Performance Evaluation of Machine Learning Systems

R. Basili, S. Filice

University of Roma Tor Vergata

Motivations

Is a ML system performing properly?

Among a set of different algorithms/models, which one is performing better on a given task?

What can I do to improve my target classification system?

Overview

Performance Evaluation Metrics Classifier Evaluation Metrics Systems Evaluation Me Tuning and Evaluation Methods □ Error Diagnostics

Classifier Evaluation: Confusion Matrix

		PREDICTED VALUE		
		Class A	Class B	Class C
VALUE	Class A	38	12	0
ACTUAL VALUE	Class B	5	43	2
	Class C	6	0	44

$$accuracy = \frac{\#correct\ classifications}{\#classifications} = \frac{38 + 43 + 44}{150} = 83.33\%$$

$$error \ rate = \frac{\#incorrect \ classifications}{\#classifications} = \frac{12 + 5 + 2 + 6}{150} = 16.67\%$$

Evaluation with skewed data

 Accuracy is not a suitable metric for task with imbalanced classes (for instance a spam detector)

Very bad performance on the Spam class, that is the target of the classifier!! ... nonetheless ...

		PREDICTED VALUE		
ACTUAL VALUE		Spam	Non-Spam	
	Spam	8	10	
	Non-Spam	0	9990	

$$accuracy = \frac{\#correct\ classifications}{\#classifications} = \frac{9990}{10000} = 99.9\%$$

Single Class Metrics

		PREDICTED VALUE		
ACTUAL VALUE		Class C	Not Class C	
	Class C	TP True Positive	FN False Negative	
	Not Class C	FP False Positive	TN True Negative	

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

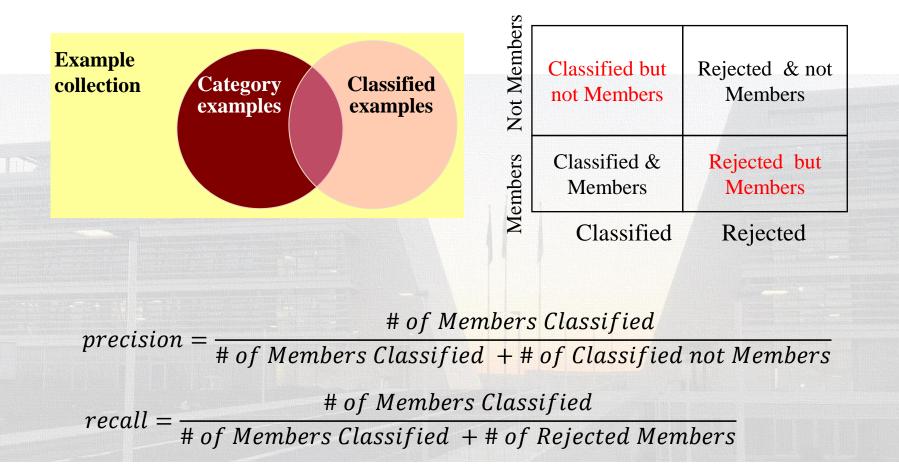
what percentage of instances the classifier labeled as positive are actually positive?

what percentage of positive instances did the classifier label as positive?

$$F1 = \frac{2 \times precision \times recall}{precision + recall}$$

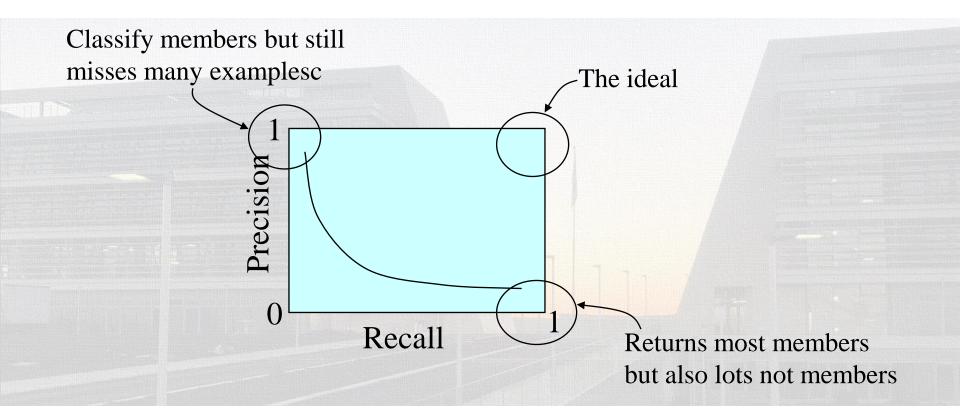
F-measure is the harmonic mean of precision and recall

Class-based evaluation

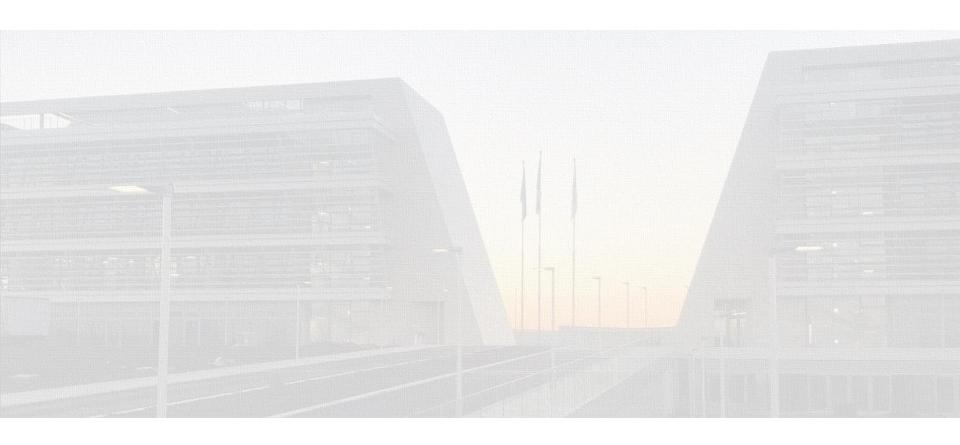


What about accuracy???

