
Introduction to

Neural Networks
and

Deep Learning

Roberto Basili, Danilo Croce
Deep Learning 2024/2025

Introduction to DL: Outline
 Representation Learning in Deep Learning

Architectures
 MLP and non linearity

 History and types of NNs:
 Multilayer Perceptrons
 Autoencoders
 Convolutional NNs
 Recurrent Neural Networks: Long Short Term Memories
 Attentive networks

 Training a Neural Network
 Stochastic Gradient Descent
 The Backpropagation algorithm

Artificial Intelligence: the
pendulum

Neural Networks,
Connectionism and Deep
Learning

from Goodfellow et al., DL MIT book

Show & Tell in italiano
Current work at UniTV (Croce, Masotti & Basili, 2017)

A bit of history …
 McCollouch & Pitts 1943 - The logic of the MCP (Perceptron), through early electronics

 Hebb 1942 - Associative Memories: adaptive storage

 Rosenblatt, 1958 – Perceptron & on-line learning algorithm

 Minsky & Papert, 1969 – mathematical limits of the perceptron

 Rumelhart et al., 1986, McClelland et al., 1995 Backpropagation, Distributed representations

 Hochreiter & Schmidhuber 1997 - LSTSMs

 Le Cun et al., 1998 - Convolutional Nets

 Hinton et al., 2006 – Deep Belief nets (autoencoders)

 Bengio et al., 2007 – Depth vs. Breadth in NNs

 Nair & Hinton, 2010 – further training support (e.g. RLU)

 Hinton, 2012 - Dropout

 from (Wang&Raj, 2017):

Wang, Haohan; Raj, Bhiksha,
On the Origin of Deep Learning,

https://arxiv.org/abs/1702.07800 ,
Feb2017

from Goodfellow et al., DL MIT book

Machine Learning: in search
of good functions
 Model and Learning

 Linear models

() ()n n
n

h x g bx 


*

*

()

() () (;)

()l l l

y f x

f x h x g x

suchthat x h x y





 
  



   

 
L

Support Vector Machines
 Support Vector Machines (SVMs) are a machine

learning paradigm based on the statistical
learning theory [Vapnik, 1995]
 No need to remember everything, just the

discriminating instances (i.e. the support vectors, SV)

 The classifier corresponds to the linear combination
of SVs

Var1

Var2
Margin

Support Vectors
Support
Vectors

Only the dot product is required

ℎ 𝑥 = 𝑠𝑔𝑛 𝑤 ȉ 𝑥 + 𝑏 = 𝑠𝑔𝑛(෍ 𝛼௝𝑦௝𝑥௝ ȉ 𝑥⃗ + 𝑏)
௟

௃ୀଵ

Linear classifiers and
separability
 In a R2 space, 3 point can always be separable

by a linear classifier
 but 4 points cannot always be shattered [Vapnik

and Chervonenkis(1971)]

 One solution could be a more complex classifier
 Risk of over-fitting

?

Linear classifiers and
separability (2)
 … but things change when projecting instances

in a higher dimension feature space through a
function 

 IDEA: It is better to have a more complex feature
space instead of a more complex function

SVM First Advantage:
making examples linearly
separable
 Mapping data in a (richer) feature space where linear

separability holds 
(attributes features)

14




Input space Implicit kernel space

Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron

x
1

x
2

x
n

x
3

b

h(x)

θ1

θ2

θ3

θn

Features

Neuron Parameters

Bias

() ()n n
n

h x g bx 


The role of Representation

Representation and
Learning: the role of depth

Adding Layers …

 From simple linear laws …

 to feedforward structures. It can be made dependent on a
sequence of functions g(1) and g(2), …, g(k) that give rise to a
structured hypothesis:

 Hidden layers

() (; ,) ()n n
n

h x g x b g bx   
  

In our example:
(ଵ)

(ଶ)

(ଶ) ଵ (ଵ) (ଵ) (ଶ) (ଶ)

