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Introduction to DL: Outline
 Representation Learning in Deep Learning 

Architectures
 MLP and non linearity

 History and types of NNs:
 Multilayer Perceptrons
 Autoencoders
 Convolutional NNs
 Recurrent Neural Networks: Long Short Term Memories
 Attentive networks

 Training a Neural Network
 Stochastic Gradient Descent
 The Backpropagation algorithm



Artificial Intelligence: the 
pendulum



Neural Networks, 
Connectionism and Deep
Learning

from Goodfellow et al., DL MIT book 





Show & Tell in italiano
Current work at UniTV (Croce, Masotti & Basili, 2017)



A bit of history …
 McCollouch & Pitts 1943 - The  logic of the MCP (Perceptron), through early electronics

 Hebb 1942 - Associative Memories: adaptive storage

 Rosenblatt, 1958 – Perceptron & on-line learning algorithm

 Minsky & Papert, 1969 – mathematical limits of the perceptron

 Rumelhart et al., 1986, McClelland et al., 1995 Backpropagation, Distributed representations

 Hochreiter & Schmidhuber 1997 - LSTSMs

 Le Cun et al., 1998 - Convolutional Nets

 Hinton et al., 2006 – Deep Belief nets (autoencoders)

 Bengio et al., 2007 – Depth vs. Breadth in NNs

 Nair & Hinton, 2010 – further training support (e.g. RLU)

 Hinton, 2012 - Dropout



 from (Wang&Raj, 2017):

Wang, Haohan; Raj, Bhiksha, 
On the Origin of Deep Learning, 

https://arxiv.org/abs/1702.07800 , 
Feb2017



from Goodfellow et al., DL MIT book 



Machine Learning: in search 
of good functions
 Model and Learning

 Linear models
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Support Vector Machines
 Support Vector Machines (SVMs) are a machine 

learning paradigm based on the statistical 
learning theory [Vapnik, 1995]
 No need to remember everything, just the 

discriminating instances (i.e. the support vectors, SV)

 The classifier corresponds to the linear combination 
of SVs

Var1

Var2
Margin

Support Vectors
Support 
Vectors

Only the dot product is required
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Linear classifiers and 
separability
 In a R2 space, 3 point can always be separable 

by a linear classifier
 but 4 points cannot always be shattered [Vapnik 

and Chervonenkis(1971)]

 One solution could be a more complex classifier
 Risk of over-fitting

?



Linear classifiers and 
separability (2)
 … but things change when projecting instances 

in a higher dimension feature space through a 
function 

 IDEA: It is better to have a more complex feature 
space instead of a more complex function



SVM First Advantage: 
making examples linearly 
separable
 Mapping data in a (richer) feature space where linear 

separability holds                 
(attributes        features)
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Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron
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The role of Representation



Representation and 
Learning: the role of depth



Adding Layers …

 From simple linear laws …

 to feedforward structures. It can be made dependent on a 
sequence of functions g(1) and g(2), …, g(k) that give rise to a 
structured hypothesis:

 Hidden layers
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Adding Layers …

 From simple linear laws …

 to feedforward structures. They depend on a sequence of 
functions g(1), g(2), …, g(k) that give rise to structured hypothesis

 Hidden layers
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Neural Networks

 Each circle represent a neuron (or unit)
 3 input, 3 hidden and 1 output

 l is the number of layers

 l denotes the number of units in layer 

 Layers:

 The first layer, i.e. the layer l, is denoted as l

 Layer l and l+1 are connected by a matrix W(l)                        of 
parameters

 (l)
i,j connects the j-th neuron in layer l with the i-th neuron 

in layer l+1

 (l)
i is the bias associated to neuron i in layer 

input layer hidden layer output layer



Forward Step: classification



Forward Step: training



Demystifying Neural Networks
 The discriminating law is a linear function such as:
 ௪,௕ with

 Activation Function, 
ଵ

ଵା௘ష೥

 Parameters: Weights and Bias  

 Features: ଵ ଶ, ଷ and  1
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Neural Networks: 
towards the ensemble
 A neural network determines several independent linear regressions 

in parallel

 No need to decide ahead of time what these variables are going 
to predict

The different neurons acting in parallel
result in a vector of output values



What is Deep Learning
 It is a branch of machine learning based on a set of 

algorithms that attempt to model high-level abstractions in 
data by using multiple processing layer

 Learning representations of data
 feature hierarchies with features from higher levels of the 

hierarchy formed by the composition of lower level features



From Machine Learning…
 Machine Learning in general works well 

because of human-designed features
 E.g. the so-called “Bag-of-Word” vector

 In this sense, machine learning is optimizing a 
set of parameters to obtain best 
performances
 a costly operation

 to be repeated for each new task



… to Deep Learning
 Representation Learning attempts at 

automatically learning the features (as 
well as the parameters)

 Deep Learning attempts at learning 
multiple levels (a hierarchy) of features 
of increasing complexity

 For example, in Face Detection
 A face can be composed by eyes, nose, 

mouth

 Each of them is composed from simpler 
shapes

 How to automatically learn these 
“features”?



from Goodfellow et al., DL MIT book 



AI desiderata 
 Ability to learn complex, highly-varying functions, i.e., with a number of 

variations much greater than the number of training examples.