Trade-off between Precision and Recall



Other class based measures



Precision and Recall of C_i

- \square a_i , corrects (TP_i)
- b_i, mistakes (FP_i)
- c_i, instances of a Class_i that are not actually retrieved, (FN_i)

The *Precision* and *Recall* are defined by the above counts:

$$Precision_i = \frac{a_i}{a_i + b_i}$$

$$Recall_i = \frac{a_i}{a_i + c_i}$$

		PREDICTED VALUE		
		Class A	Class B	Class C
ACTUAL VALUE	Class A	38	12	0
	Class B	5	43	2
	Class C	6	0	44

- \square Precision_A= 38/(38+5+6)=38/49
- \square Recall_A = 38/(38+12)=38/50
- \square Precision_B = 43/(43+12)=43/55
- \square Recall_C = 44/(44+6)=44/50

Performance Measurements (cont'd)

- Breakeven Point
 - Find thresholds for which

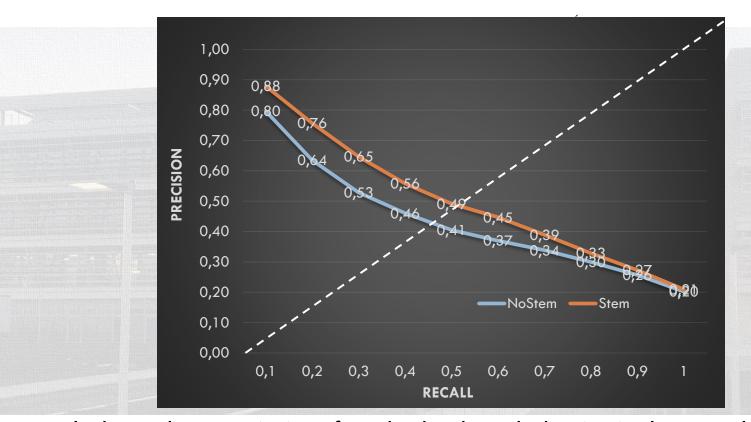
- Interpolation
- F-measure

$$F_1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

- Harmonic mean between precision and recall
- Global performance on more than two categories
 - Micro-average
 - The counts refer to classifiers
 - Macro-average (average measures over all categories)

Break-even Point

The BEP is the interpolated estimate of the value for which Recall=Precision

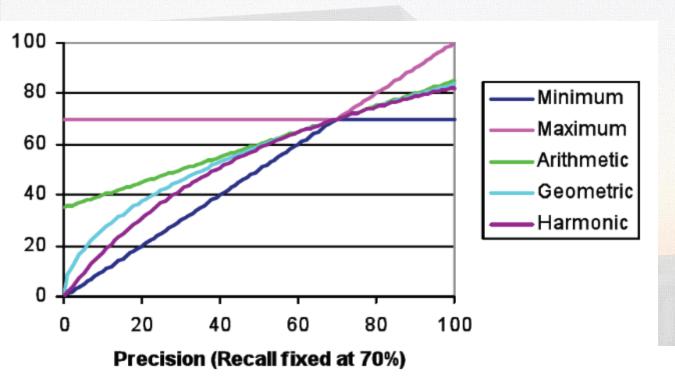


It shows the superiority of methods whose behavior is closer to the (1,1) ideal performance

Averaging Precision & Recall:

A comparison

$$F_{1} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$



$$min(p,r)$$
 $max(p,r)$

$$arithM(p,r) = \frac{p+r}{2}$$

$$geomM(p,r) = \sqrt{p \cdot r}$$

$$harm M(p,r) = \frac{2}{p^{-1} + r^{-1}}$$

Averaging Precision & Recall: cross-categorical analysis

- Individual scores characterize the performance about each specific class
- Simple macro averaging can be applied to have

$$MPrecision = \sum_{i=1}^{n} Precision_i$$
 $MRecall = \sum_{i=1}^{n} Recall_i$
 $MF_1 = \frac{2 \cdot MPrecision \cdot MRecall}{MPrecision + MRecall}$

F-measure e MicroAverages

$$F_1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

$$\mu Precision = \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i + b_i}$$

$$\mu Recall = \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i + c_i}$$

$$\mu BEP = \frac{\mu Precision + \mu Recall}{2}$$

$$\mu f_1 = \frac{2 \times \mu Precision \times \mu Recall}{\mu Precision + \mu Recall}$$

		PREDICTED VALUE		
		Class A	Class B	Class C
ACTUAL VALUE	Class A	38	12	0
	Class B	5	43	2
	Class C	6	0	44

- \square Precision_A= 38/(38+5+6)=38/49
- \square Precision_B = 43/(43+12)=43/55
- Segue che:

Mprecision=
$$1/3(38/49 + 43/55 +...)$$

		PREDICTED VALUE		
ACTUAL VALUE		Class A	Class B	Class C
	Class A	38	12	0
	Class B	5	43	2
	Class C	6	0	44

- \square Precision_A= 38/(38+5+6)=38/49
- \square Precision_B = 43/(43+12)=43/55
- □ Segue che: μ Precision=(38+43+44)/(38+43+44+11+12+2)

Overview

- Performance Evaluation Metrics
 - Classifier Evaluation Metrics
 - Information Retrieval Systems Evaluation Metrics

