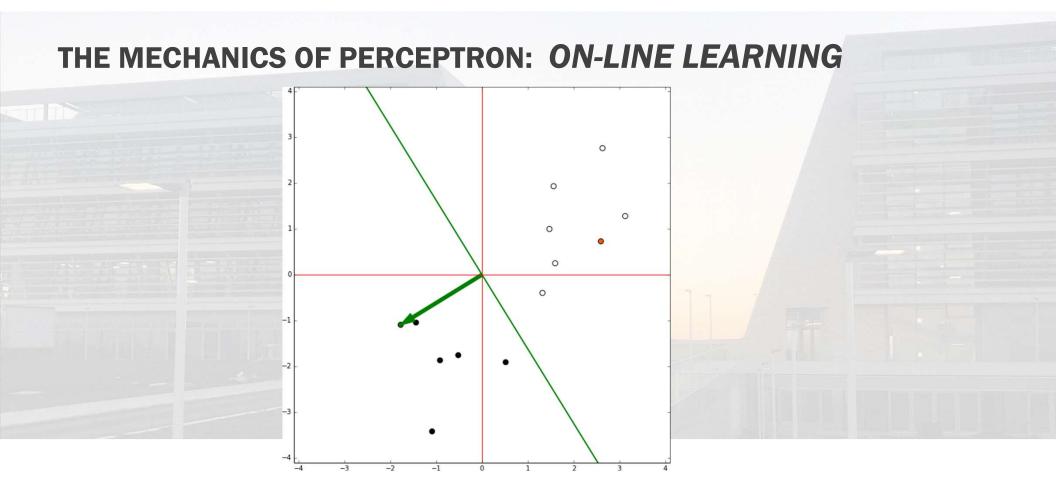
NOTATIONS (3)

- The margin of the training set S is the maximal geometric margin among every hyperplane.
- The hyperplane that corresponds to this (maximal) margin is called maximal margin hyperplane