 Ability to learn with little human input the low-level, intermediate, and high-
level abstractions that would be useful to represent the kind of complex 
functions needed for AI tasks.

 Ability to learn from a very large set of examples: computation time for 
training should scale well with the number of examples, i.e., close to linearly.

 Ability to learn from mostly unlabeled data, i.e., to work in the semi-
supervised setting, where not all the examples come with complete and 
correct semantic labels.

 Ability to exploit the synergies present across a large number of tasks, i.e., 
multi-task learning. These synergies exist because all the AI tasks provide 
different views on the same underlying reality.

 Strong unsupervised learning (i.e., capturing most of the statistical structure 
in the observed data), which seems essential in the limit of a large number 
of tasks and when future tasks are not known ahead of time.



Basic Notation & Formalisms
 Basic jargon:
 Vector spaces, inner products and Topology: Vector, 

Matrices and Tensors
 Training  vs. Classification
 Forward step, backpropagation,
 Cost Function, Loss & Regularization
 Input representation
 Dense vs. Discrete
 Embeddings

 Output format
 Tasks: classification aka labeling, autoencoding, 

encoding-decoding, stacking, multiple task learning 



Non linearity: the MLP
 In order to capture complex non linear functions with can apply a 

still linear model not to x itself but rather to one of its transformed
form, e.g. (x)

 Which mapping  :
 Exploit generic mathematical, domain-independent mappings (e.g. 

polynomial kernels or RBFs)

 Manually engineering 
 Learn the proper  with respect to the task

 The result is a new form of the learning problem

y = f(x;,W) = W(x) + b



A simple MLP: the XOR 
function



A MLP for the XOR problem



The solution

Rotating

Traslating

Scaling 



The new representation
space



An example in Keras
 See the XOR Keras example in the Jupiter 

Notebook made available on MS Teams



from Goodfellow et al., DL MIT book 



Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron

x
1

x
2

x
n

x
3

b

h(x)

θ1

θ2

θ3

θn

Features

Neuron Parameters

Bias

( ) ( )n n
n

h x g bx 




Perceptron and non-linear 
activation functions
 We can adopt the sigmoid function instead of 

the 
 to bound the final values between 0 and 1

 can be interpreted as probabilities of belonging 
to a class

 belonging threshold is  “>0.5”

 It remains a linear classifier

ି௭



Perceptron and non-linear 
activation functions





How to induce from examples

 We need to Learn the parameters and 

 To find these we look at the past data (i.e. training data) optimizing 
an objective function

 Objective function: the error we make on the training data
 the sum of differences between the decision function and the label 

 also called Loss Function or Cost Function
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A general training procedure: 
Stochastic Gradient Descent

 Optimizing   means minimizing it
 it measures the errors we make on the training data.

 We can iterate over examples and update the parameters of the 
function in the direction of smaller costs
 we aim at finding the minimum of that function

 Concretely,

 is a meta-parameter, the learning rate

 are the partial derivatives of the cost function wrt each parameter

𝜃ଵ = 𝜃ଵ − 𝛼Δ𝜃ଵ

…
𝜃௡ = 𝜃௡ − 𝛼Δ𝜃௡

𝑏 = 𝑏 − 𝛼Δ𝑏
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Optimizing J
 From the network

 and j-th layers equation:
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Optimizing J … backwards
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Why SGD?
 Weights are updated using the partial derivatives

 Derivative pushes down the cost following the steepest descent 
path on the error curve



SGD procedure
 Choose an initial random values for and  

 Choose a learning rate

 Repeat until stop criterion is met:
 Pick a random training example x(i)

 Update the parameters with

 We can stop WHEN
 when the parameters do not change (minimum has been reached) or,

 the number of iteration exceeds a certain upper bound 
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Cost Function Derivative
 In order to update the parameters in SGD, we need 

to compute the partial derivatives wrt the learnable 
parameters.