Tuning and Evaluation Methods

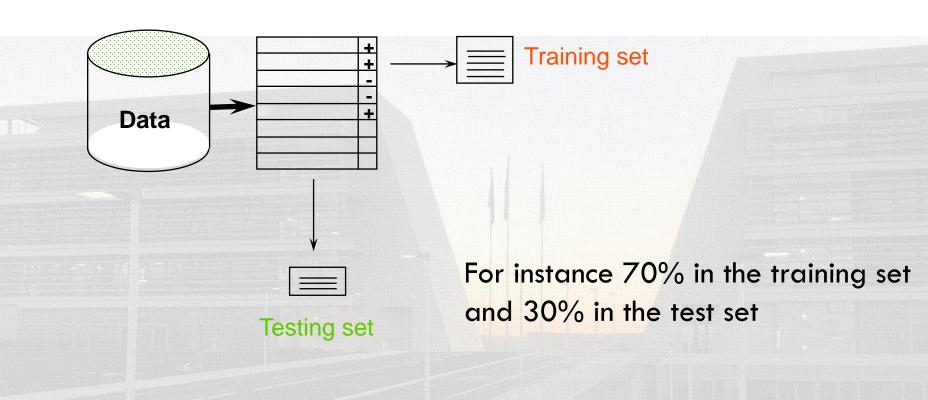
Error Diagnostics

Testing Data

- To obtain a reliable estimation, test data must be instances NOT employed for the training step:
 - Error on the training data is not a good indicator of performance on future data, because new data will probably not be exactly the same as the training data!
 - Overfitting fitting the training data too precisely usually leads to poor results on new data
 - We want to evaluate how much accurate predictions of the model we learned are, and not other computational aspects (e.g. its memorization capability)

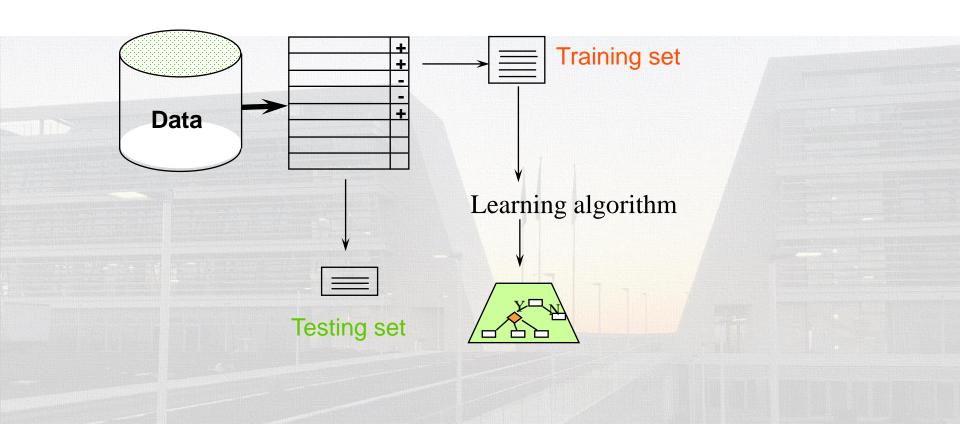
Step 1: dataset splitting

Results Known



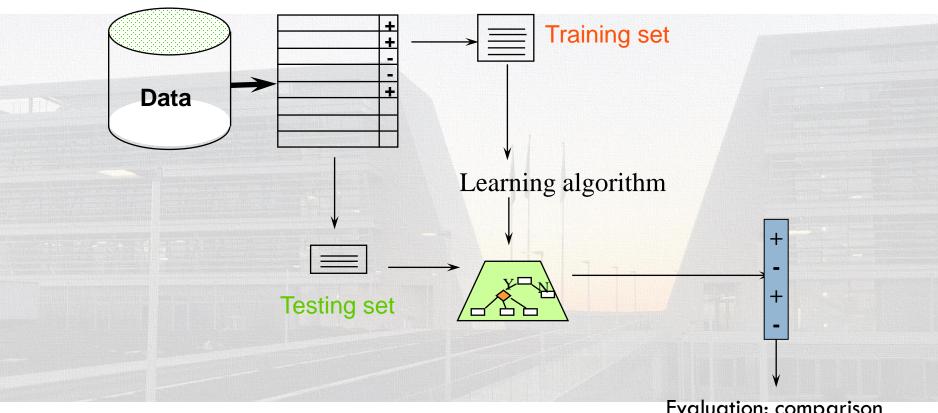
Step 2: learning phase

Results Known



Step 3: testing the model

Results Known



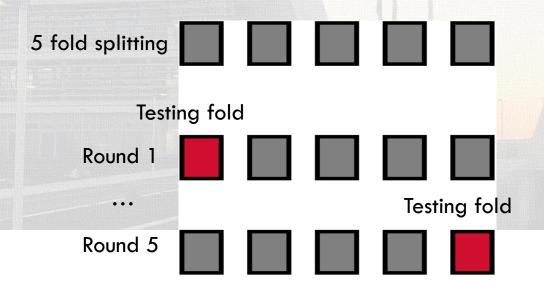
Evaluation: comparison with the oracle

Evaluation on Few Data

- When data is scarce (totally or for a single class), a single evaluation process could not be enough representative
 - The testing set could contain too few instances to produce a reliable result
- SAMPLING: The evaluation process must be repeated with different splitting

N-Fold Cross Validation

- \square Data is split into n subsets of equal size
- Each subset in turn is used for testing and the remainders n-1 for training
- The metrics estimated in each round are averaged