= (ଶ) (ଶ) ଵ (ଵ) (ଵ) (ଶ)

(ଵ) ଵ (ଵ) (ଵ)

Adding Layers …

 From simple linear laws …

 to feedforward structures. They depend on a sequence of
functions g(1), g(2), …, g(k) that give rise to structured hypothesis

 Hidden layers

() (; ,) ()n n
n

h x g x b g bx   
  

௞ ௞ିଵ ଵ ଵ ଵ ௞ିଵ ௞ିଵ ௞ ௞

௞ ௞ ௞ିଵ ௞ିଵ ଵ ଵ (ଵ) ௞ିଵ ௞

(௝) ௝ ௝ ௝ିଵ ௝ିଵ ௝ିଵ ௝

Neural Networks

 Each circle represent a neuron (or unit)
 3 input, 3 hidden and 1 output

 l is the number of layers

 l denotes the number of units in layer

 Layers:

 The first layer, i.e. the layer l, is denoted as l

 Layer l and l+1 are connected by a matrix W(l) of
parameters

 (l)
i,j connects the j-th neuron in layer l with the i-th neuron

in layer l+1

 (l)
i is the bias associated to neuron i in layer

input layer hidden layer output layer

Forward Step: classification

Forward Step: training

Demystifying Neural Networks
 The discriminating law is a linear function such as:
 ௪,௕ with

 Activation Function,
ଵ

ଵା௘ష೥

 Parameters: Weights and Bias

 Features: ଵ ଶ, ଷ and 1

 ଵ (ଵ) ଵ (ଵ) (ଵ)

Neural Networks:
towards the ensemble
 A neural network determines several independent linear regressions

in parallel

 No need to decide ahead of time what these variables are going
to predict

The different neurons acting in parallel
result in a vector of output values

What is Deep Learning
 It is a branch of machine learning based on a set of

algorithms that attempt to model high-level abstractions in
data by using multiple processing layer

 Learning representations of data
 feature hierarchies with features from higher levels of the

hierarchy formed by the composition of lower level features

From Machine Learning…
 Machine Learning in general works well

because of human-designed features
 E.g. the so-called “Bag-of-Word” vector

 In this sense, machine learning is optimizing a
set of parameters to obtain best
performances
 a costly operation

 to be repeated for each new task

… to Deep Learning
 Representation Learning attempts at

automatically learning the features (as
well as the parameters)

 Deep Learning attempts at learning
multiple levels (a hierarchy) of features
of increasing complexity

 For example, in Face Detection
 A face can be composed by eyes, nose,

mouth

 Each of them is composed from simpler
shapes

 How to automatically learn these
“features”?

from Goodfellow et al., DL MIT book

AI desiderata
 Ability to learn complex, highly-varying functions, i.e., with a number of

variations much greater than the number of training examples.

 Ability to learn with little human input the low-level, intermediate, and high-
level abstractions that would be useful to represent the kind of complex
functions needed for AI tasks.

 Ability to learn from a very large set of examples: computation time for
training should scale well with the number of examples, i.e., close to linearly.

 Ability to learn from mostly unlabeled data, i.e., to work in the semi-
supervised setting, where not all the examples come with complete and
correct semantic labels.

 Ability to exploit the synergies present across a large number of tasks, i.e.,
multi-task learning. These synergies exist because all the AI tasks provide
different views on the same underlying reality.

 Strong unsupervised learning (i.e., capturing most of the statistical structure
in the observed data), which seems essential in the limit of a large number
of tasks and when future tasks are not known ahead of time.

