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Deep vs Shallow Networks

m Deep networks should be preferred to Shallow
ones

= when problems are non-linear;

m s has been observed that a shallow network needs
about 10x number of neurons for reaching the
expressivity of a deep one

-===> [1(0, X) -===> [1(0, X)

Deep Network Shallow Network



Deep vs Shallow Networks: Intuition

® Think of a neuron as a program routine

m in Deep Networks a neuron computation is re-used many
times in the computation

m in a Shallow Network it is used only once

m Using a shallow network is similar to writing a program
without the ability of calling subroutines

—-=> fi(6), X)
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Deep Network Shallow Network




Deep Networks vs. Kernel

m A kernel machine can be thought of as a shallow network having a
huge hidden layer

m this hidden layer is never computed thanks to the kernel trick

m Kernel methods however are expensive
m they rely on a set of examples, support vectors
m for large dataset and complex problems this set can be large as well

m Neural networks computation
® s independent on the dataset,
m put only on the number of connections that have been chosen



NN architectures

m Multilayer perceptron (Rumelhart MCClelland, 1980)

m Self-Organizing maps (Kohonen, 1990)

m Boltzman Machines (Hinfon, 1998)

m Convolutional Neural Networks (Neocogitron, Fukushima (1980))

m Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)
m Bidirectional RNNs (Schuster and Paliwal, 1997)
m BP Through-Time (Robinson & Fallside, 1987)
m | ong Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

m Attenfion mechanisms (firstly discussed by (Larochelle & Hinton, 2010; Denil
et al., 2012)).

m Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et al.,
2015)



Recent successes In Deep
Learning

m  Convolution Neural Networks
=  |magesrelated tasks

m Recurrent Neural Networks
= |anguage models
m Speech to Text
®  Machine Translation, Conversation Models

= Atftenfional Networks
m  Aftention mechanisms fo amplify dependencies across network components

m  Trasformers:
®  Encoding-decoding networks for powerful pretraining
= Avoid the forgetting problems typical of recurrent acrhitectures

®» |Large Language Models and Prompting
»  Encoding-Decoding at the Natural Language level
m  Decoding only fransformers
= (O-shot or few-shot Learning

m  Advanced architectures: multimodality
= |mage to Captions
m  Text-generated Images (Dall-E)
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Convolutional Neural Networks
(Le Cun, 1998)

1] 0| 1
= Mainly used for images related tasks 0 | 1 ]0

® image classification = = -

m face detection

= efc... 1,1, 1,010

0, 1, 1 e 4

= Learn feature representations 0,/0,1(1(1

= by convolving over the input 0|0|1/11|0

= with afilter, that slides over the input image 0Ol1111010

Convolved

= Compositionality (local) Image Eaatifa

m Each filter composes a local patch of lower-level
features into a higher-level representation

m Location Invariance

m the detection of specific patterns is independent of
where it occurs
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Figure 9.1: An example of 2-D convolution without kernel flipping. We restrict the output
to only positions where the kernel lies entirely within the image, called "‘\El_icl’ convolution
in some contexts. We draw boxes with arrows to indicate how the upper-left element of
the output tensor is formed by applying the kernel to the corresponding upper-left region
of the input tensor.




A futher example of:
convolution with pooling,
and decimation operations

BilE:s Image Convolution Max Pooling Decimation
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® An image is convolved with a filter; curved rectangular regions
In the first large matrix depict a random set of image locations

B Maximum values within small 2x2 regions are indicated in bold
in the central matrix

® The results are pooled, using max-pooling then decimated by a
factor of two, 1o yield the final matrix



Simple filtering example

m Ex. consider the task of detecting edges in an
image

m A well known technique is to filter an image with
so-called “Sobel” filters, which involves convolving
It with
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« Applied to the image X below, we have:
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Convolutional Neural Networks

= CNNs automatically learn the parameters of the filters
m @ filteris a matrix of parameters
m the key aspect is that a filter is adopted for the whole image

m Convolution can be applied in multiple layers
= alayerl+1 is computed by convolving over output produced in layer 1

m Pooling is an operation often adopted for taking the most informative features that
are learned after a convolution step

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

-
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Pooling and subbsampling
layers

What are the consequences of backpropagating gradients through max or
average pooling layers?

