
Attention in NNs:

the advent of

Transformers

Roberto Basili, Danilo Croce
Deep Learning, 2024/2025

Outline
 Attention Mechanisms in Recurrent Networks

 Trasformers

 Applications to Language Processing

 Perspectives

…

…

…

a) b)

Other RNN architectures
a) Recurrent networks can be made

bidirectional, propagating information in
both directions

 They have been used for a wide variety of applications,
including protein secondary structure prediction and
handwriting recognition

b) An “encoder-decoder” network creates a
fixed-length vector representation for
variable-length inputs, the encoding can be
used to generate a variable-length
sequence as the output

 Particularly useful for machine translation

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

…

…

Encoder-decoder deep

architectures
 Given enough data, a deep encoder-decoder

architecture (see below) can yield results that

compete with hand-engineered translation systems.

 The connectivity structure means that partial

computations in the model can flow through the

graph in a wave (darker nodes in fig.)

Slides for Chapter 10, Deep learning, from the Weka book, Data
Mining by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Attention-based RNNs

 A NN (e.g. B) is used to attend the outcome of a

second network A, e.g. (Vaswani et al., 2017)

 Input and Output word are correlated

 Attention scores between input and
output words

 White equals higher score

 The diagonal shows highly correlations

 The scores reveal the grammatical
difference for adjectives for the two
languages (e.g. EEA vs.
zone économique européenne)

Cross-Attention

Attention: motivations
 From (Dive into Deep Learning, Zhang, Aston and Lipton, Zachary C. and Li, Mu

and Smola, Alexander J., 2021) ,

Attention functions

Zhang et al, 2021

The Importance of Attention in

Neural Learning
 Revolution in Computer Vision

 It significantly improved object detection and recognition in computer vision.

 It enables models to focus on relevant parts of an image, improving accuracy and
efficiency.

 An interesting Survey: https://github.com/MenghaoGuo/Awesome-Vision-
Attentions

 Breakthrough in tasks such as Image Captioning:

 Attention helps in identifying key components within images to generate accurate and
contextually relevant descriptions.

 Seminal work: (Xu et al, 2015) https://arxiv.org/abs/1502.03044

https://arxiv.org/abs/1502.03044

Enhancement in

Recurrent Neural Networks
 For RNNs, attention

mechanisms were used

to address the

challenge of handling
long sequences.

 It allows RNNs to focus

on important parts of

the input sequence

 improving performance
in tasks like language
translation and speech
recognition. (Luong et al, 2015)

Effective Approaches to Attention-
based Neural Machine Translation
https://arxiv.org/abs/1508.04025

(Rocktäschel et, al., 2015)
Reasoning about Entailment with
Neural Attention, 2015.
https://arxiv.org/abs/1508.04025

https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025

Going back in time to 2017:

the Transformer
(Vaswani et al. 2017)

 Attention in Transformers:

 In 2017, the attention mechanism became an
integral part of this architecture.

 a significant evolution in seq2seq modeling

 Main advantages:

 Better with long range dependencies

 Parallel processing (more scalable than RNNs)

 State-of-the-art performances

 Originally meant for Automatic machine
translation:

 E.g., French to English

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia

Polosukhin (2017). Attention Is All You Need. arXiv:1706.03762

Alammar, J (2018). The Illustrated Transformer [Blog post]. Retrieved from https://jalammar.github.io/illustrated-transformer/

Seq2Seq:

A transformer in action

Encoding/Decoding Architecture

with Attention Mechanism

 Two components

 Encoder: Maps input sequence
X = (x1,…, xn) to continuous
representations Z = (z1, …, zn).

 Decoder: Decoder uses Z to
generate output sequence Y = (y1,
…, ym)

 Encoder/Decoder process input
vectors through self-attention
layer and feed-forward network.

 It enables to selectively concentrate
on pertinent parts of the input

 It improves context awareness

 It allows to consider positions in the
that also depends on the output

Image from https://medium.com/machine-intelligence-and-deep-learning-lab/transformer-the-self-attention-mechanism-d7d853c2c621

X

Z

Y

How does Self-attention work?