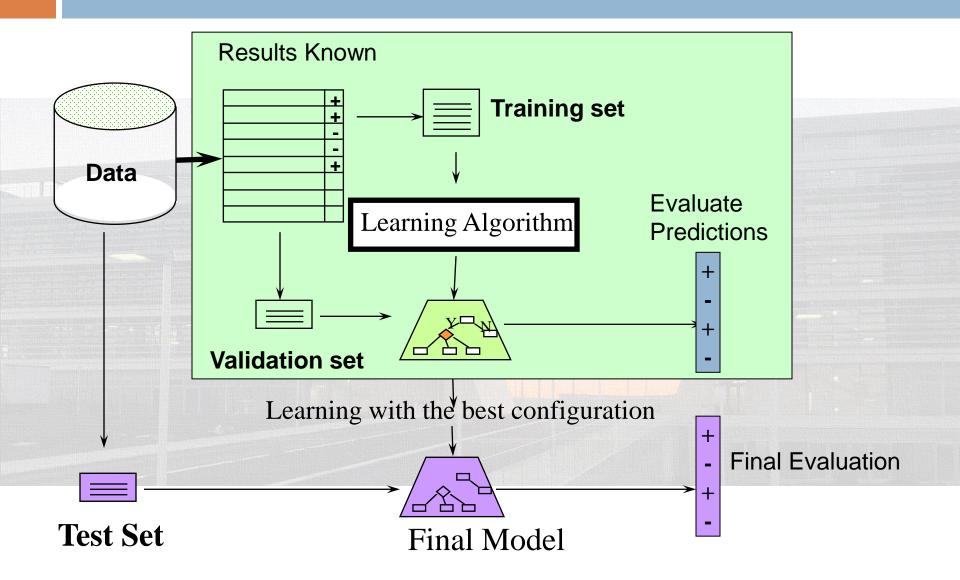


An example: Learning without learning. LAZY LEARNING

Tuning a Classifier

- Most of ML algorithms depends on some parameters
 - **Examples:** k in KNN, w_i in Rocchio, $p(w_i \mid c_i)$ for NB
- The best configuration must be choosen after a proper tuning stage:
 - A set of configurations must be established (for instance, k=1,2,5,10,...,50)
 - Each configuration must be evaluated on a validation (or tuning) set

Complete ML Process



Reuters text classification

- An example: the Reuters news text classification use case
 - Some well known classifiers (e.g. k-NN or SVM) are compared with a parametrized version of Rocchio
 - In the next slides, the parametrization procedure is presented and its evaluation is discussed

Feature Selection in Parametrized Rocchio

(Basili et al., IJCAI 2001)

- $lue{}$ Literature work uses a bunch of values for eta and γ
- \square Interpretation of positive (β) vs. negative (γ) information

$$\Rightarrow$$
 value of $\beta > \gamma > 0$ (e.g. 16, 4)

□ IJAIT interpretation: Parametrized Rocchio [IJAIT 2002, ECIR 2003]:

Remove one parameter s (i.e. β) and let the remaining parameter to depend on the *i*-th class C^i

$$C_f^i = \max\left\{0, \frac{1}{|T_i|} \sum_{d \in T_i} d_f - \frac{\rho_i}{|\overline{T}_i|} \sum_{d \in \overline{T}_i} d_f\right\}$$

- C_f^i expresses the weight that a feature f brings in favour of the class i
- 0-weighted features f do not affect similarity estimation
- increasing ho causes many feature to be set to $0 \Rightarrow$ they are removed
- Different values ρ_i of the parameter are used for different classes C^i

Experiments

- Reuters Collection 21578 Apté split (Apté94)
 - 90 classes (12,902 docs)
 - A fixed splitting between training and test set
 - 9603 vs 3299 documents
- Tokens
 - about 30,000 different
- Other different versions have been used but ...
 most of TC results relate to the 21578 Apté
 - [Joachims 1998], [Lam and Ho 1998], [Dumais et al. 1998], [Li Yamanishi 1999], [Weiss et al. 1999], [Cohen and Singer 1999]...

A Reuters document- Acquisition Category

CRA SOLD FORREST GOLD FOR 76 MLN DLRS - WHIM CREEK

SYDNEY, April 8 - <Whim Creek Consolidated NL> said the consortium it is leading will pay 76.55 mln dlrs for the acquisition of CRA Ltd's <CRAA.S> <Forrest Gold Pty Ltd> unit, reported yesterday.

CRA and Whim Creek did not disclose the price yesterday. Whim Creek will hold 44 pct of the consortium, while <Austwhim Resources NL> will hold 27 pct and <Croesus Mining NL> 29 pct, it said in a statement.

As reported, Forrest Gold owns two mines in Western

Australia producing a combined 37,000 ounces of gold a year. It also owns an undeveloped gold project.

A Reuters document- Crude-Oil Category

FTC URGES VETO OF GEORGIA GASOLINE STATION BILL

WASHINGTON, March 20 - The Federal Trade Commission said its staff has urged the governor of Georgia to veto a bill that would prohibit petroleum refiners from owning and operating retail gasoline stations.

The proposed legislation is aimed at preventing large oil refiners and marketers from using predatory or monopolistic practices against franchised dealers.

But the FTC said fears of refiner-owned stations as part of a scheme of predatory or monopolistic practices are unfounded. It called the bill anticompetitive and warned that it would force higher gasoline prices for Georgia motorists.

Precision and Recall of C_i

- □ a_i, corrects
- □ b_i, mistakes
- □ c_i, not retrieved

The *Precision* and *Recall* are defined by the above counts:

$$Precision_i = \frac{a_i}{a_i + b_i}$$

$$Recall_i = \frac{a_i}{a_i + c_i}$$

F-measure e MicroAverages

$$F_1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

$$\sum_{i=1}^{n} a_i$$

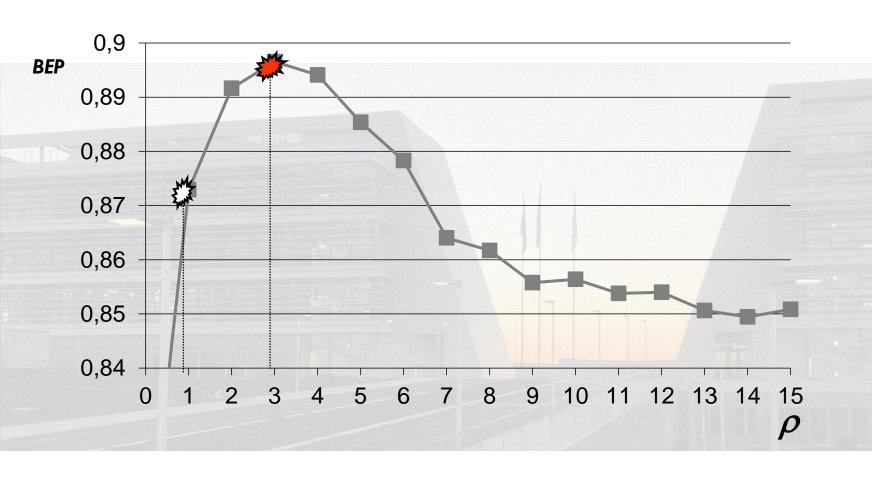
$$\mu Precision = \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i + b_i}$$

