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a) b)

Other RNN architectures
a) Recurrent networks can be made 

bidirectional, propagating information in 
both directions 

 They have been used for a wide variety of applications, 
including protein secondary structure prediction and 
handwriting recognition 

b) An “encoder-decoder” network creates a 
fixed-length vector representation for 
variable-length inputs, the encoding can be 
used to generate a variable-length 
sequence as the output 

 Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book, Data 
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



…

…

Encoder-decoder deep 

architectures
 Given enough data, a deep encoder-decoder 

architecture (see below) can yield results that 

compete with hand-engineered translation systems.

 The connectivity structure means that partial 

computations in the model can flow through the 

graph in a wave (darker nodes in fig.)

Slides for Chapter 10, Deep learning, from the Weka book, Data 
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal



Attention-based RNNs

 A NN (e.g. B) is used to attend the outcome of a 

second network A, e.g. (Vaswani et al., 2017)



 Input and Output word are correlated

 Attention scores between input and 
output words

 White equals higher score

 The diagonal shows highly correlations

 The scores reveal the grammatical 
difference for adjectives for the two 
languages (e.g. EEA vs.                                   
zone économique européenne)

Cross-Attention



Attention: motivations
 From (Dive into Deep Learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu 

and Smola, Alexander J., 2021) , 



Attention functions

Zhang et al, 2021



The Importance of Attention in 

Neural Learning
 Revolution in Computer Vision

 It significantly improved object detection and recognition in computer vision.

 It enables models to focus on relevant parts of an image, improving accuracy and 
efficiency.

 An interesting Survey: https://github.com/MenghaoGuo/Awesome-Vision-
Attentions

 Breakthrough in tasks such as Image Captioning:

 Attention helps in identifying key components within images to generate accurate and 
contextually relevant descriptions.

 Seminal work: (Xu et al, 2015) https://arxiv.org/abs/1502.03044

https://arxiv.org/abs/1502.03044


Enhancement in 

Recurrent Neural Networks
 For RNNs, attention 

mechanisms were used 

to address the 

challenge of handling 
long sequences.

 It allows RNNs to focus 

on important parts of 

the input sequence

 improving performance 
in tasks like language 
translation and speech 
recognition. (Luong et al, 2015)

Effective Approaches to Attention-
based Neural Machine Translation
https://arxiv.org/abs/1508.04025

(Rocktäschel et, al., 2015)
Reasoning about Entailment with 
Neural Attention, 2015.
https://arxiv.org/abs/1508.04025

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025


Going back in time to 2017: 

the Transformer 
(Vaswani et al. 2017)

 Attention in Transformers:

 In 2017, the attention mechanism became an 
integral part of this architecture.

 a significant evolution in seq2seq modeling

 Main advantages:

 Better with long range dependencies

 Parallel processing (more scalable than RNNs)

 State-of-the-art performances

 Originally meant for Automatic machine 
translation: 

 E.g., French to English

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia 

Polosukhin (2017). Attention Is All You Need. arXiv:1706.03762



Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Seq2Seq: 

A transformer in action



Encoding/Decoding Architecture 

with Attention Mechanism

 Two components

 Encoder: Maps input sequence           
X = (x1,…, xn) to continuous 
representations Z = (z1, …, zn).

 Decoder: Decoder uses Z to 
generate output sequence  Y = (y1, 
…, ym)

 Encoder/Decoder process input 
vectors through self-attention 
layer and feed-forward network.

 It enables to selectively concentrate 
on pertinent parts of the input

 It improves context awareness

 It allows to consider positions in the 
that also depends on the output

Image from https://medium.com/machine-intelligence-and-deep-learning-lab/transformer-the-self-attention-mechanism-d7d853c2c621

X

Z

Y



How does Self-attention work?