It is not magic, it is not a human brain, it is just matrix multiplication

The core Component
(even many years later in ChatGPT)

«Attention in action»
Prepare inputs

Each word is associated to embeddings

Many thanks to https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

I like pizzaPositional Encoding: Part of these

vector encodes the tokens’ position

«Attention in action»
Compute Query, Key, and Value Vectors

k1 = i1 W
K

q1 = i1 W
Q

v1 = i1 W
V

For each word vector, calculate the Query, Key, and Value
vectors by multiplying with respective weight matrices WQ, WK,
WV.
 keyi = inputi W

K

 valuei = input1 W
V

 queryi = inputi W
Q

«Attention in action»
Calculate the Attention scores for input1

Attention scores are computed to «weight » the

contribution of ALL words in the input sequence when
representing input1.

«Attention in action»
Role of Masked Attention

Use masked attention to handle sequences of different lengths

https://jalammar.github.io/illustrated-gpt2/

«Attention in action»
Role of Masked Attention (2)

Use masked attention to handle sequences of different lengths

To mask a symbol, just

replace its score with

- ∞

«Attention in action»
Calculate softmax

Softmax «simply» maps attention scores to

a «probability» in [0, 1]

 The masked elements (i.e., with - ∞ gets a score near to 0)

«Attention in action»
Multiply scores with values

Each inputn (through each valuen) is weighted based of its

importance in representing input1

«Attention in action»
Complete the linear combination

Sum weighted values to get output1 that is the linear combination of

all input elements (represented as values) weighted through the

attention scores

«Attention in action»
Repeat for input2 and input3

So… what is self-attention?
 It is not just a number, but a «probability distribution» for

each symbol in input

 And it allows weighting how all words are combined to

generate the (hidden) representation of each word

Self-Attention

The Multi-Headed «Beast»

 Humans can attend to many things
simultaneously.

 Can we extend attention to achieve
the same?

 Idea: apply Redundancy, i.e., Scaled
Dot-Product Attention multiple times

 For each input, just generate h output

 using h different different (WQ,WK,WV))

 Concatenate the h output vectors of
each input

 Use a linear layer to “restore” the initial
dimensionality

 But combining all multiple evidences

h

From «simple» attention…

... to

Multi-head

Attention

Where is the «Deep Learning»?

Encoders and

decoders are

repeated N times

A
g

a
in

:
th

e
 T

ra
n

sf
o

rm
e

r

in
 A

c
ti
o

n

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Generated hidden
representations for
each symbol initially
rely on the first
token, called
<start>.

These
representations are
influenced by all
hidden
representations from
the encoder.

Nx

A
g

a
in

:
th

e
 T

ra
n

sf
o

rm
e

r

in
 A

c
ti
o

n

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

After the generation
begins…

the decoder's hidden
representations
simultaneously depend
on all input tokens
attended to in the
encoder…

but on the decoder's
own previously
generated hidden
representations up to
that point.How

does
it
work?

How to combine Encoders and

Decoders?

 In the decoder, key and value vector are derived from
the input.

 The query, in contrast, depends on the decoded
sequence.

Cross Attention

V K Q

 Attention scores between
input and output words

 White equals higher score

 The diagonal is highly
correlated

 The scores reveal the
grammatical difference for
adjectives for the two
languages (zone
économique européenne)

Cross-Attention

Advantages of Attention
 Targeted Focus in Decoding:

 The decoder, with attention, can strategically concentrate on
relevant segments of the source text

 leading to more coherent and contextually accurate translations.

 Addressing Vanishing Gradient Problem: The mechanism offers
a solution to the vanishing gradients issue

 creating shortcuts between distant states in the sequence,
facilitating smoother gradient flow during backpropagation.