$$\mu Recall = \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i + c_i}$$

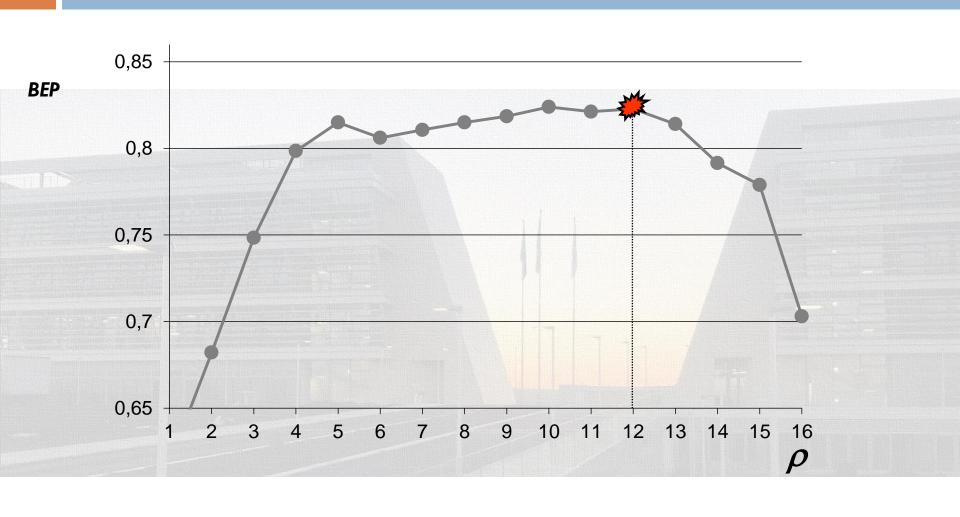
$$\mu BEP = \frac{\mu Precision + \mu Recall}{2}$$

$$\mu f_1 = \frac{2 \times \mu Precision \times \mu Recall}{\mu Precision + \mu Recall}$$

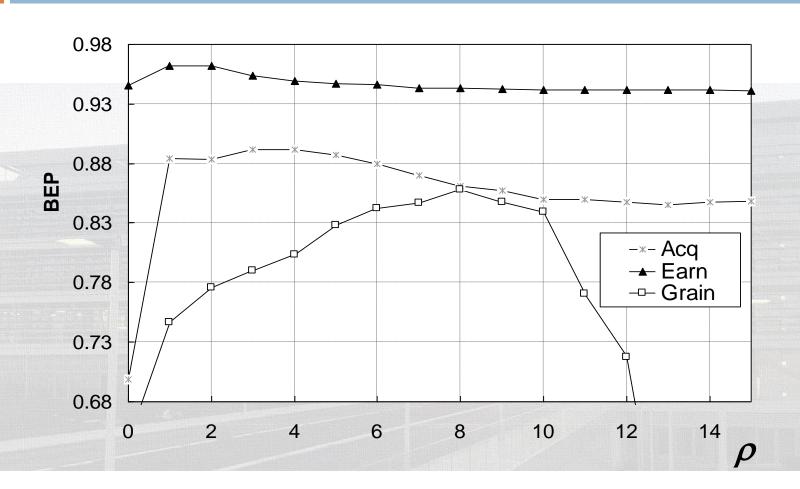
The Impact of ho parameter on Acquisition category



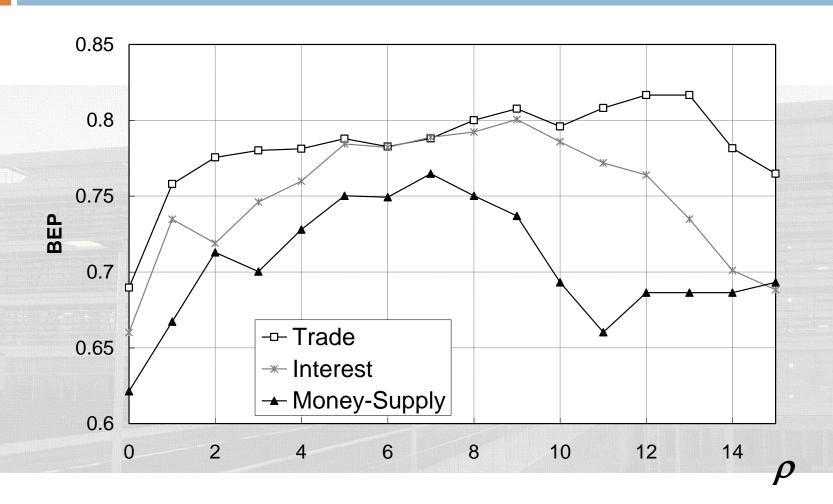
The impact of ρ parameter on Trade category