Basic Notation & Formalisms
 Basic jargon:
 Vector spaces, inner products and Topology: Vector,

Matrices and Tensors
 Training vs. Classification
 Forward step, backpropagation,
 Cost Function, Loss & Regularization
 Input representation
 Dense vs. Discrete
 Embeddings

 Output format
 Tasks: classification aka labeling, autoencoding,

encoding-decoding, stacking, multiple task learning

Non linearity: the MLP
 In order to capture complex non linear functions with can apply a

still linear model not to x itself but rather to one of its transformed
form, e.g. (x)

 Which mapping  :
 Exploit generic mathematical, domain-independent mappings (e.g.

polynomial kernels or RBFs)

 Manually engineering 
 Learn the proper  with respect to the task

 The result is a new form of the learning problem

y = f(x;,W) = W(x) + b

A simple MLP: the XOR
function

A MLP for the XOR problem

The solution

Rotating

Traslating

Scaling

The new representation
space

An example in Keras
 See the XOR Keras example in the Jupiter

Notebook made available on MS Teams

from Goodfellow et al., DL MIT book

Perceptron (Rosenblatt, 1958)

 Linear Classifier mimicking a neuron

x
1

x
2

x
n

x
3

b

h(x)

θ1

θ2

θ3

θn

Features

Neuron Parameters

Bias

() ()n n
n

h x g bx 


Perceptron and non-linear
activation functions
 We can adopt the sigmoid function instead of

the
 to bound the final values between 0 and 1

 can be interpreted as probabilities of belonging
to a class

 belonging threshold is “>0.5”

 It remains a linear classifier

ି௭

Perceptron and non-linear
activation functions

How to induce from examples

 We need to Learn the parameters and

 To find these we look at the past data (i.e. training data) optimizing
an objective function

 Objective function: the error we make on the training data
 the sum of differences between the decision function and the label

 also called Loss Function or Cost Function

(௜) (௜) ଶ

௠

௜ୀଵ

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

𝜕𝐽

𝜕𝜃௝
(௜)

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

𝜕𝐽

𝜕𝑧

𝜕𝑧

𝜕𝑥

𝜕𝑧

𝜕𝑦

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

𝜕𝐽

𝜕𝜃௝
(௜)

෍ 𝜃௜

௛

଴

𝑥௜ 𝑔

𝜃௝
(௜)

= 𝜃௝
(௜)

− 𝛼
𝜕𝐽

𝜕𝜃௝
(௜)

A general training procedure:
Stochastic Gradient Descent

 Optimizing means minimizing it
 it measures the errors we make on the training data.

 We can iterate over examples and update the parameters of the
function in the direction of smaller costs
 we aim at finding the minimum of that function

 Concretely,

 is a meta-parameter, the learning rate

 are the partial derivatives of the cost function wrt each parameter

𝜃ଵ = 𝜃ଵ − 𝛼Δ𝜃ଵ

…
𝜃௡ = 𝜃௡ − 𝛼Δ𝜃௡

𝑏 = 𝑏 − 𝛼Δ𝑏

() (; ,) ()n n
n

h x g x b g bx   
  

Optimizing J
 From the network

 and j-th layers equation:

 ℎ 𝑥⃗ = 𝑔 ௞ (𝑔 ௞ିଵ (…𝑔 ଵ (𝑥⃗; 𝜃 ଵ , 𝑏 ଵ); …); 𝜃 ௞ିଵ , 𝑏 ௞ିଵ); 𝜃 ௞ , 𝑏 ௞)=

 = 𝑔 ௞ 𝑊 ௞ 𝑔 ௞ିଵ (𝑊 ௞ିଵ … . 𝑔 ଵ (𝑊 ଵ 𝑥⃗ + 𝑏(ଵ) … + 𝑏 ௞ିଵ) + 𝑏 ௞)

ℎ(௝) 𝑥⃗ = 𝑔 ௝ 𝑊 ௝ 𝑔 ௝ିଵ (𝑥⃗; 𝜃 ௝ିଵ , 𝑏 ௝ିଵ) + 𝑏 ௝ 𝑗 = 2, … . , 𝑘 − 1

௝ ௝ିଵ ௝

௝ ௝ ௝ିଵ ௝ିଵ ௝ିଵ ௝

௝ ௝ ௝

௝ ௝ ଶ

௝

௝

௝

Label (0.00|1.00)