Max pooling: the units that are responsible for the maximum within each
zone J, k —the “winning units”"— are the only to get the backpropagated
gradient

Average pooling: the averaging is simply a special type of convolution with a
fixed kernel that computes the (possibly weighted) average of pixels in a
zone

® the required gradients are therefore like std conv. layers

The subsampling step either samples every nt output, or avoids needless
computation by only evaluating every n' pooling computation



Training in CNN:
Backpropagation and Max Pooling

m A Max Pooling layer can’t be trained because it doesn’t
actually have any weights

m |t still supports a method for it fo calculate gradients
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" How is oL / dinputs ¢

m An input pixel that isn’'t the max value in its 2x2 block have zero
marginal effect on the loss, as any slightly change of its value
wouldn't change the output at alll

m JL / dinputs = 0 for any non-max pixels.

m On the other hand, an input pixel that is the max value would have
its value passed through to the output, so doutput / dinput =1,
meaning oL / dinput = dL / doutput.




Training a CNN: terminology

wputsze e 0, IWREE Output 4,4
o— |
Padding: 2 ©
O— -
Kernel Size: 4 ©
- T
Stride: 2 [
-—@

{ Hover over the matrices to change kernel position.



Dimensions

® The dimension of the ouput is the following

Input Size: 6|6 7 Vlnpurt (6 6) Output (4, 4)
o—— '
Padding: 2 ©
o—— InputD KernelD + 2Paddng
Kernel Size: 4 C StrideD
—.:
Stride: 2 ¢
- M Hover over the matrices to change kernel position.
InputD—KernelD+2PaddingD 6—4+2-2
In the example: 0 = =£ S F1="""""11=34+1=4

StrideD 2
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The ImageNet challenge

m Crucial in demonstrating the effectiveness of deep CNNs

®m Problem: recognize object categories in Internet imagery

m The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
classification task - classify image from Flickr and other search engines into 1 of
1000 possible object categories

m Serves as a standard benchmark for deep learning

m The imagery was hand-labeled based on the presence or absence of an object
belonging to these categories

m There are 1.2 million images in the training set with 732-1300 training images
available per class

m A random subset of 50,000 images was used as the validation set, and 100,000
images were used for the test set where there are 50 and 100 images per class
respectively



ImageNet Home Page

IMAGENET Large Scale Visual Recognition Challenge 2017 (ILSVRC2017)

Introduction News History Timetable Challenges FAQ Citation Contact

Introduction

This challenge evaluates algorithms for object localization/detection from images/videos at scale. Most successful and innovative teams
will be invited to present at CVPR 2017 workshop.

I. Object localization for 1000 categories.
1. Object detection for 200 fully labeled categories.
[ll. Object detection from video for 30 fully labeled categories.




Goal

ImageNet
ILSVRC

« Over 1

t + Rough
b« Collect © Annual competition of image classification at large scale

Turk + 1.2Mimages in 1K categories
» Classification: make 5 guesses about the image label

EntleBucher Appenzeller



Object Location task

m Images, Class labels and Bounding boxes

The ground truth labels for the image are Cy,k = 1,...n with n class labels. For each ground truth class label Cy, the ground truth
bounding boxes are By, m = 1... Mj, where Mj, is the number of instances of the k2 object in the current image.

Let d(c;, Cy,) = 0if ¢; = Cy, and 1 otherwise. Let f(b;, By,) = 0 if b; and By, have more than 50% overlap, and 1 otherwise. The error
of the algorithm on an individual image will be computed using:

1
2 minminmaz{d(, Co), (5, B
E=> Zk:mmmm maz{d(c;, Cy), f(bi, Btm)}



ILSVRC2014 Examples

person

i
‘person

helmet
o power drill

motorcycle




A plateau, then rapid

advances

m “Top-5 error” is the % of fimes that the target label does not appear among
the 5 highest-probability predictions

m Visual recognition methods not based on deep CNNs hit a plateau in
performance at 25%

Name

AlexNet
VGG Net
ResNet

Layers

8
18
1562

Top-5 Error (%)

15.3
7.3
3.6

References

Krizhevsky et al. (2012)
Simonyan and Zisserman (2014)
He et al. (2016)

m Note: the performance for human agreement has been measured at 5.1%

top-5 error

m Smaller filters have been found to lead to superior results in deep networks:
the methods with 19 and 152 layers use filters of size 3x3
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Applications, size and
acuracy
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An Analysis of Deep Neural Network Models for Practical Applications, 2017.