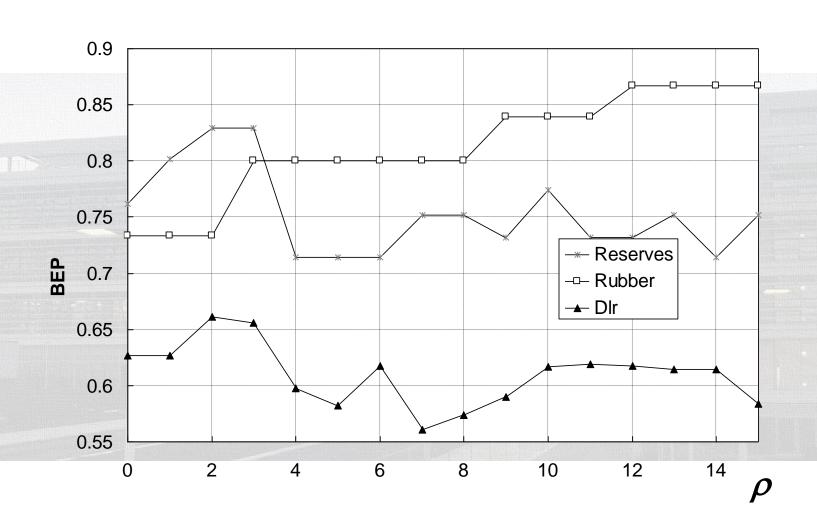
Mostly populated categories



Medium sized categories



Low size categories



Parameter Estimation Procedure

- Validation-set of about 30% of the training corpus
- \square for all $\rho \in [0,30]$
 - TRAIN the system on the remaining material
 - Measure the BEP on the validation-set
- \square Pick-up the ρ associated to the highest BEP
- re-TRAIN the system on the entire training-set
- TEST the system based on the obtained parameterized model
- For more reliable results:
 - \square 20 cross fold validation: 20 validation-sets and ρ as the average
- The Parameterized Rocchio Classifier will refer to as PRC

Comparative Analysis

- Rocchio literature parameterization
 - $\rho = 1 \ (\gamma = \beta = 1) \ \text{and} \ \rho = \frac{1}{4} \ (\gamma = 4, \beta = 16)$
- Reuters fixed test-set
 - Other literature results
- □ SVM
 - To better collocate our results
- Cross Validation (20 samples)
 - More reliable results
- Cross corpora/language validation
 - Reuters, Ohsumed (English) and ANSA (Italian)

Results on Reuters fixed split

Feature Set (~30.000)	PRC	Std Rocchio $(\gamma = \frac{1}{4} \beta \text{ or } \gamma = \beta)$	SVM	
Tokens	82.83 %	72.71%-78.79%	85.34 %	
Literature (stems)		75 % - 79.9%	84.2 %	

- Rocchio literature results (Yang 99', Choen 98', Joachims98')
- SVM literature results (Joachims 98')

Breakeven points of widely known classifiers on the Reuters dataset

 SVM
 PRC
 KNN
 RIPPER
 CLASSI*
 Dtree

 85.34%
 82.83%
 82.3%
 82%
 80.2%
 79.4%

SWAP1* CHARADE* EXPERT Rocchio Naive Bayes 80.5% 78.3% 82.7% 72%-79.5% 75 % - 79.9%

^{*} Evaluation on different Reuters versions

Cross-Validation

- 1. Generate n random splits of the corpus. For each split j, 70% of data can be used for training (LS^j) and 30% for testing (TS^j) .
- 2. For each split j
 - (a) Generate m validation sets, ES_k^j of about 10/30% of LS^j .
 - (b) Learn the classifiers on LS^j ES^j_k and for each ES^j_k evaluate:
 (i) the threshold associated to the BEP and (ii) the optimal parameter ρ.
 - (c) Learn the classifiers Rocchio, SVMs and PRC on LS^{j} : in case of PRC use the estimated $\bar{\rho}$.
 - (d) Evaluate f_1 on TS_j (use the estimated thresholds for Rocchio and PRC) for each category and account data for the final processing of the global μf_1 .
- 3. For each classifier evaluate the mean and the Standard Deviation for f_1 and μf_1 over the TS_j sets.

Cross-Validation on Reuters (20 samples)

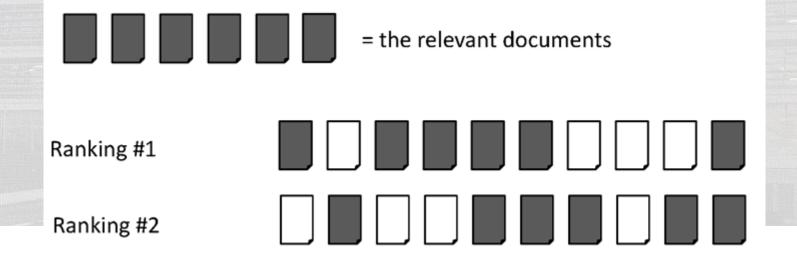
	Rocchio				PRC		SVM	
	R	ΓS	TS^σ		RTS	TS^σ	RTS	TS^σ
	ρ=.25	ρ=1	ρ=.25	ρ=1				
earn	95.69	95.61	92.57±0.51	93.71±0.42	95.31	94.01±0.33	98.29	97.70±0.31
acq	59.85	82.71	60.02±1.22	77.69±1.15	85.95	83.92±1.01	95.10	94.14±0.57
money-fx	53.74	57.76	67.38±2.84	71.60±2.78	62.31	77.65±2.72	75.96	84.68±2.42
grain	73.64	80.69	70.76±2.05	77.54±1.61	89.12	91.46±1.26	92.47	93.43±1.38
crude	73.58	80.45	75.91±2.54	81.56±1.97	81.54	81.18±2.20	87.09	86.77±1.65
trade	53.00	69.26	61.41±3.21	71.76±2.73	80.33	79.61±2.28	80.18	80.57±1.90
interest	51.02	58.25	59.12±3.44	64.05±3.81	70.22	69.02±3.40	71.82	75.74±2.27
ship	69.86	84.04	65.93±4.69	75.33±4.41	86.77	81.86±2.95	84.15	85.97±2.83
wheat	70.23	74.48	76.13±3.53	78.93±3.00	84.29	89.19±1.98	84.44	87.61±2.39
corn	64.81	66.12	66.04±4.80	68.21±4.82	89.91	88.32±2.39	89.53	85.73±3.79
MicroAvg.	72.61	78.79	73.87±0.51	78.92±0.47	82.83	83.51±0.44	85.42	87.64±0.55
90 cat.								