 Enhancing Model Interpretability: we gain insights into what the
model focuses on at each step

The Transformer was only the

beginning

A transformer is made of two components

 Encoder

 Decoder

The Transformer was only the

beginning

A transformer is made of two components

 Encoder

 Decoder

The transformer was only

the beginning

 This separation led to two «classes» of methods

 «Encoder-only» models: the most famous one is BERT

 «Decoder–only» models: the most famous one is GPT

BERT (Devlin et al, 2018)
Bidirectional Encoder Representations from Transformers

 Only the encoder is used

 Designed to generate contextual meaningful

representation of input words

 Representations are context sensitive, thanks to self-attention

 Understand the context of a word in a sentence from both left
and right sides (bidirectionally).

 Representations are embeddings

 not suitable for text generation

 … but for many other tasks

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Images from https://jalammar.github.io/illustrated-bert/

https://jalammar.github.io/illustrated-bert/

BERT (Devlin et al, 2018)
🤔 Why should it work?

 It is just a piece of the Transformer architecture seen a

few slides ago.

💡 The GREAT IDEA: Pre-Training the encoder

 Pre-trained on a large corpus of text and then fine-tuned

for specific tasks like question answering, sentiment

analysis, etc.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Images from https://jalammar.github.io/illustrated-bert/

Encoder

Encoder

Encoder

Encoder

https://jalammar.github.io/illustrated-bert/

No pre-training no party!
The Revolution of Pre-Training

in NLP

 Simple idea: train a (possibly large) model on a different task and re-
use it on your task

 circumventing the need for training from scratch

 facilitating “quicker”, more effective deployment of the model

 Precedent in Computer Vision:

 This strategy mirrors developments in computer vision

 Architectures pre-trained on classification tasks using datasets like ImageNet

 When applied on related task, these “starting point” achieve very good results

 Addressing Overfitting in Large Models:

 With increasing model sizes and parameter counts, the risk of overfitting
grows

 Pre-training on vast datasets mitigates this by providing a broad learning base.

Pretraining BERT
 BERT takes a sequence of

tokens as input

 Utilizes self-attention
across layers to generate
context-aware
representations of each
token in the sequence.

 In each layer, h=12
WQ,WK,WV matrices

 Pre-training tasks:

 Masked-language
modeling

x12

Pretraining BERT (2)
 BERT takes a sequence

of tokens as input

 Utilizes self-attention across
layers to generate context-
aware representations of
each token in the sequence.

 In each layer, h=12 WQ,WK,WV

matrices

 Pre-training tasks:

 Masked-language modeling

 Next sentence prediction

Pretrained using the
Toronto BookCorpus (800M words)
and English Wikipedia (2,500M
words)

Attention functions:

examples (1)

 In general, when queries and keys are vectors of different

lengths, we can use additive attention as the scoring function.

Given a query and a key the additive attention

scoring function

 where learnable parameters and

.

 In a learnable setting, the query and the key are concatenated
and fed into an MLP with a single hidden layer whose number of

hidden units is h, a hyperparameter. By using tanh() as the

activation function and disabling bias terms, we implement
additive attention in the following

Attention functions: scaled

dot-product (2)

 When q and k are d-dimensional vectors whose independent dimensions

have mean=0 and variance=1, their dot product has mean = 0 and a

variance = d. To ensure that the variance of the dot product still remains

one regardless of vector length, the scaled dot-product attention scoring

function is adopted

 It divides the dot product by . In practice, we often think in

minibatches for efficiency, such as computing attention for n queries and

m key-value pairs, where queries and keys are of length d and values are

of length v. The scaled dot-product attention of queries

keys and values is

Visualization of the attention

distribution in QA

 Supporting fact
sequences for an

example question

 On the right the

attentions over facts
for individual

sequences

 Each sequence is

mapped into a

Markov process

Attention & enconding

 IN a decoding process (e.g. machine translation) there are
three kinds of dependencies for neural architectures

 Dependencies can establish between

 (1) the input and output tokens

 (2) the input tokens themselves

 (3) the output tokens themselves

 Examples:

 MT

 QA where the query the answer paragraph is the input and the
matched answer is the output

BERT & NLP

BERT and fine-tuning

 Once pretrained, we can apply
it to new sentences

 BERT will produce encoded
representations for each input
symbol

 And it can be used in different
classification tasks, just adding
a new (linear) classifier…

 … through fine-tuning of the
entire architecture

 not trivial to forget what
learned during the pre-training

[CLS] i hate my

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

Towards Foundation Models
 Emergence of Foundation Models in NLP:

 Large-scale models trained on linguistic tasks, forming a
versatile base that can be fine-tuned for various specific
applications.