It is not magic, it is not a human brain, it is just matrix multiplication

The core Component
(even many years later in ChatGPT)



«Attention in action»
Prepare inputs

Each word is associated to embeddings 

Many thanks to https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

I like pizzaPositional Encoding: Part of these

vector encodes the tokens’ position



«Attention in action»
Compute Query, Key, and Value Vectors

k1 = i1 W
K

q1 = i1 W
Q

v1 = i1 W
V

For each word vector, calculate the Query, Key, and Value 
vectors by multiplying with respective weight matrices WQ, WK, 
WV.
 keyi = inputi W

K

 valuei = input1 W
V

 queryi = inputi W
Q



«Attention in action»
Calculate the Attention scores for input1

Attention scores are computed to «weight » the 

contribution of ALL words in the input sequence when 
representing input1.



«Attention in action»
Role of Masked Attention

Use masked attention to handle sequences of different lengths 

https://jalammar.github.io/illustrated-gpt2/



«Attention in action»
Role of Masked Attention (2)

Use masked attention to handle sequences of different lengths 

To mask a symbol, just 

replace its score with 

- ∞



«Attention in action»
Calculate softmax

Softmax «simply» maps attention scores to 

a «probability» in [0, 1]

 The masked elements (i.e., with  - ∞ gets a score near to 0)



«Attention in action»
Multiply scores with values

Each inputn (through each valuen) is weighted based of its 

importance in representing input1



«Attention in action»
Complete the linear combination

Sum weighted values to get output1 that is the linear combination of 

all input elements (represented as values) weighted through the 

attention scores



«Attention in action»
Repeat for input2 and input3



So… what is self-attention?
 It is not just a number, but a «probability distribution» for 

each symbol in input

 And it allows weighting how all words are combined to 

generate the (hidden) representation of each word



Self-Attention



The Multi-Headed «Beast»

 Humans can attend to many things 
simultaneously.

 Can we extend attention to achieve 
the same?

 Idea: apply Redundancy, i.e., Scaled 
Dot-Product Attention multiple times

 For each input, just generate h output 

 using h different different (WQ,WK,WV))

 Concatenate the h output vectors of 
each input 

 Use a linear layer to “restore” the initial 
dimensionality

 But combining all multiple evidences

h



From «simple» attention…



... to 

Multi-head 

Attention



Where is the «Deep Learning»?

Encoders and 

decoders are 

repeated N times



A
g

a
in

: 
th

e
 T

ra
n

sf
o

rm
e

r 

in
 A

c
ti
o

n

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Generated hidden 
representations for 
each symbol initially 
rely on the first 
token, called 
<start>.

These 
representations are 
influenced by all 
hidden 
representations from 
the encoder.

Nx
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After the generation 
begins…

the decoder's hidden 
representations 
simultaneously depend 
on all input tokens 
attended to in the 
encoder…

but on the decoder's 
own previously 
generated hidden 
representations up to 
that point.How 

does
it
work?



How to combine Encoders and 

Decoders?

 In the decoder, key and value vector are derived from 
the input.

 The query, in contrast, depends on the decoded 
sequence.

Cross Attention

V   K Q



 Attention scores between 
input and output words

 White equals higher score

 The diagonal is highly 
correlated

 The scores reveal the 
grammatical difference for 
adjectives for the two 
languages (zone 
économique européenne)

Cross-Attention



Advantages of Attention
 Targeted Focus in Decoding: 

 The decoder, with attention, can strategically concentrate on 
relevant segments of the source text

 leading to more coherent and contextually accurate translations.

 Addressing Vanishing Gradient Problem: The mechanism offers 
a solution to the vanishing gradients issue 

 creating shortcuts between distant states in the sequence, 
facilitating smoother gradient flow during backpropagation.

 Enhancing Model Interpretability: we gain insights into what the 
model focuses on at each step



The Transformer was only the 

beginning

A transformer is made of two components

 Encoder

 Decoder



The Transformer was only the 

beginning

A transformer is made of two components

 Encoder

 Decoder



The transformer was only 

the beginning

 This separation led to two «classes» of methods

 «Encoder-only» models: the most famous one is BERT

 «Decoder–only» models: the most famous one is GPT



BERT (Devlin et al, 2018)
Bidirectional  Encoder  Representations from Transformers

 Only the encoder is used

 Designed to generate contextual meaningful 

representation of input words

 Representations are context sensitive, thanks to self-attention

 Understand the context of a word in a sentence from both left 
and right sides (bidirectionally).