Overview

□ Performance Evaluation Metrics Classifier Evaluation Metrics Information Retrieval System Evaluation Metrics □ Tuning and Evaluation Methods □ Error Diagnostics

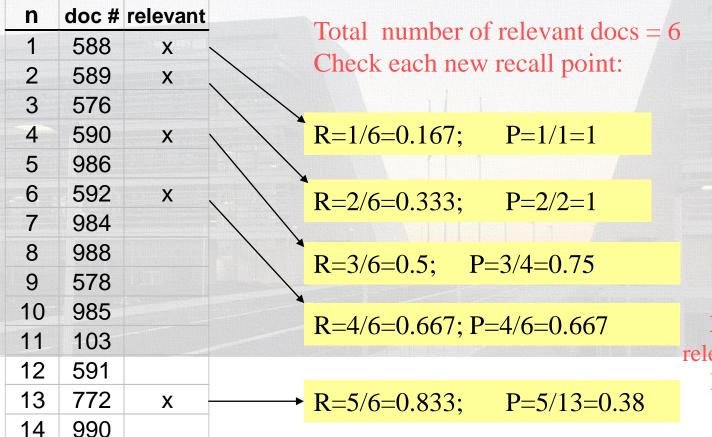
Evaluating ranked results

- IR systems usually outputs the retrieved documents in a ranked list
 - A proper evaluating should mainly consider elements in the top of the list



Recall/Precision Points

Compute a recall/precision pair for each position in the ranked list that contains a relevant document.



Missing one relevant document Never reach 100% recall

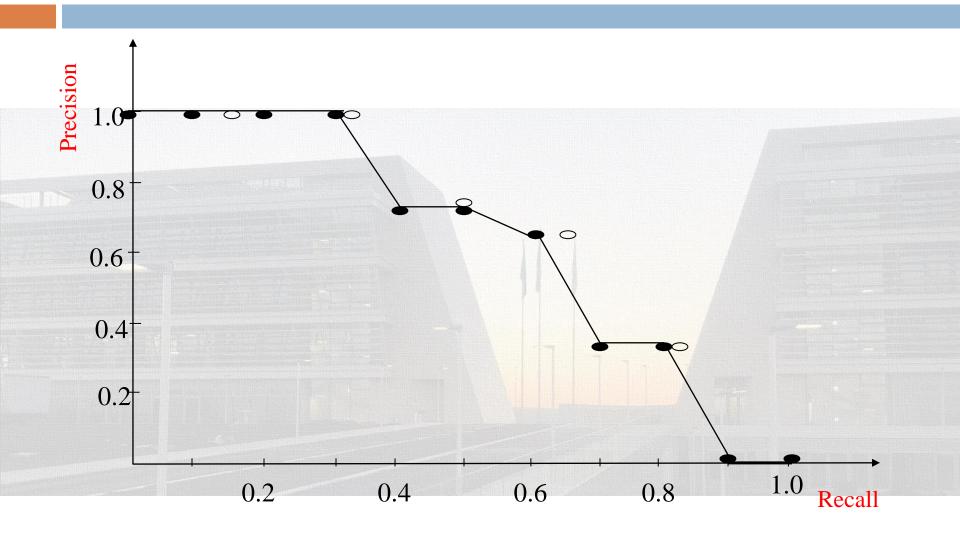
Averaging over Queries

- A precision-recall graph for one query isn't a very sensible thing to look at
 - You need to average performance over a whole bunch of queries
- Some standard recall levels r_i are set. Typically: $r_0 = 0.0, r_1 = 0.1, ..., r_{10} = 1.0$ (11-point interpolated average precision)
- For each query the precision corresponding to each standard recall levels are estimated via interpolation:

$$P_{interp}(r_j) = \max_{r \ge r_j} P(r)$$

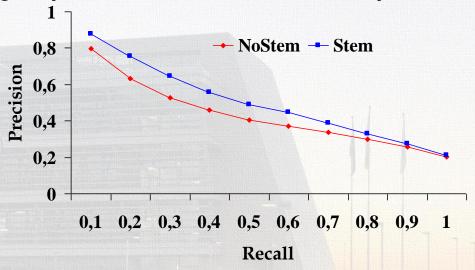
 Plot average precision/recall curves to evaluate overall system performance on a document/query corpus.

Interpolating a Recall/Precision Curve



Compare two or more Systems

The curve closest to the upper right-hand corner of the graph indicates the best performance



Graphs are good, but people may want a summary measure....

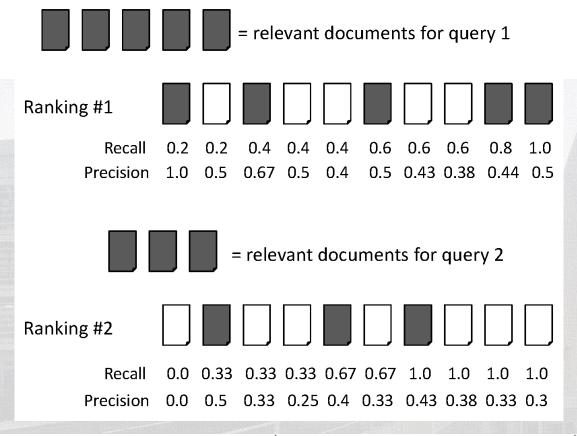
Ranking metrics

- Precision at fixed retrieval level
 - Precision-at-k (P@k): Precision of top k results
 - Perhaps appropriate for most of web search: all people want are good matches on the first one or two result pages
- Mean Average Precision (MAP)

$$MAP(Q) = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{|R_q|} \sum_{d \in R_q} P @ k_{q,d}$$

Q = set of queries R_q =set of relevant documents for the query q K_q,d =ranking of the document d retrieved throught the query q

