Stochastic models for learning language models (Part 1)

R. Basili

Deep Learning
a.a. 2023-24

March 20, 2024

Outline

Outline

(7) Probability and Language Modeling

- Motivations
- Probability Models for Natural Language
(2) Introduction to Markov Models
- Hidden Markov Models
- Advantages

3 HMM and POS tagging

- Forward Algorithm and Viterbi
- About Parameter Estimation for POS
(4) References
(5) Exercises

Quantitative Models of language structures

Linguistic structures exhibit syntagmatic information that is crucial for machine learning in Web Mining. The common grammatical modeling framework is the one of (phrase structure) grammars, that can produce often ambiguous readings:

1.	S	-> NP	V
2.	S	-> NP	
3.	NP	-> PN	
4	NP	\rightarrow N	
5	NP	-> Adj	N
6	N	-> "imp	posta"
7	V	-> "imp	posta"
8.	Adj	-> "pes	sante"
9.	PN	-> "Pes	sante"

The role of Quantitative Approaches

"Pesante imposta"

The role of Quantitative Approaches

Weighted grammars are models of (possibly limited) degrees of grammaticality. They are meant to deal with a large range of ambiguity problems:

1	S	-> NP V	. 7
2	S	-> NP	. 3
3.	NP	-> PN	1
4	NP	-> N	. 6
5	NP	-> Adj N	. 3
6	N	-> imposta	. 6
7.	V	-> imposta	4
8.	Adj	-> Pesante	. 8
9.	PN	-> Pesante	. 2

Linguistic Ambiguity and weighted grammars

"Pesante imposta"

(.2) Pesante
(.4) imposta
(.8) Pesante
(.6) imposta

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

1	S $\quad \rightarrow$ NP V
2.	S $->$ NP
3.	NP -> PN
4.	NP $->$ N
5.	NP $->$ Adj N
6.	$\mathrm{N} \quad->$ imposta
7.	V -> imposta
8.	Adj -> Pesante
9.	PN -> Pesante

Linguistic Ambiguity and weighted grammars

Weighted grammars allow to compute the degree of grammaticality of different ambiguous derivations, thus supporting disambiguation:

1	S	-> NP V
2.	S	\rightarrow NP
3.	NP	\rightarrow PN
4.	NP	$\rightarrow \mathrm{N}$
5.	NP	-> Adj N
6	N	-> imposta
7	V	-> imposta
8.	Adj	-> Pesante
9.	PN	-> Pesante

$\operatorname{prob}\left(\left((\text { Pesante })_{P N}(\text { imposta })_{V}\right)_{S}\right)=(.7 \cdot .1 \cdot .2 \cdot .4)=0.0084$ $\operatorname{prob}\left(\left((\text { Pesante })_{\text {Adj }}(\text { imposta })_{N}\right)_{S}\right)=(.3 \cdot .3 \cdot .8 \cdot .6)=0.0432$

Syntactic Disambiguation

"portare borsa in pelle"

Derivation Trees for a structurally ambiguous sentence

Syntactic Disambiguation (cont'd)

"portare borsa in mano"

Derivation Trees for a second structurally ambiguous sentence.

Structural Disambiguation (cont'd)

Disambiguation of structural ambiguity.

Tolerance to errors

"vendita di articoli da regalo"

"vendita articoli regalo"

Error tolerance (cont'd)

"vendita articoli regalo"

$\mathrm{p}(\Delta)>0$

Probability and Language Modeling

- Aims
- to extend grammatical (i.e. rule-based) models with predictive and disambiguation capabilities
- to offer theoretically well founded inductive methods
- to develop (not merely) quantitative models of linguistic phenomena

Probability and Language Modeling

- Aims
- to extend grammatical (i.e. rule-based) models with predictive and disambiguation capabilities
- to offer theoretically well founded inductive methods
- to develop (not merely) quantitative models of linguistic phenomena
- Methods and Resources:
- Mathematical theories (e.g. Markov models)
- Systematic testing/evaluation frameworks
- Extended repositories of examples of language in use
- Traditional linguistic resources (e.g. "models" like dictionaries)