 Representations are embeddings

 not suitable for text generation

 … but for many other tasks

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Images from https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-bert/


BERT (Devlin et al, 2018)
🤔 Why should it work? 

 It is just a piece of the Transformer architecture seen a 

few slides ago.

💡 The GREAT IDEA: Pre-Training the encoder 

 Pre-trained on a large corpus of text and then fine-tuned 

for specific tasks like question answering, sentiment 

analysis, etc.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Images from https://jalammar.github.io/illustrated-bert/

Encoder

Encoder

Encoder

Encoder

https://jalammar.github.io/illustrated-bert/


No pre-training no party!
The Revolution of Pre-Training 

in NLP

 Simple idea: train a (possibly large) model on a different task and re-
use it on your task

 circumventing the need for training from scratch 

 facilitating “quicker”, more effective deployment of the model

 Precedent in Computer Vision:

 This strategy mirrors developments in computer vision

 Architectures pre-trained on classification tasks using datasets like ImageNet 

 When applied on related task, these “starting point” achieve very good results

 Addressing Overfitting in Large Models:

 With increasing model sizes and parameter counts, the risk of overfitting 
grows

 Pre-training on vast datasets mitigates this by providing a broad learning base.



Pretraining BERT
 BERT takes a sequence of 

tokens as input

 Utilizes self-attention 
across layers to generate 
context-aware
representations of each 
token in the sequence.

 In each layer, h=12 
WQ,WK,WV matrices

 Pre-training tasks:

 Masked-language 
modeling 

x12



Pretraining BERT (2)
 BERT takes a sequence 

of tokens as input

 Utilizes self-attention across 
layers to generate context-
aware representations of 
each token in the sequence.

 In each layer, h=12 WQ,WK,WV 

matrices

 Pre-training tasks:

 Masked-language modeling

 Next sentence prediction

Pretrained using the 
Toronto BookCorpus (800M words) 
and English Wikipedia (2,500M 
words)







Attention functions: 

examples (1)

 In general, when queries and keys are vectors of different 

lengths, we can use additive attention as the scoring function. 

Given a query              and a key              the additive attention

scoring function

 where learnable parameters                                            and                     

. 

 In a learnable setting, the query and the key are concatenated 
and fed into an MLP with a single hidden layer whose number of 

hidden units is h, a hyperparameter. By using tanh() as the 

activation function and disabling bias terms, we implement 
additive attention in the following



Attention functions: scaled 

dot-product  (2)

 When q and k are d-dimensional vectors whose independent dimensions 

have mean=0 and variance=1, their dot product has mean = 0 and a 

variance = d. To ensure that the variance of the dot product still remains 

one regardless of vector length, the scaled dot-product attention scoring 

function is adopted

 It divides the dot product by       . In practice, we often think in 

minibatches for efficiency, such as computing attention for n queries and 

m key-value pairs, where queries and keys are of length d and values are 

of length v. The scaled dot-product attention of queries                                 

keys                   and values                  is



Visualization of the attention 

distribution in QA

 Supporting fact 
sequences for an 

example question 

 On the right the 

attentions over facts 
for individual 

sequences

 Each sequence is 

mapped into a 

Markov process



Attention & enconding

 IN a decoding process (e.g. machine translation) there are 
three kinds of dependencies for neural architectures

 Dependencies can establish between

 (1) the input and output tokens

 (2) the input tokens themselves

 (3) the output tokens themselves

 Examples:

 MT

 QA where the query the answer paragraph is the input and the 
matched answer is the output



BERT & NLP



BERT and fine-tuning

 Once pretrained, we can apply 
it to new sentences

 BERT will produce encoded 
representations for each input 
symbol

 And it can be used in different 
classification tasks, just adding 
a new (linear) classifier…

 … through fine-tuning of the 
entire architecture

 not trivial to forget what 
learned during the pre-training

[CLS] i         hate my

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.