 Everybody worked on customizing Foundation Models:

 Leverage the extensive knowledge encapsulated in
Foundation Models by fine-tuning them for particular NLP tasks.

 If you are interested in foundation models

 [Zhou et al, 2023] A Comprehensive Survey on Pretrained
Foundation Models: A History from BERT to ChatGPT

 https://arxiv.org/abs/2302.09419

https://arxiv.org/abs/2302.09419

BERT in action

 The final layer outputs

hidden representations,

which can be utilized

with a simple linear

classifier

 to address a broad

spectrum of NLP tasks

efficiently.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805.

BERT (Devlin et al. ’18)

BERT for single sentence classification (Sentiment analysis, Intent

Classification, etc.)

BERT (Devlin et al. ’18)

BERT for Sequence Tagging Tasks (e.g., POS tagging, Named Entity

Recognition, etc.)

BERT (Devlin et al. ’18)

BERT for sentence pairs classification (Paraphrase Identification,

answer selection in QA, Recognizing Textual Entailment)

BERT (Devlin et al. ’18)

BERT for Answer Span Selection in Question Answering

A QA example on SquAD

 Cross-lingual Question Answering

BERT (Devlin et al. ’18)

Pretraining on two unsupervised prediction tasks:

 Masked Language Model: given a sentence s with missing words,
reconstruct s

 Example: Amazon <MASK> amazing → Amazon is amazing

 In BERT the language modeling is deeply Bidirectional, while in ELMo
the forward and backward LMs were two independent branches of
the NN

 Next Sentence Prediction: given two sentences s1 and s2, the task is
to understand whether s2 is the actual sentence that follows s1

 50% of the training data are positive examples: s1 and s2 are actually
consecutive sentences

 50% of the training data are negative examples: s1 and s2 are randomly
chosen from the corpus

BERT pretraining:
Input representations

INPUT

WordPieces

Embeddings

Sentence

Embeddings

Position

Embeddings

All these embeddings

are learned during the

(pre)training process

MASK

EMASK

In pre-training 15% of the input tokens

are masked for the masked LM task

A complex application of LSTM (and

recently Transformers): Image captioning

Image Captioning

 Image to captions

 Convolutional Neural Network to learn a

representation of the image

 (Bi-directional) Recurrent Neural Network to

generate a caption describing the image

 its input is the representation computed from the

CNN

 its output is a sequence of words, i.e. the caption

Attention: a dynamic

rendering

Neural Conversation Models

 Learn to answer question in a

conversation

 For example, an IT help desk

 model the input sequence

 produce a output sequence

Transformers
 (Vaswani 2017), Attention is all you need, https://arxiv.org/abs/1706.03762

 (Devlin et al 2018), BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, https://arxiv.org/abs/1810.04805

 An interesting introduction to the attention mechanism:

 All you need to know about ‘Attention’ and ‘Transformers’ — In-depth Understanding —
Part 1, A. Sarkar, URL: https://towardsdatascience.com/all-you-need-to-know-about-
attention-and-transformers-in-depth-understanding-part-1-552f0b41d021#4c16

 Other Task specific works:

 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

 Effective Approaches to Attention-based Neural Machine Translation, Minh-Thang
Luong Hieu Pham Christopher D. Manning, 2015, https://arxiv.org/abs/1508.04025v5

 Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention
networks. In International Conference on Learning Representations, 2017.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://towardsdatascience.com/all-you-need-to-know-about-attention-and-transformers-in-depth-understanding-part-1-552f0b41d021#4c16
https://arxiv.org/abs/1508.04025v5