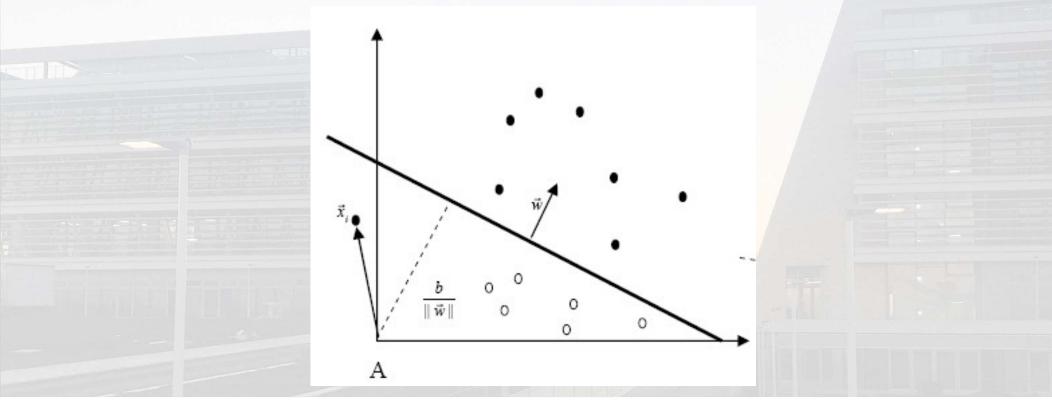


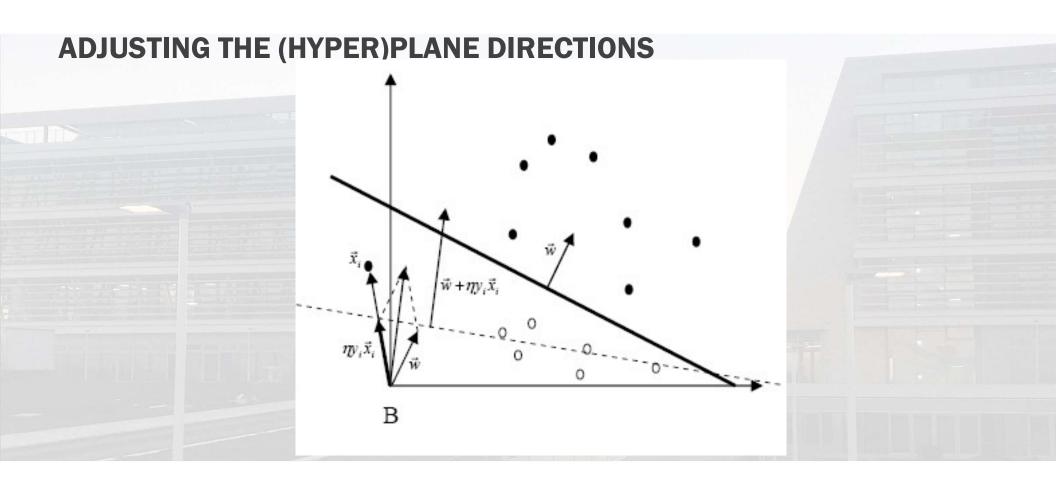
PERCEPTRON: ON-LINE ALGORITHM

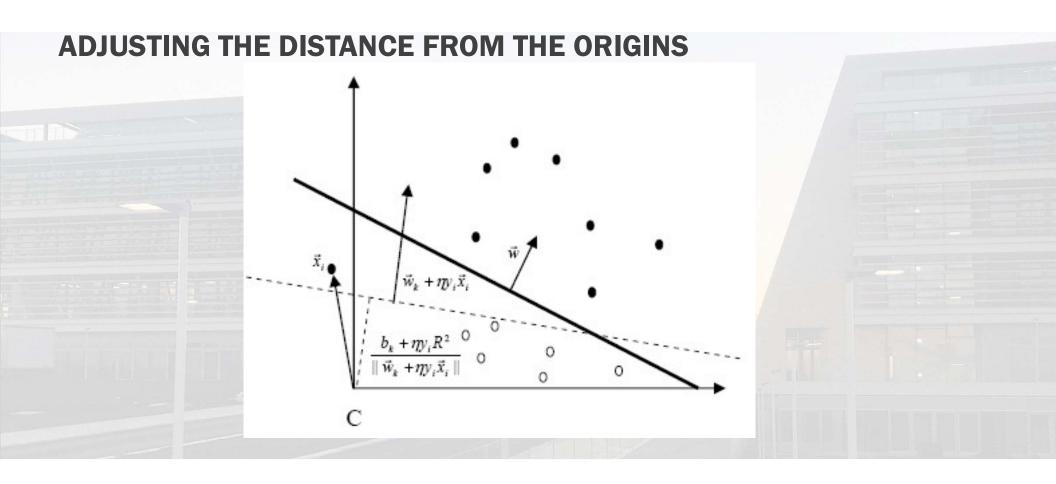
 $\vec{w}_{0} \leftarrow \vec{0}; b_{0} \leftarrow 0; k \leftarrow 0; R \leftarrow \max_{1 \le i \le l} ||\vec{x}_{i}||$ REPEAT FOR i = 1 TO ℓ IF $y_{i}(\vec{w}_{k} \cdot \vec{x}_{i} + b_{k}) \le 0$ T HEN $\vec{w}_{k+1} = \vec{w}_{k} + \eta y_{i} \vec{x}_{i}$ $b_{k+1} = b_{k} + \eta y_{i} R^{2}$ k = k + 1ENDIF ENDFOR UNTIL no error is found RETURN $k_{i}(\vec{w}_{k}, b_{k})$



PERCEPTRON: THE MANAGEMENT OF AN INDIVIDUAL INSTANCE X







CONSEQUENCES

- The Novikoff theorem states that whatever is the length of the geometrical margin, if data instances are linearly separable, then the perceptron is able to find the separating hyperplane in a finite number of steps.
- This number is inversely proportional to the square of the margin.
- This bound is invariant to the scale of individual patterns.
- The learning rate is not critical but only affects the rate of convergence.

DUALITY

• The decision function of linear classifiers can be written as follows:

$$h(x) = \operatorname{sgn}(\vec{w} \cdot \vec{x} + b) = \operatorname{sgn}(\sum_{j=1\dots m} \alpha_j y_j \vec{x}_j \cdot \vec{x} + b) = \operatorname{sgn}((\sum_{i=1\dots m} \alpha_j y_j \vec{x}_j \cdot \vec{x}) + b)$$

as well the adjustment function

if
$$y_i(\sum_{j=1\dots m} \alpha_j y_j \vec{x}_j \cdot \vec{x}_i + b) \le 0$$
 then $\alpha_i = \alpha_i + n$

The learning rate η impacts only in the re-scaling of the hyperplanes, and does not influence the algorithm $(\eta = 1)$

 \Rightarrow Training data only appear in the scalar products!!