Probability and Language Modeling

- Signals are abstracted via symbols that are not known in advance

Probability and Language Modeling

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A

Probability and Language Modeling

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal

Probability and Language Modeling

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal
- Sequences of symbols $\left(w_{1}, \ldots, w_{n}\right)$ correspond to sequences of time points $(1, \ldots, n)$

Probability and Language Modeling

- Signals are abstracted via symbols that are not known in advance
- Emitted signals belong to an alphabet A
- Time is discrete: each time point corresponds to an emitted signal
- Sequences of symbols $\left(w_{1}, \ldots, w_{n}\right)$ correspond to sequences of time points $(1, \ldots, n)$

Probability and Language Modeling

A generative language model

A random variable X can be introduced so that

Probability and Language Modeling

A generative language model

A random variable X can be introduced so that

- It assumes values w_{i} in the alfabet A
- Probability is used to describe the uncertainty on the emitted signal

$$
p\left(X=w_{i}\right) \quad w_{i} \in A
$$

Probability and Language Modeling

- A random variable X can be introduced so that
- X assumes values in A at each step i, i.e. $X_{i}=w_{j}$
- probability is $p\left(X_{i}=w_{j}\right)$

Probability and Language Modeling

- A random variable X can be introduced so that
- X assumes values in A at each step i, i.e. $X_{i}=w_{j}$
- probability is $p\left(X_{i}=w_{j}\right)$
- Constraints: the total probability is for each step:

$$
\sum_{j} p\left(X_{i}=w_{j}\right)=1 \quad \forall i
$$

Probability and Language Modeling

- Notice that time points can be represented as states of the emitting source
- An output w_{i} can be considered as emitted in a given state X_{i} by the source, and given a certain history

Probability and Language Modeling

- Notice that time points can be represented as states of the emitting source
- An output w_{i} can be considered as emitted in a given state X_{i} by the source, and given a certain history

Probability and Language Modeling

- Formally:
- $P\left(X_{i}=w_{i}, X_{i-1}=w_{i-1}, \ldots X_{1}=w_{1}\right)=$

Probability and Language Modeling

- Formally:

$$
\begin{aligned}
& \text { - } P\left(X_{i}=w_{i}, X_{i-1}=w_{i-1}, \ldots X_{1}=w_{1}\right)= \\
& \quad=P\left(X_{i}=w_{i} \mid X_{i-1}=w_{i-1}, X_{i-2}=w_{i-2}, \ldots, X_{1}=w_{1}\right) . \\
& \quad P\left(X_{i-1}=w_{i-1}, X_{i-2}=w_{i-2}, \ldots, X_{1}=w_{1}\right)
\end{aligned}
$$

Probability and Language Modeling

What's in a state

$n-1$ preceding words $\Rightarrow n$-gram language models

$p($ the, black, $\operatorname{dog})=p(\operatorname{dog} \mid$ the, black $)$

Probability and Language Modeling

What's in a state

$n-1$ preceding words $\Rightarrow n$-gram language models

$p($ the, black, $\operatorname{dog})=p($ dog \mid the, black $) p($ black \mid the $) p($ the $)$

Probability and Language Modeling

What's in a state

preceding POS tags \Rightarrow stochastic taggers

Probability and Language Modeling

What's in a state

preceding POS tags \Rightarrow stochastic taggers

$p\left(\right.$ the $_{D T}$, black $\left._{A D J}, \operatorname{dog}_{N}\right)=p\left(\operatorname{dog}_{N} \mid\right.$ the $_{D T}$, black $\left._{A D J}\right) \ldots$

Probability and Language Modeling

What's in a state preceding parses \Rightarrow stochastic grammars

Probability and Language Modeling

What's in a state
 preceding parses \Rightarrow stochastic grammars

$\overline{p\left(\left(t h e_{\text {Det }},\left(\text { black }_{A D J}, \operatorname{dog}_{N}\right)_{N P}\right)_{N P}\right)}=$

Probability and Language Modeling

What's in a state
 preceding parses \Rightarrow stochastic grammars

$\left.\left.\overline{p((t h e}{ }_{\text {Det }},\left(\text { black }_{A D J}, \operatorname{dog}_{N}\right)_{N P}\right)_{N P}\right)=$
$p\left(\operatorname{dog}_{N} \mid\left(\left(\right.\right.\right.$ the $\left._{\text {Det }}\right),\left(\right.$ black $\left.\left.\left._{A D J},{ }_{-}\right)\right)\right) \ldots$