Mean Average Precision



average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Overview

□ Performance Evaluation Metrics Classifier Evaluation Metrics Information Retrieval Systems Evaluation Metrics □ Tuning and Evaluation Methods □ Error Diagnostics

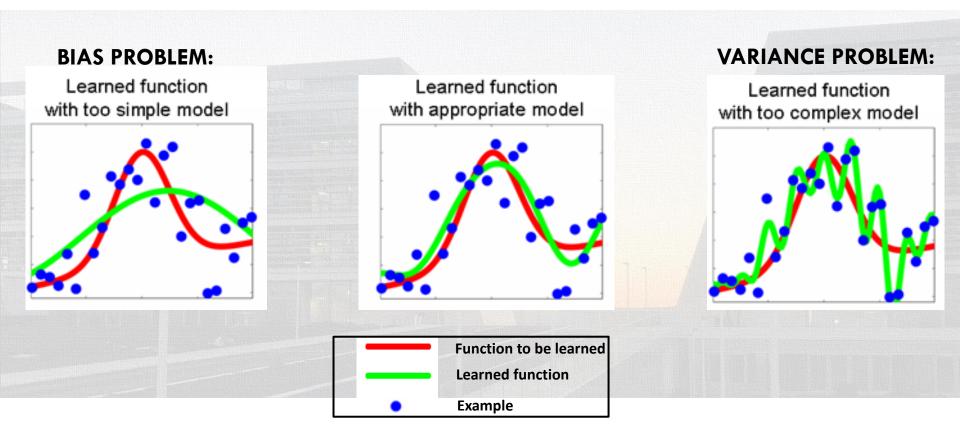
Error Diagnostics

- Error Diagnostics helps in identifying what problem is affecting an ML systems that performs poorly
- Understanding the problem is useful in coming up with promising solutions for improving the system

- Two opposite issues:
 - Bias Problem
 - Variance Problem

Bias Versus Variance

Example in Regression



Diagnosing Bias vs Variance

Bias

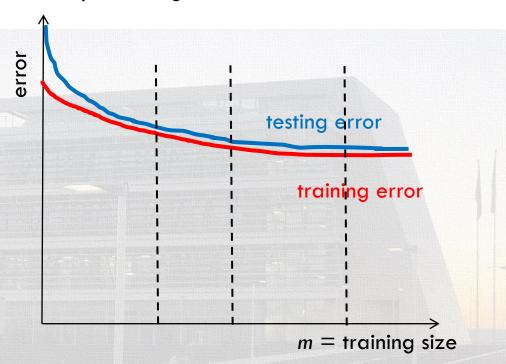
- Underfitting: the model is not enough expressive to fit the complexity of the underlying concept to be learned
- A high error is observed both in training and testing

Variance

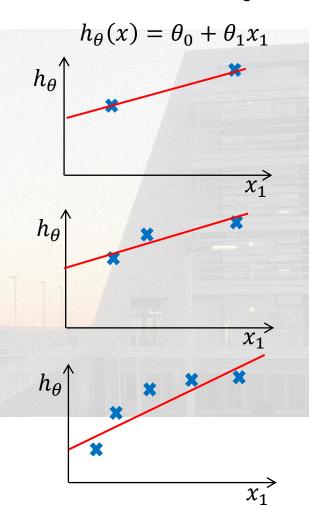
- Overfitting: the model perfectly fits training data but is too complex (example: an extremely deep decision tree) and does not generalize well on new data
- A high difference between the training error and the testing error

Diagnosing High Bias via Learning Curve

Example in regression: we want to fit a 2D data distribution with a straight line

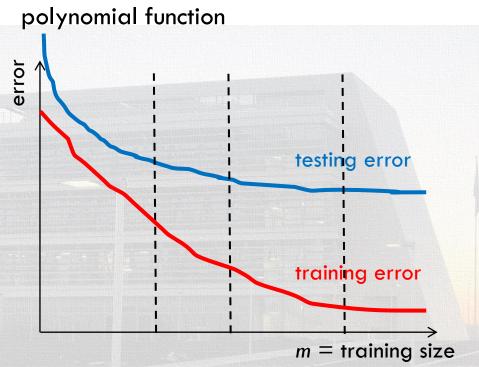


After a certain value of m, the learning process saturates and the testing error becomes similar to the training error \rightarrow getting more example will not help too much

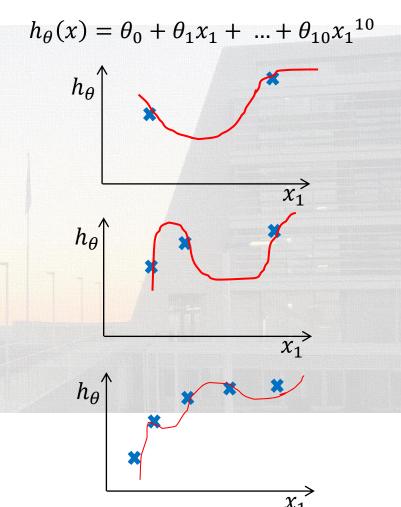


Diagnosing High Variance via Learning Curve

Example in regression: we want to fit a 2D data distribution with 10-th degree



A large gap between the training error and the testing error is observed. The saturation point is still not reached \rightarrow new examples should help



Solutions for Bias and Variance

Bias

- A different feature space may be needed. Add new informative features
- Adopt a more sophisticated algorithm (or same learning policy but a more complex parameterization)

Variance

- More training data may be needed. Add new examples or adopt a data augmentation schema
- Try to determine irrelevant and noisy features and remove them
- Adopt a less complicated parameterization (e.g., a simpler polynomial function for regression)

Summary

- The effectiveness of ML or IR systems can be assessed with different evaluation metrics
 - we saw just the most popular, but a lot of other metrics exist!!!

A reliable evaluation should follow some guideline

 Error diagnostics is useful for understanding how improving the system performance