An example: ALexNet (8 Layers)
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AlexNet (2017) won the 2012 ImageNet competition with a top-5
error rate of 15.3%, compared to the second place top-5 error rate
of 26.2%



AlexNet: the architecture

It has 8 layers with learnable parameters.
The input to the Model is RGB images.

It has 5 convolution layers with a combination of
max-pooling layers.

Then it has 3 fully connected layers.

The activation function used in all layers is Relu,
whereas Softmax is used in the output layer

It used two Dropout layers.

The total number of parameters in this
architecture is 62.3 million.

dense

Stride
“of 4

128 Max

pooling 48

dense

2048
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AlexNet: Overview
°
Layer # filters / Filter size Stride Padding Size of feature Actlva‘tlon
neurons map function
Input - - - - 227 x227x3
Conv 1 96 11x11 4 - 55 x 55 x 96 RelLU
Max Pool 1 . 3x3 2 - 27 x 27 x 96
Conv 2 256 5x5 1 2 27 x 27 x 256 RelU
Max Pool 2 - 3 X3 2 - 13 x 13 x 256
Conv 3 384 3x3 1 1 13x 13 x 384 RelLU
Conv 4 384 3x3 1 1 13 x 13 x 384 ReLU
Conv 5 256 3x3 1 1 13 x 13 x 256 RelLU
Max Pool 3 B 3x3 2 - 6 x 6 x 256
Dropout 1 rate = 0.5 - - - 6 x 6 x 256 -
Fully Connected 1 - - - - 4096 RelLU
Dropout 2 rate = 0.5 - - - 4096 -
Fully Connected 2 - - - - 4096 Ralll
eyi
Fully Connected 3 - - - - I 1000 I I Softmax | Ve ]
Yi }920 eV




What has been learnte¢

motor scooter

mite container ship motor scooter Teopard
| | black widow lifeboat go-kart jaguar
[ ] cockroach amphibian moped | cheetah
[] tick fireboat bumper car snow leocpard
| starfish drilling platform golfcart Egyptian cat

19 N

ari erry dagascar cat

convertible agaric dalmati ’j. =quil al monkey

grille mushroom grape spider monkey

pickup jelly fungus elderberry it

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey | |

Figure 4: (Left) Eight [LSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each 1mage. and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce}feature vectors in the last hidden layer jwith the
[smallest Euclidean distance from the feature vector for the te;lmge.l




GooglelLeNet (Inception V1)

Filter
concatenation
1x1 convolutions 33 convolutions 5x5 convolutions 33 max pooling

—

= e

Frevious layer

(a) Inception module, naive version

Filter
concatenation

_.-ﬂ"”fﬂf

11 convolutions

3 convolutions x5 convolutions 1x1 convolutions
f f f
1%1 convolutions 1x1 conviolutions 3x3 max pocling

Na

Previous layer

(b) Inception module with dimensionality reduction
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Parameters in GooglelLeNet

type p a;;::;;:}ze/ mslitg:t depth | #1x1 ii?ci #3x3 i&s:ci #E5x5 l;} ‘:.00; params ops
convolution TXT/2 11211264 1 27K 34M
max pool 3Ix3/2 56 x 56 x 64 0

convolution 3x3/1 56 x5H6:x192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x 28 x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 1414x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 1414512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14:x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 TxTx832 0

inception (5a) TxTx832 2 256 160 320 32 128 128 1072K 54M
inception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 71M
avg pool TxT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K 1M
softmax 1x1:x<1000 0




An example: 1x1 convolutions

m A Ix1 convolution simply maps an input pixel with all it's
channels to an output pixel, not looking at anything around
itself.

m | |s offen used to reduce the number of depth channels, since
It is often very slow to multiply volumes with extremely large
depths.

input (256 depth) -> 1x1 convolution (64 depth) -> 4x4 convolution (256 depth)
input (256 depth) -> 4x4 convolution (256 depth)

m The second chain is about ~3.7x slower.