FIRST PROPERTY OF SVMS

DUALITY is the first property of Support Vector Machines

The SVMs are learning machines of the kind:

$$f(x) = \operatorname{sgn}(\vec{w} \cdot \vec{x} + b) = \operatorname{sgn}(\sum_{j=1\dots m} \alpha_j y_j \vec{x}_j \cdot \vec{x} + b)$$

 It must be noted that (input, i.e. training & testing instances) data only appear in the scalar product

The matrix $G = (\langle \mathbf{x}_i \cdot \mathbf{x}_j \rangle)_{i,j=1}^l$ is called Gram matrix of the incoming distribution

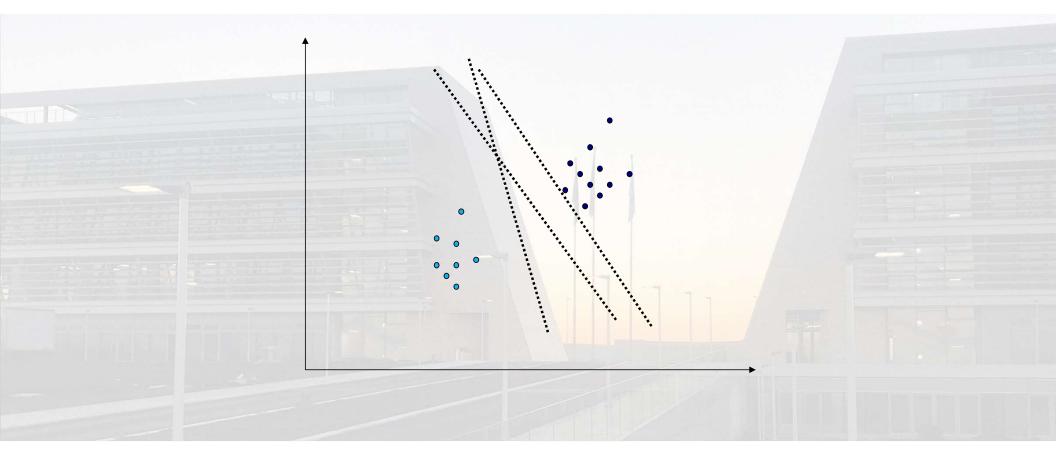
LIMITATIONS OF LINEAR CLASSIFIERS

- Problems in dealing with non linearly separale data
- Treatment of Noisy Data
- Data must be in real-value vector formalism, i.e. a underlying metric space topology is required