 Remember the chain rule:
 if J is a function of a given function                              

z(x), then the derivative of J wrt x is: 

 Thus (in R2), we need to compute
 for the i-th example x(i)
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Cost Function Derivatives (in R2)
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Cost Function Derivatives
Then,

and we can do the same for θ2
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Cost Function Derivatives for b

 For the parameter, the same steps apply:
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Learning rate: low values

 make the algorithm 
converge slowly

 it is a conservative  and 
safer choice

 However, it implies longer 
training processes
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Learning rate: high values

 make the algorithm 
converge quickly

 Training time is reduced

 it is a a less safer choice
 risk of divergence
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Multilayer Networks
 Each circle represent a neuron (or 

unit)
 3 inputs, 3 hidden and 1 output

 nl=3 is the number of layers

 sl denotes the number of units in 
layer l

 Layers:
 Layer l is denoted as Ll

 Layer l and l+1 are connected by a 
matrix of parameters W(l)

 W(l)
i,j connects neuron j in layer l with 

neuron i in layer l+1

 b(l)
i is the bias associated to neuron i

in layer l+1

input layer hidden layer output layer



Multilayer Networks cont.
 h(l)

I is the activation of unit i in layer l
 for l=1 h(1)

i = xi

input layer hidden layer output layer
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Multilayer Network Classification
 The classification corresponds in 

getting the value(s) in the output 
layer

 Propagating the input towards the 
network given W, b

 This process is called forward propagation

input layer hidden layer output layer
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How to Train a NN?
 We can re-use the gradient descent algorithm
 define a cost function

 compute the partial derivatives wrt to all the 
parameters

 As the NN models function composition 
 we are going to exploit the chain rule (again)

 Setup:
 we have a training set of m examples

 (1) (1) (m) (m)

 are the inputs and y are the labels
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Cost Function of a NN

 Given a single training example the cost is

 For the whole training set is the mean of the 
errors plus a regularization term (weight decay)

 controls the importance of the two terms (it has 
a similar role to the C parameter in SVM)
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… digression: On regularization
 “any modification we make to a learning algorithm                      

that is intended to reduce its generalization error                           
but not its training error.” 

 In practical deep learning scenarios: the best fitting model (in the 
sense of minimizing generalization error) is a large model that has 
been regularized appropriately

 Many regularization approaches are based on limiting the 
capacity of models, such as neural networks, linear regression, or logistic 
regression, by adding a parameter norm penalty Ω(θ) to the 
objective function J

 Regularization methods:
 Weight decay (ridge regression)
 … Constrained optimization
 Data Augmentation
 Early stopping



A GD step
 A GD step update the parameters according to

 where is the learning rate.

 The partial derivatives are computed with the 
Backpropagation algorithm
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The backpropagation
algorithm
 First, we compute for each example 

 Backpropagation works as follow:
1. do a forward pass for an example:

2. for each node i in layer l, compute an error term δl
i

1. it measures how unit i is responsible for the error on the current 
example

3. The error of an output node is the difference between the true 
output value and the predicted one

4. For the intermediate layer l, a node receives a portion of the 
error based on the units it is linked to of the layer l+1

 Partial derivatives will be computed given the error terms
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The backpropagation
algorithm cont.
1. Perform a forward propagation for an example

2. For each unit in the output layer ( l )

3. For l

1. for each node in layer 

4. Compute the partial derivatives as:
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The backpropagation algorithm 
(vectorial notation)

1. Perform a forward propagation for an example

2. For each unit in the output layer ( l)

3. For l

1. for each node in layer 

4. Compute the partial derivatives as:
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The full backpropagation
algorithm
1. Set (l) (l) for all 

2. For each example , for each layer
1. Compute 

2. Set

3. Update the parameters with:
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Some considerations

 Randomly initialize the parameters of the network
 for symmetry breaking

 Remember that the function g is a non-linear 
activation function
 if is the sigmoid

 Activations values can be cached from the 
forward propagation step!

 If you must perform multi-classification
 there will be an output unit for each of the labels
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Some considerations (2)
 How to stop and select the best model?

 Waiting the iteration in which the cost function
doesn’t change significantly

 Risk of overfitting

 Early stopping
 Provide hints as to how many iterations can be run

before overfitting

 Split the original training set into a new training set 
and a validation set

 Train only on the training set and evaluate the error
on the validation set 

 Stop training as soon as the error is higher than it was
the last time

 Use the weights the network had in that previous step



Dropout (Svrivastava et al., 2014)

 During training (only) 
randomly “turn off” some of 
the neurons of a layer

 Dropout can be interpreted as 
a way of regularizing a neural 
network by adding noise to its 
hidden units.

 It can be applied to individual 
steps or in averaging mode

 it prevents co-adaptation of 
units between layers



Dropout (Svrivastava et al., 2014)

 Dropout can be interpreted as a way of regularizing a 
neural network by adding noise to its hidden units.

 It speeds-up the learning algorithm through model 
averaging

 It helps in reducing the risk of greedily promote simplistic 
solutions

 It can be applied to individual steps or in averaging mode
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Dropout: effects
 Drop-out effects in a speech-recognition task



Dropout: effects



Next steps ... 
complex NN architectures
 Convolutional Neural Networks (Neocogitron, Fukushima (1980))

 Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)
 Bidirectional RNNs (Schuster and Paliwal, 1997)

 BP Through-Time (Robinson & Fallside, 1987)

 Long Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

 Attention mechanisms (firstly discussed by (Larochelle & Hinton, 2010; 
Denil et al., 2012)).

 Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et 
al., 2015)

 Attention and Trasformers (A. Vaswani et al., 2017) 
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