Cost (or Loss)

Optimizing J … backwards

௝ ௝ିଵ ௝

௝ ௝ ௝ିଵ ௝ିଵ ௝ିଵ ௝

௝ ௝ ௝

௝ ௝ ଶ

௝

௝

௝

Label (0.00|1.00)

Cost (or Loss)

௝ିଵ ௝ିଶ ௝ିଵ

௝ିଵ

Why SGD?
 Weights are updated using the partial derivatives

 Derivative pushes down the cost following the steepest descent
path on the error curve

SGD procedure
 Choose an initial random values for and

 Choose a learning rate

 Repeat until stop criterion is met:
 Pick a random training example x(i)

 Update the parameters with

 We can stop WHEN
 when the parameters do not change (minimum has been reached) or,

 the number of iteration exceeds a certain upper bound

ଵ ଵ ଵ

௡ ௡ ௡

Cost Function Derivative
 In order to update the parameters in SGD, we need

to compute the partial derivatives wrt the learnable
parameters.

 Remember the chain rule:
 if J is a function of a given function

z(x), then the derivative of J wrt x is:

 Thus (in R2), we need to compute
 for the i-th example x(i)

x

z

z

J

x

J











ଵ

ଵ

(௜) (௜) ଶ

ଶ
ଶ

(௜) (௜) ଶ

(௜) (௜) ଶ

x1

x2

h(x)

θ1

θ2

b

Cost Function Derivatives (in R2)

ଵ
ଵ

(𝒊) (௜) ଶ

(𝒊) (௜)

ଵ

(𝒊)

𝑻 (𝒊) (௜)

ଵ

𝑻 (𝒊)

ణ

ణఏభ

𝑻 ణ௚(𝜽𝑻𝒙ା௕)

ణ(𝜽𝑻𝒙ା௕)

ణ(𝜽𝑻𝒙ା௕)

ణఏభ

𝑻 𝑻 ణ(ఏభ௫భାఏమ௫మା௕)

ణఏభ
𝑻 𝑻

ଵ

ze
zg 

1

1
)(

)())(1(zgzg
z

g





We have that:
x1

x2

h(x)

θ1

θ2

b

1
() (1 ()) ()

1 x

s
s x then s x s x

e x


  



Cost Function Derivatives
Then,

and we can do the same for θ2

ଵ
𝑻 (𝒊) (௜) 𝑻 (𝒊) 𝑻 (𝒊) (௜)

ଵ

ଶ
𝑻 (𝒊) (௜) 𝑻 (𝒊) 𝑻 (𝒊) (௜)

ଶ

x1

x2

h(x)

θ1

θ2

b

Cost Function Derivatives for b

 For the parameter, the same steps apply:

(𝒊) (௜) ଶ

(𝒊) (௜) (𝒊)

𝑻 (𝒊) (௜) 𝑻 (𝒊)

𝑻
𝑻

𝑻

𝑻

𝑻 𝑻

𝑻 (𝒊) (௜) 𝑻 (𝒊) 𝑻 (𝒊)

x1

x2

h(x)

θ1

θ2

b

Learning rate: low values

 make the algorithm
converge slowly

 it is a conservative and
safer choice

 However, it implies longer
training processes

bbb 







222

111x1

x2

h(x)

θ1

θ2

b

Learning rate: high values

 make the algorithm
converge quickly

 Training time is reduced

 it is a a less safer choice
 risk of divergence

bbb 







222

111
x1

x2

h(x)

θ1

θ2

b

Multilayer Networks
 Each circle represent a neuron (or

unit)
 3 inputs, 3 hidden and 1 output

 nl=3 is the number of layers

 sl denotes the number of units in
layer l

 Layers:
 Layer l is denoted as Ll

 Layer l and l+1 are connected by a
matrix of parameters W(l)