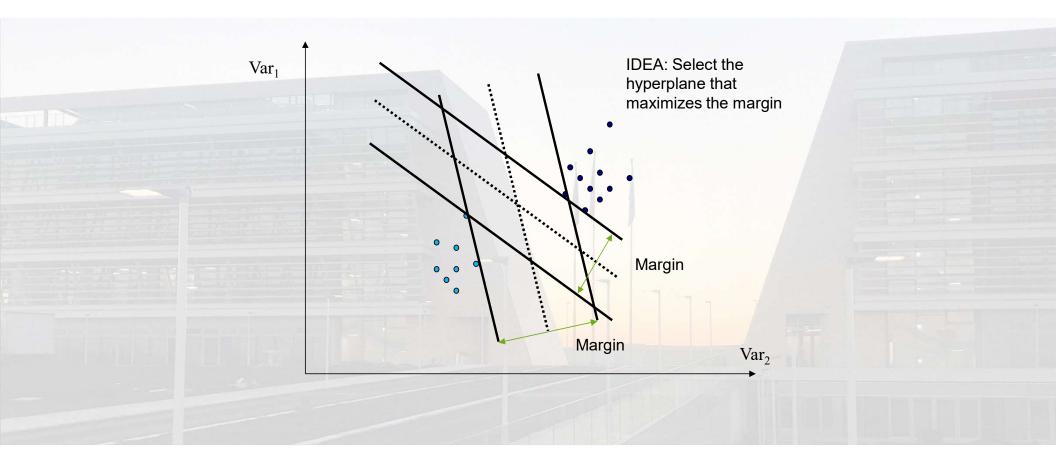
SOLUTIONS

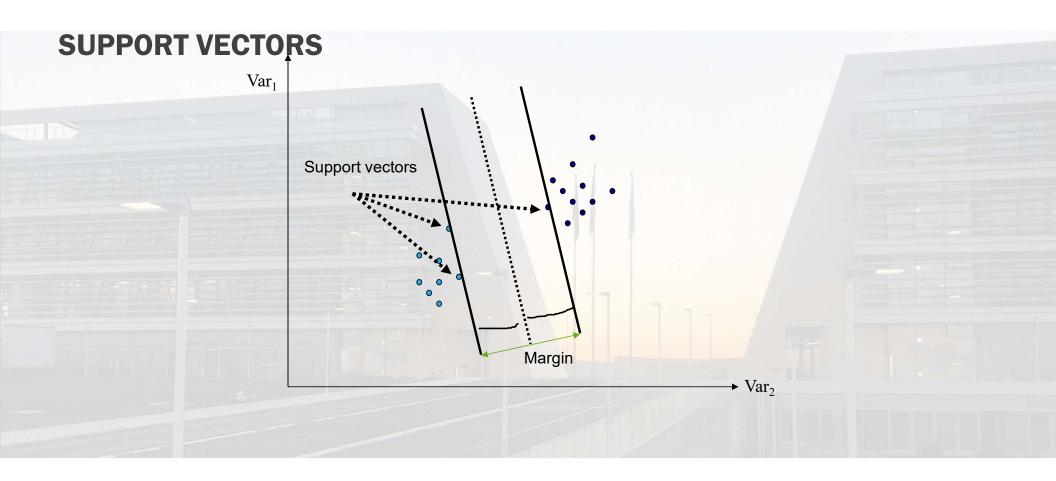
- Artificial Neural Networks (ANN) approach: augment the number of neurons, and organize them into layers ⇒ multilayer neural neworks ⇒ Learning through the Backpropagation algorithm (Rumelhart & McLelland, 91).
- SVMs approach: Extend the representation by exploiting kernel functions (i.e. non linear often task dependent functions described by the Gram matrix).
 - In this way the learning algorithms are decoupled from the application domain, that can be coded esclusively through task-specific kernel functions.
 - The feature modeling does not necessarily have to produce real-valued vectors but can be derived from intrinsic properties of the training objects
 - Complex data structures, e.g. sequences, trees, graphs or PCA-like decompositions (e.g. LSA), can be managed by individual kernels

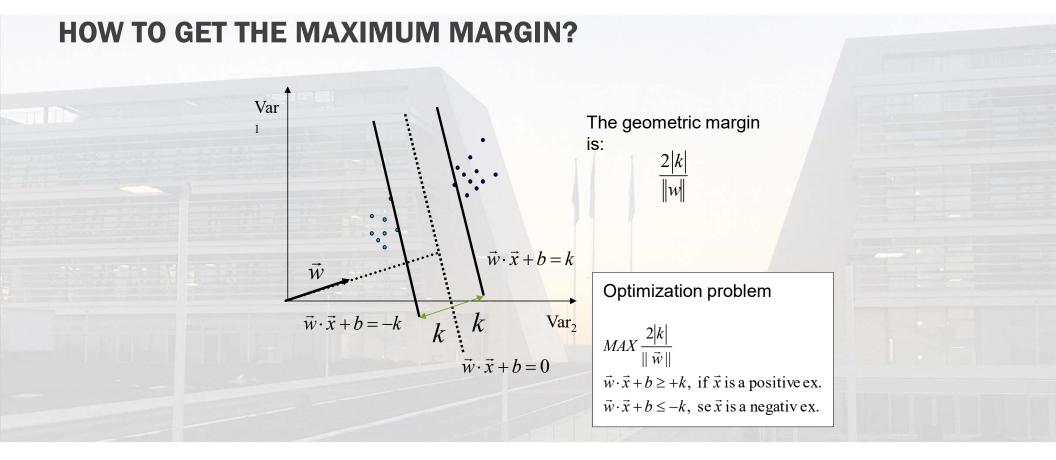
WHICH HYPERPLANE?