Probability and Language Modeling (2)

- Expressivity
- The predictivity of a statistical grammar can provide a very good explanatory model of the source language (string)
- Acquiring information from data has a clear definition, with simple and sound induction algorithms
- Simple but richer descriptions (e.g. grammatical preferences)
- Optimal Coverage (i.e. better on more important phenomena)

Probability and Language Modeling (2)

- Expressivity
- The predictivity of a statistical grammar can provide a very good explanatory model of the source language (string)
- Acquiring information from data has a clear definition, with simple and sound induction algorithms
- Simple but richer descriptions (e.g. grammatical preferences)
- Optimal Coverage (i.e. better on more important phenomena)
- Integrating Linguistic Description
- Start with poor assumptions and approximate as much as possible what is known (early evaluate only performance)
- Bias the statistical model since the beginning and check the results on a linguistic ground

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing (e.g. through the pruning of the algorithmic search space)

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing (e.g. through the pruning of the algorithmic search space)
- Faster Design (i.e. one probabilistic model for multiple tasks)

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing (e.g. through the pruning of the algorithmic search space)
- Faster Design (i.e. one probabilistic model for multiple tasks)
- Linguistic Adequacy
- Acceptance
- Psychological Plausibility
- Explanatory power

Probability and Language Modeling (3)

Advantages: Performances

- Faster Processing (e.g. through the pruning of the algorithmic search space)
- Faster Design (i.e. one probabilistic model for multiple tasks)
- Linguistic Adequacy
- Acceptance
- Psychological Plausibility
- Explanatory power
- Tools for further analysis of Linguistic Data

Markov Models

Markov Models

Suppose $X_{1}, X_{2}, \ldots, X_{T}$ form a sequence of random variables taking values in a countable set $W=p_{1}, p_{2}, \ldots, p_{N}$ (State space).

- Limited Horizon Property:

$$
P\left(X_{t+1}=p_{k} \mid X_{1}, \ldots, X_{t}\right)=P\left(X_{t+1}=k \mid X_{t}\right)
$$

Markov Models

Markov Models

Suppose $X_{1}, X_{2}, \ldots, X_{T}$ form a sequence of random variables taking values in a countable set $W=p_{1}, p_{2}, \ldots, p_{N}$ (State space).

- Limited Horizon Property:

$$
P\left(X_{t+1}=p_{k} \mid X_{1}, \ldots, X_{t}\right)=P\left(X_{t+1}=k \mid X_{t}\right)
$$

- Time invariant:

$$
P\left(X_{t+1}=p_{k} \mid X_{t}=p_{l}\right)=P\left(X_{2}=p_{k} \mid X_{1}=p_{l}\right) \quad \forall t(>1)
$$

Markov Models

Markov Models

Suppose $X_{1}, X_{2}, \ldots, X_{T}$ form a sequence of random variables taking values in a countable set $W=p_{1}, p_{2}, \ldots, p_{N}$ (State space).

- Limited Horizon Property:

$$
P\left(X_{t+1}=p_{k} \mid X_{1}, \ldots, X_{t}\right)=P\left(X_{t+1}=k \mid X_{t}\right)
$$

- Time invariant:

$$
P\left(X_{t+1}=p_{k} \mid X_{t}=p_{l}\right)=P\left(X_{2}=p_{k} \mid X_{1}=p_{l}\right) \quad \forall t(>1)
$$

It follows that the sequence of $X_{1}, X_{2}, \ldots, X_{T}$ is a Markov chain.