 W(l)
i,j connects neuron j in layer l with

neuron i in layer l+1

 b(l)
i is the bias associated to neuron i

in layer l+1

input layer hidden layer output layer

Multilayer Networks cont.
 h(l)

I is the activation of unit i in layer l
 for l=1 h(1)

i = xi

input layer hidden layer output layer

ℎଵ
(ଶ)

= 𝑔(𝑊ଵଵ
(ଵ)

𝑥ଵ + 𝑊ଵଶ
(ଵ)

𝑥ଶ + 𝑊ଵଷ
(ଵ)

𝑥ଷ + 𝑏ଵ
(ଵ)

)

ℎଶ
(ଶ)

= 𝑔(𝑊ଶଵ
(ଵ)

𝑥ଵ + 𝑊ଶଶ
(ଵ)

𝑥ଶ + 𝑊ଶଷ
(ଵ)

𝑥ଷ + 𝑏ଶ
(ଵ)

)

ℎଷ
(ଶ)

= 𝑔(𝑊ଷଵ
(ଵ)

𝑥ଵ + 𝑊ଷଶ
(ଵ)

𝑥ଶ + 𝑊ଷଷ
(ଵ)

𝑥ଷ + 𝑏ଷ
(ଵ)

)

ℎௐ,௕ 𝑥 = ℎଵ
ଷ

=
𝑔(𝑊ଵଵ

(ଶ)
ℎଵ

(ଶ)
+ 𝑊ଵଶ

(ଶ)
ℎଶ

(ଶ)
+ 𝑊ଵଷ

(ଶ)
ℎଷ

(ଶ)
+ 𝑏ଵ

(ଶ)
)

 We call z(l)
i the weighted sum of

inputs to unit i in layer l, i.e.

𝑧௜
(ଶ)

= ෍ 𝑊௜௝
(ଵ)

𝑥௝

௡

௝ୀଵ

+ 𝑏௜
(ଵ)

ℎ௜
(௟)

= 𝑔(𝑧௜
(௟)

)

 g is a non-linearity function
 e.g. the sigmoid

(1)

(2)

Multilayer Network Classification
 The classification corresponds in

getting the value(s) in the output
layer

 Propagating the input towards the
network given W, b

 This process is called forward propagation

input layer hidden layer output layer

(௟ାଵ) (௟) (௟) (௟)

(௟ାଵ) (௟ାଵ)

How to Train a NN?
 We can re-use the gradient descent algorithm
 define a cost function

 compute the partial derivatives wrt to all the
parameters

 As the NN models function composition
 we are going to exploit the chain rule (again)

 Setup:
 we have a training set of m examples

 (1) (1) (m) (m)

 are the inputs and y are the labels

x

z

z

h

x

h

xzh












))((

Cost Function of a NN

 Given a single training example the cost is

 For the whole training set is the mean of the
errors plus a regularization term (weight decay)

 controls the importance of the two terms (it has
a similar role to the C parameter in SVM)

ௐ,௕
ଶ

(𝒊) (௜)

௠

௜ୀଵ

௝௜
(௟) ଶ

௦೗శభ

௝ୀଵ

௦೗

௜ୀଵ

௡೗ିଵ

௟ୀଵ

ௐ,௕
(𝒊) (௜) ଶ

௠

௜ୀଵ

௝௜
(௟) ଶ

௦೗శభ

௝ୀଵ

௦೗

௜ୀଵ

௡೗ିଵ

௟ୀଵ

… digression: On regularization
 “any modification we make to a learning algorithm

that is intended to reduce its generalization error
but not its training error.”

 In practical deep learning scenarios: the best fitting model (in the
sense of minimizing generalization error) is a large model that has
been regularized appropriately

 Many regularization approaches are based on limiting the
capacity of models, such as neural networks, linear regression, or logistic
regression, by adding a parameter norm penalty Ω(θ) to the
objective function J

 Regularization methods:
 Weight decay (ridge regression)
 … Constrained optimization
 Data Augmentation
 Early stopping

A GD step
 A GD step update the parameters according to

 where is the learning rate.