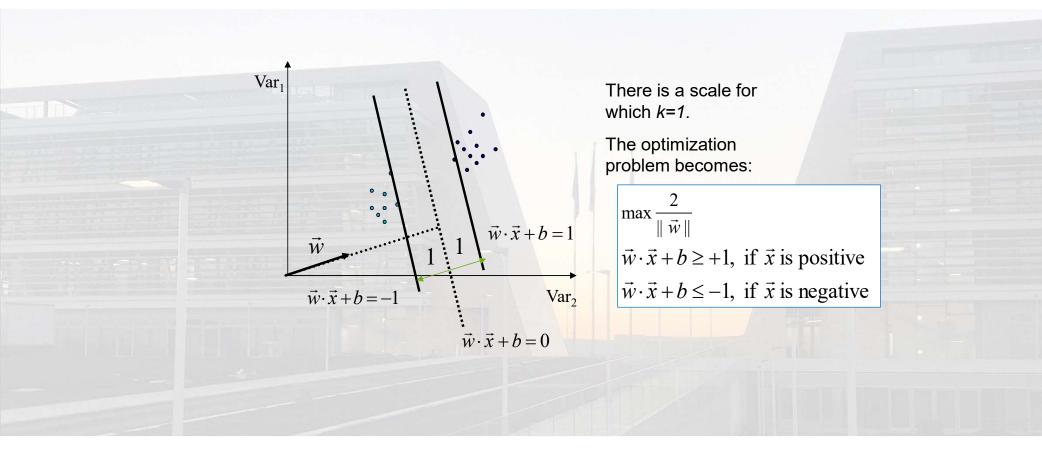
MAXIMUM MARGIN HYPERPLANES





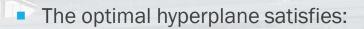


SCALING THE HYPERPLANE ...



THE OPTIMIZATION PROBLEM

 $\tau(\vec{w}) = \frac{1}{2} \left\| \vec{w} \right\|^2$



under:

$$y_i((\vec{w}\cdot\vec{x}_i)+b) \ge 1$$
 $i=1,...,m$

• The dual problem is simpler

DEFINITION OF THE LAGRANGIAN

Def. 2.24 Let $f(\vec{w})$, $h_i(\vec{w})$ and $g_i(\vec{w})$ be the objective function, the equality constraints and the inequality constraints (i.e. \geq) of an optimization problem, and let $L(\vec{w}, \vec{\alpha}, \vec{\beta})$ be its Lagrangian, defined as follows:

$$L(\vec{w}, \vec{\alpha}, \vec{\beta}) = f(\vec{w}) - \sum_{i=1}^{m} \alpha_i g_i(\vec{w}) - \sum_{i=1}^{l} \beta_i h_i(\vec{w})$$

 $f(\vec{w}) = \tau(\vec{w}) = \frac{1}{2} \|\vec{w}\|^2$ $y_i ((\vec{w} \cdot \vec{x}_i) + b) \ge 1, \quad i = 1, ..., l$

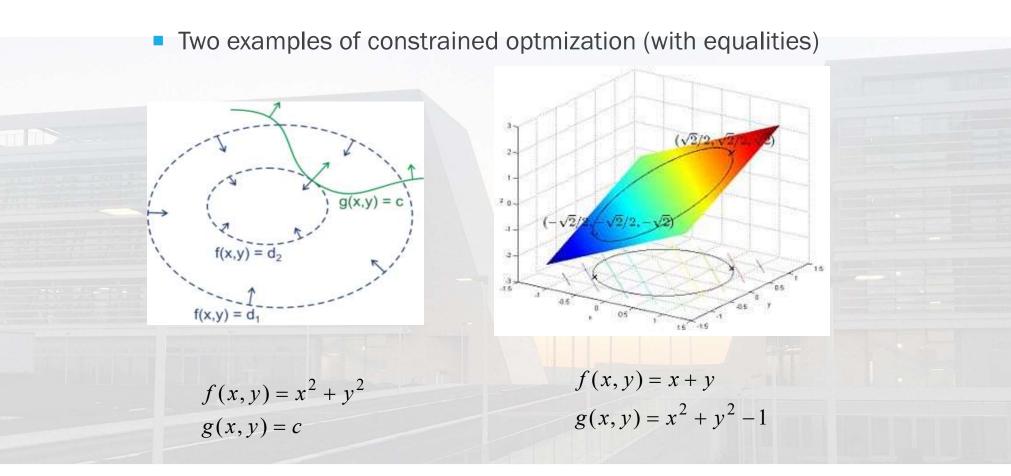
 $\dot{m{eta}}$ are not used as no equality constrant is needed in the primal equation

DUAL OPTIMIZATION PROBLEM

The Lagrangian dual problem of the above primal problem is $\begin{array}{l}maximize \quad \theta(\vec{\alpha},\vec{\beta})\\\\subject \ to \quad \vec{\alpha} \geq \vec{0}\\\\where \ \theta(\vec{\alpha},\vec{\beta}) = inf_{w \in W} \ L(\vec{w},\vec{\alpha},\vec{\beta})\end{array}$

Notice that the multipliers $\vec{\beta}$ are not used in the dual optimization problem as no equality constrant is imposed in the primal form

GRAPHICALLY:



TRANSFORMING INTO THE DUAL

The Lagrangian corresponding to our problem becomes:

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2}\vec{w} \cdot \vec{w} - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$

In order to solve the dual problem we compute

$$\theta(\vec{\alpha},\vec{\beta}) = \inf_{w \in W} L(\vec{w},\vec{\alpha},\vec{\beta})$$

• and then imposing derivatives to 0, wrt \vec{w}

TRANSFORMING INTO THE DUAL (CONT.)