Representation of a Markov Chain

Markov Models: Matrix Representation

- A (transition) matrix A:

$$
a_{i j}=P\left(X_{t+1}=p_{j} \mid X_{t}=p_{i}\right)
$$

Note that $\quad \forall i, j \quad a_{i j} \geq 0 \quad$ and $\quad \forall i \quad \sum_{j} a_{i j}=1$

Representation of a Markov Chain

Markov Models: Matrix Representation

- A (transition) matrix A:

$$
a_{i j}=P\left(X_{t+1}=p_{j} \mid X_{t}=p_{i}\right)
$$

Note that $\quad \forall i, j \quad a_{i j} \geq 0 \quad$ and $\quad \forall i \quad \sum_{j} a_{i j}=1$

- Initial State description (i.e. probabilities of initial states):

$$
\pi_{i}=P\left(X_{1}=p_{i}\right)
$$

Note that $\sum_{j=1}^{n} \pi_{j}=1$.

Representation of a Markov Chain

Graphical Representation (i.e. Automata)

- States as nodes with names
- Transitions from states i-th and j-th as arcs labelled by conditional probabilities $P\left(X_{t+1}=p_{j} \mid X_{t}=p_{i}\right)$ Note that 0 probability arcs are omitted from the graph.

$$
\begin{array}{ccc}
& S_{1} & S_{2} \\
\hline S_{1} & 0.70 & 0.30 \\
S_{2} & 0.50 & 0.50 \\
\hline
\end{array}
$$

Representation of a Markov Chain

Graphical Representation

$$
\begin{aligned}
& P\left(X_{1}=p_{1}\right)=1 \quad \leftarrow \text { StartState } \\
& P\left(X_{k}=p_{3} \mid X_{k-1}=p_{2}\right)=0.7 \quad \forall k \\
& P\left(X_{k}=p_{4} \mid X_{k-1}=p_{1}\right)=0 \quad \forall k
\end{aligned}
$$

A Simple Example of Hidden Markov Model

Crazy Coffee Machine

- Two states: Tea Preferring (TP), Coffee Preferring ($C P$)
- Switch from one state to another randomly
- Simple (or visible) Markov model:

Iff the machine output Tea in TP AND Coffee in CP
What we need is a description of the random event of switching from one state to another. More formally we need for each time step n and couple of states p_{i} and p_{j} to determine following conditional probabilities:

$$
P\left(X_{n+1}=p_{j} \mid X_{n}=p_{i}\right)
$$

where p_{t} is one of the two states $T P, C P$.

A Simple Example of Hidden Markov Model

Crazy Coffee Machine

Assume, for example, the following state transition model:

	$T P$	$C P$
$T P$	0.70	0.30
$C P$	0.50	0.50

and let $C P$ be the starting state (i.e. $\pi_{C P}=1, \pi_{T P}=0$).
Potential Use:
(1) What is the probability at time step 3 to be in state $T P$?
(2) What is the probability at time step n to be in state $T P$?
(3) What is the probability of the following sequence in output: (Coffee, Tea, Coffee)?

Hidden Markov Models

Crazy Coffee Machine

Graphical Representation

Crazy Coffee Machine

Solution to Problem 1:

$$
\begin{aligned}
& P\left(X_{3}=T P\right)=(\text { given by }(C P, C P, T P) \text { and }(C P, T P, T P)) \\
& =P\left(X_{1}=C P\right) \cdot P\left(X_{2}=C P \mid X_{1}=C P\right) \cdot P\left(X_{3}=T P \mid X_{1}=\right. \\
& \left.C P, X_{2}=C P\right)+ \\
& +\quad P\left(X_{1}=C P\right) \cdot P\left(X_{2}=T P \mid X_{1}=C P\right) \cdot P\left(X_{3}=T P \mid X_{1}=\right. \\
& \left.C P, X_{2}=T P\right)= \\
& =P(C P) P(C P \mid C P) P(T P \mid C P, C P)+ \\
& P(C P) P(T P \mid C P) P(T P \mid C P, T P)= \\
& =P(C P) P(C P \mid C P) P(T P \mid C P)+P(C P) P(T P \mid C P) P(T P \mid T P)= \\
& =1 \cdot 0.50 \cdot 0.50+1 \cdot 0.50 \cdot 0.70=0.25+0.35=0.60
\end{aligned}
$$