A summary (2017)

Year CNN Developed Place Top-5 error No. of
by rate parameters
1998 LeNet(8) Yann LeCun 60 thousand
et al
2012 AlexNet(7) Alex 1st 15.3% 60 million
Krizhevsky,
Geoffrey
Hinton, llya
Sutskever
2013 ZFNet() Matthew 1st 14.8%
Zeiler and
Rob Fergus
2014 GoogLeNet(1 | Google 1st 6.67% 4 million
9)
2014 VGG Net(16) | Simonyan, 2nd 7.3% 138 million
Zisserman
2015 ResNet(152) | Kaiming He | 1st 3.6%




CNN Timeline

999 2000 2002 2003 2004 2005 2006
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2009 2010 2011 2012 * 2013 20147 2015 2016 2017 2018
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Visudlization .




Visualizing the filters learned
by a CNN

® | earned edge-like filters and texture-like filters are frequently
observed in the early layers of CNNs trained using natural images

m Since each layer in a CNN involves filtering the feature map
below, so as one moves up the receptive fields become larger

m Higher- level layers learn to detect larger features, which often
correspond to textures, then small pieces of objects



How to visuadlize hidden
layers

® [magine to train a neural classifier on 10 x 10 images, so that n =
100. Each hidden unit i computes a function of the input:

100
ugg) = (Z H'i(jl).rj + bgl))
L =) |

= What input image x would cause alll. to be maximally activated?

= (When ||z|]2 = 3.2 22 < 1) the input which maximally activates

hidden unit i is given by sefting pixel x; to:

(1)

J ]
NS




Example: 100 hidden units
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Visualizing the filters learned
by a CNN

NN
)
7
-
. “ |
(4>

e
First Layer ‘ [(E= Rl P
.;‘ I‘\\ "' - & f) "' - I
Second Layer — f%- V' & o,
S N\ A S 50
(Imagery kindly provided by Matthew Zeiler) Third Layer

* Above are the strongest activations of random neurons projecting the activation back
into image space using the deconvolution approach of Zeiler and Fergus (2013).
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conv3_1: a few of the 256 filters




An Interesting visualization
tool

® CNN Explainer
m hitps://poloclub.github.io/cnn-explainer/
m Paper at: https://arxiv.org/abs/2004.15004




Current CNNs: YOLO

m YOLO stands for You Only Look Once and is a popular real-
time object detection algorithm.

m YOLO unfies a multi-step process by using a single neural
network to perform both classification and prediction of
bounding boxes for detected objects.

m As such, it iIs heavily optimized for detection performance,
about 45 frames per second.

® | can run much faster than running two separate neural
networks to detect and classity objects separately.



YOLO: the output size

Each cell predicts:

- For each bounding box:
4 coordinates (x,y, w, h)
1 confidence value F 4

- Some number of class
probabilities

7 P
+ kb K B F . 4 2 2
For Pascal VOC: L™ "’% %%, g l”% "@4,?‘3,/@*« “b,
- 7x7 grid vy g
2 b dina b 1 1st - 5th 6th - 10th 11th - 30th
- ounding boxes / ce Box #1 Box #2 Class Probabilities

- 20classes

7x7x(2x5+20)=7x7x30tensor=1470 outputs

See also: https://pjreddie.com/publications/
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S x S grid on input
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i ("‘"‘ Final detections

Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S xS x(Bx5+ C) tensor.

From You Only Look Once: Unified, Real-Time Object Detection, Joseph Redmon et al., 2016.,
https://arxiv.org/pdf/1506.02640v5.pdf




Current CNNs: Yolo

Boundir

S x S grid on input

Clas

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S X S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
and C class probabilities. These predictions are encoded as an
S xS x(Bx5+ C) tensor.

Is there an objec

Bounding box

Class labels



Yolo: the architecture
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Yolo: Results
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Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.



Infegrating iImage and texts

Object Recognition usually employs ad hoc training data sets implying ad hoc CNN models

The paper (*) demonstrates that the simple pre-training task of predicting which caption
goes with which image is an efficient and scalable way to learn SOTA image
representations from scratch on a dataset of 400 million (image, text) pairs collected from
the internet.