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2}\vec{w} \cdot \vec{w} - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$

• Imposing derivatives = 0 wrt \vec{w}

a

and wrt
$$b$$

$$\frac{\partial L(\vec{w}, b, \vec{\alpha})}{\partial \vec{w}} = \vec{w} - \sum_{i=1}^{m} y_i \alpha_i \vec{x}_i = \vec{0} \quad \Rightarrow \quad \vec{w} = \sum_{i=1}^{m} y_i \alpha_i \vec{x}_i$$

$$\frac{\partial L(\vec{w}, b, \vec{\alpha})}{\partial b} = \sum_{i=1}^{m} y_i \alpha_i = 0$$

TRANSFORMING INTO THE DUAL (CONT.)

$$\vec{w} = \sum_{i=1}^{m} y_i \alpha_i \vec{x}_i \qquad \frac{\partial L(\vec{w}, b, \vec{\alpha})}{\partial b} = \sum_{i=1}^{m} y_i \alpha_i = 0$$

$$L(\vec{w}, b, \vec{\alpha}) = \frac{1}{2} \vec{w} \cdot \vec{w} - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x}_i + b) - 1] =$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x}_i \cdot \vec{x}_j - \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x}_i \cdot \vec{x}_j + \sum_{i=1}^{m} \alpha_i$$

$$= \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x}_i \cdot \vec{x}_j$$

DUAL OPTIMIZATION PROBLEM

maximize $\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x_i} \cdot \vec{x_j}$ subject to $\alpha_i \ge 0$, i = 1, ..., m $\sum_{i=1}^{m} y_i \alpha_i = 0$

- The formulation depends on the set of variables $\underline{\alpha}$ and not from \underline{w} and b•
- It has a simpler form •
- It makes explicit the individual contributions (α_i) of (a selected set of) examples (x_i)

KHUN-TUCKER THEOREM

Necessary (and sufficent) conditions for the existence of the optimal solution are the following:

$$\frac{\partial L(\vec{w}^*, \vec{\alpha}^*, \vec{\beta}^*)}{\partial \vec{w}} = \vec{0} \qquad \vec{w} = \sum_{i=1}^m y_i \alpha_i \vec{x}_i \\
\frac{\partial L(\vec{w}^*, \vec{\alpha}^*, \vec{\beta}^*)}{\partial \vec{\beta}} = \vec{0} \qquad \sum_{i=1}^m y_i \alpha_i = 0 \\
\xrightarrow{\alpha_i^* g_i(\vec{w}^*) = 0, \quad i = 1, ..., m} \\
g_i(\vec{w}^*) \leq 0, \quad i = 1, ..., m \\
\alpha_i^* \geq 0, \quad i = 1, ..., m$$

0

Karush-Kuhn-Tucker constraint

SOME CONSEQUENCES

Lagrange constraints: .

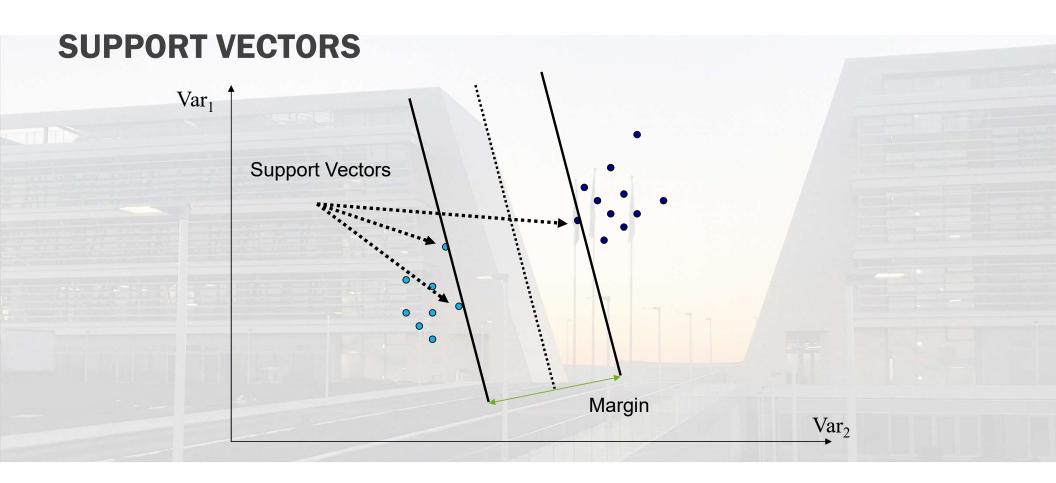
$$\sum_{i=1}^{m} a_i y_i = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i$$