 The partial derivatives are computed with the
Backpropagation algorithm

),(

),(

)(
)()(

)(
)()(

bWJ
b

bb

bWJ
W

WW

l
i

l
i

l
i

l
ij

l
ij

l
ij











The backpropagation
algorithm
 First, we compute for each example

 Backpropagation works as follow:
1. do a forward pass for an example:

2. for each node i in layer l, compute an error term δl
i

1. it measures how unit i is responsible for the error on the current
example

3. The error of an output node is the difference between the true
output value and the predicted one

4. For the intermediate layer l, a node receives a portion of the
error based on the units it is linked to of the layer l+1

 Partial derivatives will be computed given the error terms

௜௝
(௟)

(𝒊) (௜)

(𝒊) (௜)

The backpropagation
algorithm cont.
1. Perform a forward propagation for an example

2. For each unit in the output layer (l)

3. For l

1. for each node in layer

4. Compute the partial derivatives as:

𝛿௜
(௡೗)

=
𝜗

𝜗𝑧௜
(௡೗)

|𝒚 − 𝒉𝑾,𝒃(𝒙)|ଶ = −(𝑦௜ − ℎ௜
(௡೗)

) ⋅ 𝑔′(𝑧௜
(௡೗)

)

𝛿௜
(௟)

= (෍ 𝑊௝௜
(௟)

௦೗శభ

௝ୀଵ

𝛿௝
(௟ାଵ)

)𝑔′(𝑧௜
(௟)

)

𝜗

𝜗𝑊௜௝
(௟)

𝐽(𝑊, 𝑏; 𝒙, 𝒚) = ℎ௝
(௟)

𝛿௜
(௟ାଵ)

𝜗

𝜗𝑏௜
(௟)

𝐽(𝑊, 𝑏; 𝒙, 𝒚) = 𝛿௜
(௟ାଵ)

The backpropagation algorithm
(vectorial notation)

1. Perform a forward propagation for an example

2. For each unit in the output layer (l)

3. For l

1. for each node in layer

4. Compute the partial derivatives as:

𝛿
(௡೗)

= − 𝑦௜ − 𝑎௜
௡೗ . 𝑔′(𝑧௜

(௡೗)
)

() () (1) ()(()) '()l l T l l
iW g z   

)1(

)()1(

),;,(

)(),;,(

)(

)(








l

b

Tll

W

yxbWJ

ayxbWJ

l

l





))((ii cbcba 

1 2 3

1 2 3

'([, ,])

['(), '(), '()]

g z z z

g z g z g z



The full backpropagation
algorithm
1. Set (l) (l) for all

2. For each example , for each layer
1. Compute

2. Set

3. Update the parameters with:

)1()()1(),;,(,)(),;,()()(
  l

b

Tll

W
yxbWJayxbWJ ll 

),;,(

),;,(

)(

)(

)()(

)()(

yxbWJbb

yxbWJWW

l

l

b

ll

W

ll





)]
1

[(

])
1

[(

)()()(

)()()()(

lll

llll

b
m

bb

WW
m

WW









Some considerations

 Randomly initialize the parameters of the network
 for symmetry breaking

 Remember that the function g is a non-linear
activation function
 if is the sigmoid

 Activations values can be cached from the
forward propagation step!

 If you must perform multi-classification
 there will be an output unit for each of the labels

1
()

1
'() (1 ()) ()

z
g z

e
g z g z g z




 

𝑔′(𝑧௜
(௟)

) = (1 − 𝑔(𝑧௜
(௟)

))𝑔(𝑧௜
(௟)

) = (1 − ℎ௜
(௟)

)ℎ௜
(௟)

Some considerations (2)
 How to stop and select the best model?