After pre-training, natural language is used to reference learned visual concepts (or
describe new ones) enabling zero-shot transfer of the model to downstream tasks.

Zero-shot learning: solving an object recognition task without ANY training example

The IDEA: Optimizing the behaviours of image classifiers trained with natural language
supervision at large scale.

(*) Learning Transferable Visual Models From Natural Language Supervision, Redford et al, 2021
https://arxiv.org/abs/2103.00020v1




CLIP (Contrastive
Language-Image Pre-training)

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the
aussie pup — ETEX;e > A photo of I Text
ncoder l a ect Encoder
\ 4 \ A
& Ty | T T Ty
—» I LT | LT, LT - | Ty i he
o e | '™ (8) Use for zero-shot prediction & & 4 ¥
—>» D LT |IaTal| I>Ts - | Ty T T Ts Tn
Image : : T
—» Iz I3T) | 3Ty | I3 T3 I3 Ty ima
Encoder g€ | 51 LT (LT | LT . |[hT
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a

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.
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Sentence encoding &
convolution

Non-linear | | I | | | | I X
Layer
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Representaion

Sentence Bill Gates is the founder of Microsoft.

Figure 2: The architecture of CNN/PCNN used for
sentence encoder.

from Yankai Lin, Shigi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.
Neural Relation Exiraction with Selective Attention over Instances. ACL 2016.




From Collobert et al., 2011

In this contribution, we 1ry to excel on multiple benchmarks while
avoiding task-specific engineering. Instead we use a single learning
system able to discover adequate internal representations. In fact
we view the benchmarks as indirect measurements of the
relevance of the internal representations discovered by the
learning procedure, and we posit that these intermediate
representations are more general than any of the benchmarks.

Our desire to avoid task-specific engineered features prevented us
from using a large body of linguistic knowledge

The architecture takes the input sentence and learns several
layers of feature extraction that process the inputs. The features
computed by the deep layers of the network are automatically
trained by backpropagation to be relevant to the task.



» Collobert and Weston used CNNs
to achieve (near) state-of-the-art
results on many traditional NLP
tasks, such as POS tagging, SRL,
etc.

» CNN at the bottom + CRF on top.

» Collobert et al., “Natural Language
Processing (almost) from scratch”,

JLMR 2011.
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A CNN architecture for sentence
classification (Kim,2014)
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Multi-channel CNNs
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Figure 1: Model architecture with two channels for an example sentence.

» Two “channels” of embeddings (i.e. look-up tables).
» One is allowed to change, while one is kept fixed.
» Both initialized with word2vec.



Datasets

Sentence/phrase-level classification tasks

vy v v Y

Data || ¢ | / N V| | |Vore| | Prev SotA
MR 2 | 20 | 10662 | 18765 | 16448 79.5
SST-1 || 5| 18 | 11855 | 17836 | 16262 48.7
SST-2 || 2| 19| 9613 | 16185 | 14838 87.8
Subj 2 | 23 | 10000 | 21323 | 17913 93.6
TREC || 6 | 10 | 5952 | 9592 | 9125 95.0
CR 2119 | 3775 | 5340 | 5046 82.7
MPQA || 2 | 3 | 10606 | 6246 | 6083 87.2

c: number of labels

[: average sentence length

N: number of sentences

|V|: vocab size (| V| is words already in word2vec)



MR dataset (Pang & Lee, 2005)

= Negative:

m “it's so laddish and juvenile , only teenage boys could possibly find it
funny . “

® while the performances are often engaging , this loose collection of
largely improvised numbers would probably have worked better as a
one-hour fv documentary .

m Positive

m if you sometimes like to go to the movies to have fun , wasabi is a
good place to start .

m gosling provides an amazing performance that dwarfs everything else
in the film .



SST (Stanford Sentiment Treebank, 2013)

m This was the worst restaurant | have ever had the misfortune of eating at.

m The restaurant was a bit slow in delivering their food, and they didn’t seem to be
using the best ingredients.

m This restaurant is pretty decent— its food is acceptable considering the low
prices.

m This is the best restaurant in the Western Hemisphere, and | will definitely be
returning for another meal!