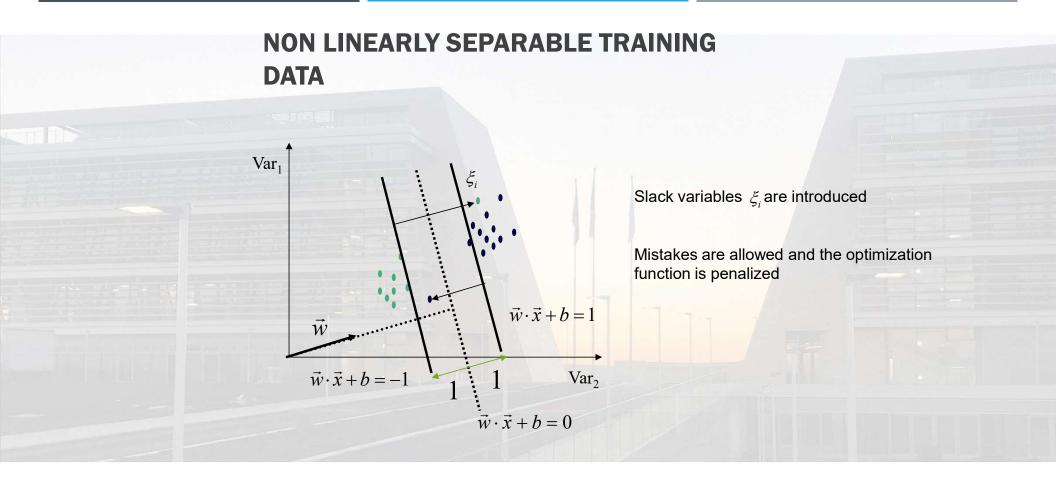
Karush-Kuhn-Tucker constraints

$$\alpha_i \cdot [y_i(\vec{x}_i \cdot \vec{w} + b) - 1] = 0, \quad i = 1, ..., m$$

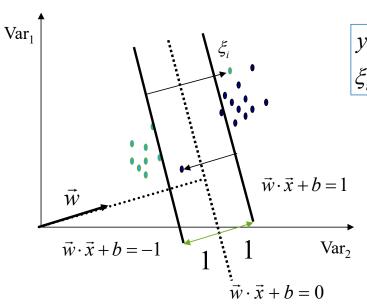
The support vector are \vec{x}_i having not null α_i , i.e. such that $y_i(\vec{x}_i \cdot \vec{w} + b) = -1$ They lie on the frontier

b is derived through the following formula $b^* = -\frac{\vec{w}^* \cdot \vec{x}^+ + \vec{w}^* \cdot \vec{x}^-}{2}$





SOFT MARGIN SVMS



New constraints:

$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i \quad \forall \vec{x}_i$$

$$\xi_i \ge 0$$

Objective function:

$$\min\frac{1}{2}\|\vec{w}\|^2 + C\sum_i \xi_i$$

C is the *trade-off* between margin and errors

CONVERTING IN THE DUAL FORM

 $\begin{cases} \min ||\vec{w}|| + C \sum_{i=1}^{m} \xi_i^2 \\ y_i(\vec{w} \cdot \vec{x_i} + b) \ge 1 - \xi_i, \quad \forall i = 1, .., m \\ \xi_i \ge 0, \quad i = 1, .., m \end{cases}$

$$L(\vec{w}, b, \vec{\xi}, \vec{\alpha}) = \frac{1}{2}\vec{w} \cdot \vec{w} + \frac{C}{2}\sum_{i=1}^{m} \xi_i^2 - \sum_{i=1}^{m} \alpha_i [y_i(\vec{w} \cdot \vec{x_i} + b) - 1]$$