 Waiting the iteration in which the cost function
doesn’t change significantly

 Risk of overfitting

 Early stopping
 Provide hints as to how many iterations can be run

before overfitting

 Split the original training set into a new training set
and a validation set

 Train only on the training set and evaluate the error
on the validation set

 Stop training as soon as the error is higher than it was
the last time

 Use the weights the network had in that previous step

Dropout (Svrivastava et al., 2014)

 During training (only)
randomly “turn off” some of
the neurons of a layer

 Dropout can be interpreted as
a way of regularizing a neural
network by adding noise to its
hidden units.

 It can be applied to individual
steps or in averaging mode

 it prevents co-adaptation of
units between layers

Dropout (Svrivastava et al., 2014)

 Dropout can be interpreted as a way of regularizing a
neural network by adding noise to its hidden units.

 It speeds-up the learning algorithm through model
averaging

 It helps in reducing the risk of greedily promote simplistic
solutions

 It can be applied to individual steps or in averaging mode

Dropout (Svrivastava et al., 2014)

 Dropout can be interpreted as a way of regularizing a
neural network by adding noise to its hidden units.

 It speeds-up the learning algorithm through model
averaging

 It helps in reducing the risk of greedily promote simplistic
solutions

 It can be applied to individual steps or in averaging mode

Dropout: effects
 Drop-out effects in a speech-recognition task

Dropout: effects

Next steps ...
complex NN architectures
 Convolutional Neural Networks (Neocogitron, Fukushima (1980))

 Recurrent Neural Networks (Jordan, 1986), (Elman, 1990)
 Bidirectional RNNs (Schuster and Paliwal, 1997)

 BP Through-Time (Robinson & Fallside, 1987)

 Long Short Time Memories LSTMS, (Hochreiter & Schmidhuber, 1997)

 Attention mechanisms (firstly discussed by (Larochelle & Hinton, 2010;
Denil et al., 2012)).

 Autoencoders (Bengio et al., 2007), Encoder-Decoders (Cho et
al., 2015)

 Attention and Trasformers (A. Vaswani et al., 2017)

Bibliografia: an historical overview

 Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4):115{133, 1943.

 Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

 Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology Press, 1949.

 John J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings
of the national academy of sciences, 79(8):2554-2558, 1982.

 David E Rumelhart, Georey E Hinton, and Ronald J Williams. Learning internal representations by error propagation.
Technical report, DTIC Document, 1985.

 Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (1986). Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. MIT Press, Cambridge.

 Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464{1480, 1990.

 David H Ackley, Georey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines. Cognitive
science, 9(1):147-169, 1985.

 Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition
unaected by shift in position. Biological cybernetics, 36(4): 193-202, 1980.

 Le Cun B. Boser, John S. Denker, D. Henderson, Richard E. Howard, W. Hubbard and Lawrence D. Jackel. Handwritten
digit recognition with a back-propagation network. In Advances in neural information processing systems. Citeseer,
1990.

Bibliografia: an historical
overview (2)
 Michael I Jordan. Serial order: A parallel distributed processing approach. Advances in psychology, 121:471-495, 1986.

 Jerey L Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.

 AJ Robinson and Frank Fallside. The utility driven dynamic error propagation network. University of Cambridge Department
of Engineering, 1987.

 Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing,
45(11):2673-2681, 1997.

 Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997.

 Hugo Larochelle and Georey E Hinton. Learning to combine foveal glimpses with a third-order boltzmann machine. In
Advances in neural information processing systems, pages 1243-1251, 2010

 Denil, M., Bazzani, L., Larochelle, H., and de Freitas, N. (2012). Learning where to attend with deep architectures for image
tracking. Neural Computation, 24 (8), 2151–2184

 Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-wise training of deep networks.
Advances in neural information processing systems, 19:153, 2007.

 Kyunghyun Cho, Bart Van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin,
Attention is all you need, NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing
Systems, December 2017, Pages 6000–6010 Attention is all you need, NIPS'17: Proceedings of the 31st International
Conference on Neural Information Processing Systems, December 2017, Pages 6000–6010