Towards Foundation Models
 Emergence of Foundation Models in NLP:

 Large-scale models trained on linguistic tasks, forming a 
versatile base that can be fine-tuned for various specific 
applications.

 Everybody worked on customizing Foundation Models:

 Leverage the extensive knowledge encapsulated in 
Foundation Models by fine-tuning them for particular NLP tasks.

 If you are interested in foundation models

 [Zhou et al, 2023] A Comprehensive Survey on Pretrained 
Foundation Models: A History from BERT to ChatGPT

 https://arxiv.org/abs/2302.09419

https://arxiv.org/abs/2302.09419


BERT in action

 The final layer outputs 

hidden representations, 

which can be utilized 

with a simple linear 

classifier 

 to address a broad 

spectrum of NLP tasks 

efficiently.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.



BERT (Devlin et al. ’18)

BERT for single sentence classification (Sentiment analysis, Intent 

Classification, etc.)



BERT (Devlin et al. ’18)

BERT for Sequence Tagging Tasks (e.g., POS tagging, Named Entity 

Recognition, etc.)



BERT (Devlin et al. ’18)

BERT for sentence pairs classification (Paraphrase Identification, 

answer selection in QA, Recognizing Textual Entailment)



BERT (Devlin et al. ’18)

BERT for Answer Span Selection in Question Answering



A QA example on SquAD

 Cross-lingual Question Answering



BERT (Devlin et al. ’18)

Pretraining on two unsupervised prediction tasks:

 Masked Language Model: given a sentence s with missing words, 
reconstruct s

 Example: Amazon <MASK> amazing → Amazon is amazing

 In BERT the language modeling is deeply Bidirectional, while in ELMo
the forward and backward LMs were two independent branches of 
the NN

 Next Sentence Prediction: given two sentences s1 and s2, the task is 
to understand whether s2 is the actual sentence that follows s1

 50% of the training data are positive examples: s1 and s2 are actually 
consecutive sentences

 50% of the training data are negative examples: s1 and s2 are randomly 
chosen from the corpus



BERT pretraining: 
Input representations

INPUT

WordPieces

Embeddings

Sentence

Embeddings

Position

Embeddings

All these embeddings

are learned during the 

(pre)training process

MASK

EMASK

In pre-training 15% of the input tokens 

are masked for the masked LM task



A complex application of LSTM (and 

recently Transformers): Image captioning



Image Captioning

 Image to captions 

 Convolutional Neural Network to learn a 

representation of the image

 (Bi-directional) Recurrent Neural Network to 

generate a caption describing the image

 its input is the representation computed from the 

CNN

 its output is a sequence of words, i.e. the caption





Attention: a dynamic 

rendering



Neural Conversation Models

 Learn to answer question in a 

conversation

 For example, an IT help desk

 model the input sequence 

 produce a output sequence



Transformers
 (Vaswani 2017), Attention is all you need, https://arxiv.org/abs/1706.03762

 (Devlin et al 2018), BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding, https://arxiv.org/abs/1810.04805

 An interesting introduction to the attention mechanism: 

 All you need to know about ‘Attention’ and ‘Transformers’ — In-depth Understanding —
Part 1, A. Sarkar, URL: https://towardsdatascience.com/all-you-need-to-know-about-
attention-and-transformers-in-depth-understanding-part-1-552f0b41d021#4c16

 Other Task specific works:

 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by 
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

 Effective Approaches to Attention-based Neural Machine Translation, Minh-Thang 
Luong Hieu Pham Christopher D. Manning, 2015, https://arxiv.org/abs/1508.04025v5

 Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention 
networks. In International Conference on Learning Representations, 2017.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021#4c16
https://arxiv.org/abs/1508.04025v5