Complex cases:

| do not hate this restaurant. (Negation)

| just love being served cold food! (Sarcasm)

The food is unnervingly unique. (Negative words being positive)



Data Prev SotA | CNN-rand | CNN-static | CNN-nonstatic

MR 79.5 76.1 81.0 81.5
SST-1 48.7 45.0 45.5 48.0
SST-2 87.8 82.7 86.8 87.2

Subj 03.6 89.6 03.0 03.4
TREL 05.0 01.2 02.8 03.6

CR 82.7 79.8 84.7 84.3
MPQA 87.2 83.4 89.6 89.5

» Fine-tuning vectors helps, though not that much.

» Perhaps our embeddings are overfitting (given the relatively
small training sample)?



Data Prev SotA | CNN-nonstatic | CNN-multichannel
MR 79.5 81.5 81.1
SST-1 48.7 48.0 47 .4
SST-2 87.8 7.2 88.1
Subj 03.6 03.4 03.2
TREC 05.0 03.6 02.2
CR 82.7 84.3 85.0
MPQA 87.2 89.5 89.4

» Performance is not statistically different from CNN-nonstatic.



What's next: autoencoders

® An autoencoder neural network is an
unsupervised learning algorithm that applies
backpropagation, setting the target values to be
equal fo the input itself , i.e., it uses

y(i) = x(i)

Layer L, Layer L;



Autoencoders

= Suppose the inputs x are the pixel intensity values from a 10x10
image (100 pixels) son = 100, and

m there are s2 = 50 hidden units in layer L2.

= Note that we also have y eR190,

m Since there are only 50 hidden units, the network is forced to
learn a compressed representation of the input. l.e., given only
the vector of hidden unit activations a@eR0, it must try to
reconstruct the 100-pixel input x.

= Compressed representafion may be seen as lower dimensional
embeddings

®m /magese Sentencese Longer Textse



Bibliography

Y. LeCun, L. D.dackel, B. Boser, J. S. Denker, H. P. Graf, |.. Guyon, D. Henders
E. Howard and W. Hubbard: Handwritten Digit Recognition: applications of
Net Chips and Automatic Learning, IEEE Communication, 41-46, invited pap
November 1989

Yann LeCun, Leon Boftou, Yoshua Bengio, and Patrick Haffner. Gradient-based
I]e(?%r8ning applied to document recognition. Proceedings of the IEEE, 86(11):2278{2324,
q.

Bengio Yoshua. Learning Deep Architectures for Al. Foundations and Trends in
Machine Learning 2 (1): 1-127.

Deep Visual-Semantic Alignments for Generating Image Descriptions. Andrej
Karpathy, Li Fei-Fei, CVPR 2015

Y. Kim, Convolutional Neural Networks for Sentence Classification, Proc. of EMNLP,
Doha, Qatar, 2014.

J. Redmon et al., You Only Look Once: Unified, Real-Time Object Detection, 2016.,
https://arxiv.org/pdf/1506.02640v5.pdf

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
|. Sutskever, Learning Transferable Visual Models From Natural Language Supervision,
Published in International Conference on Machine Learning, 26 February 2021

Convolutional Neural Networks tutorial:

" h’r’rpT://_c|5231 n.github.io/ : stanford course on CNN for visual recognition with online (free)
materials

= hitp://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

= Yann LeCun and Yoshua Bengio. 1998. Convolutional networks for images, speech, and
time series. In The handbook of brain theory and neural networks, Michael A. Arbib (Ed.).
MIT Press, Cambridge, MA, USA 255-258.




Other Resources

m Some of this slides are based on
m hitps://cs.stanford.edu/~quocle/tutoriall.pdf
m hitp://web.stanford.edu/class/cs294a/sparseAutoencoder 201 1new.pdf

m Recent works

m YOLO. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only
Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 779-788).
https://doi.org/10.1109/CVPR.2016.91

m See also a survey such as: https://arxiv.org/html/2408.09332v 1

m CLIP: Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, |.
(2021). Learning Transferable Visual Models From Natural Language
Supervision. International Conference on Machine Learning.
https://arxiv.org/abs/2103.00020