• deriving wrt $\vec{w}, \vec{\xi}$ and b

PARTIAL DERIVATIVES

$$\begin{aligned} \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial \vec{w}} &= \vec{w} - \sum_{i=1}^{m} y_i \alpha_i \vec{x}_i = \vec{0} \quad \Rightarrow \quad \vec{w} = \sum_{i=1}^{m} y_i \alpha_i \vec{x}_i \\ \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial \vec{\xi}} &= C\vec{\xi} - \vec{\alpha} = \vec{0} \\ \frac{\partial L(\vec{w}, b, \vec{\xi}, \vec{\alpha})}{\partial b} &= \sum_{i=1}^{m} y_i \alpha_i = 0 \end{aligned}$$

SUBSTITUTION IN THE OBJECTIVE FUNCTION

$$=\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x_i} \cdot \vec{x_j} + \frac{1}{2C} \vec{\alpha} \cdot \vec{\alpha} - \frac{1}{C} \vec{\alpha} \cdot \vec{\alpha} =$$
$$=\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \vec{x_i} \cdot \vec{x_j} - \frac{1}{2C} \vec{\alpha} \cdot \vec{\alpha} =$$
$$=\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j (\vec{x_i} \cdot \vec{x_j} + \frac{1}{C} \delta_{ij}),$$

 $\delta_{_{ij}}$ of Kronecker

DUAL OPTIMIZATION PROBLEM (THE FINAL FORM)

$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j \left(\vec{x_i} \cdot \vec{x_j} + \frac{1}{C} \delta_{ij} \right)$$
$$\alpha_i \ge 0, \quad \forall i = 1, ..., m$$
$$\sum_{i=1}^{m} y_i \alpha_i = 0$$

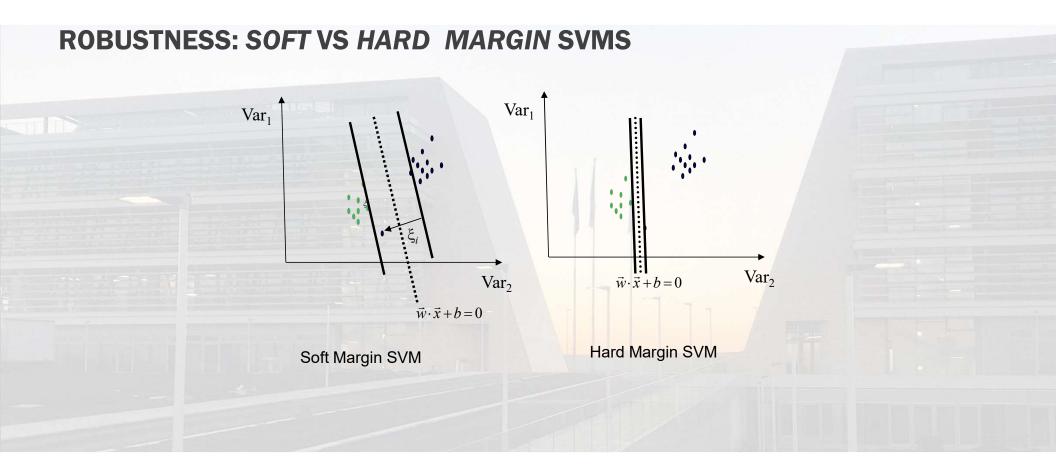
SOFT MARGIN SUPPORT VECTOR MACHINES

$$\min \frac{1}{2} \| \vec{w} \|^2 + C \sum_i \xi_i \qquad \begin{array}{c} y_i (\vec{w} \cdot \vec{x}_i + b) \ge 1 - \xi_i & \forall \vec{x}_i \\ \xi_i \ge 0 \end{array}$$

- The algorithm tries to keep $\xi_i = 0$ and then maximizes the margin.
- The algorithm minimizes the sums of distances from the hyperplane and not the number of errors (as it corresponds to an NP-complete problem)
- If $C \rightarrow \infty$, the solution tends to conform to the hard margin solution
- ATT.!!!: if C = 0 then $|| \vec{w} || = 0$. Infact it is always possible to satisfy:

$$y_i b \ge 1 - \xi_i \quad \forall \vec{x}_i$$

If C grows, it tends to limit the number of tolerated errors. Infinite settings for C provide the number of errors to be 0, exactly as in the hard-margin formulation.



SOFT VS HARD MARGIN SVMS

- A Soft-Margin SVM has always a solution
- A Soft-Margin SVM is more robust wrt odd training examples
 - Insufficient Representation (e.g. Limited Vocabularies)
 - High ambiguity of (linguistic) features
- An Hard-Margin SVM requires no parameter