Crazy Coffee Machine

Solution to Problem 2

$P\left(X_{n}=T P\right)=$
$\sum_{C P, p_{2}, p_{3}, \ldots, T P} P\left(X_{1}=C P\right) P\left(X_{2}=p_{2} \mid X_{1}=C P\right) P\left(X_{3}=p_{3} \mid X_{1}=\right.$
$\left.C P, X_{2}=p_{2}\right) \cdot \ldots \cdot P\left(X_{n}=T P \mid X_{1}=C P, X_{2}=p_{2}, \ldots, X_{n-1}=\right.$
$\left.p_{n-1}\right)=$
$=\sum_{C P, p_{2}, p_{3}, \ldots, T P} P(C P) P\left(p_{2} \mid C P\right) P\left(p_{3} \mid p_{2}\right) \cdot \ldots \cdot P\left(T P \mid p_{n-1}\right)=$
$=\sum_{C P, p_{2}, p_{3}, \ldots, T P} P(C P) \cdot \prod_{t=1}^{n-2} P\left(p_{t+1} \mid p_{t}\right) \cdot P\left(p_{n}=T P \mid p_{n-1}\right)$
$\left(=\sum_{p_{1}, \ldots, p_{n}} P\left(p_{1}\right) \cdot \prod_{t=1}^{n-1} P\left(p_{t+1} \mid p_{t}\right)\right)$

Crazy Coffee Machine

Solution to Problem 3:

$P($ Cof $, T e a, C o f)=$
$=P(\operatorname{Cof}) \cdot P($ Tea $\mid \operatorname{Cof}) \cdot P(\operatorname{Cof} \mid$ Tea $)=1 \cdot 0.5 \cdot 0.3=0.15$

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine

- Hidden Markov model: If the machine output Tea, Coffee or Capuccino independently from $C P$ and $T P$.
What we need is a description of the random event of output(ting) a drink.

Crazy Coffee Machine

A description of the random event of output(ting) a drink. Formally we need (for each time step n and for each kind of output $O=\{$ Tea, $\operatorname{Cof}, \operatorname{Cap}\}$), the following conditional probabilities:

$$
P\left(O_{n}=o_{k} \mid X_{n}=p_{i}, X_{n+1}=p_{j}\right)
$$

where $o_{k} \in\{$ Tea, Coffee, Capuccino $\}$. This matrix is called the output matrix of the machine (or of its Hidden markov Model).

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine
Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let $C P$ be the starting state (i.e. $\pi_{C P}=1, \pi_{T P}=0$).

- Find the following probabilities of output from the machine

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine
Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let $C P$ be the starting state (i.e. $\pi_{C P}=1, \pi_{T P}=0$).

- Find the following probabilities of output from the machine
(3) (Cappuccino, Coffee) given that the state sequence is (CP,TP,TP)

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine
Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let $C P$ be the starting state (i.e. $\pi_{C P}=1, \pi_{T P}=0$).

- Find the following probabilities of output from the machine
(3) (Cappuccino, Coffee) given that the state sequence is ($C P, T P, T P)$
(2) (Tea, Coffee) for any state sequence

A Simple Example of Hidden Markov Model (2)

Crazy Coffee Machine
Given the following output probability for the machine

	Tea	Coffee	Capuccino
TP	0.8	0.2	0.0
CP	0.15	0.65	0.2

and let $C P$ be the starting state (i.e. $\pi_{C P}=1, \pi_{T P}=0$).

- Find the following probabilities of output from the machine
(2) (Cappuccino, Coffee) given that the state sequence is ($C P, T P, T P)$
(2) (Tea, Coffee) for any state sequence
(3) a generic output $O=\left(o_{1}, \ldots, o_{n}\right)$ for any state sequence

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence $X=(C P, T P, T P)$
$P\left(O_{1}=\operatorname{Cap}, O_{2}=\operatorname{Cof}, X_{1}=C P, X_{2}=T P, X_{3}=T P\right)=$
$P\left(O_{1}=C a p, O_{2}=\operatorname{Cof} \mid X_{1}=C P, X_{2}=T P, X_{3}=T P\right) P\left(X_{1}=C P, X_{2}=\right.$
$\left.\left.T P, X_{3}=T P\right)\right)=$
$P(C a p, C o f \mid C P, T P, T P) P(C P, T P, T P))$

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence $X=(C P, T P, T P)$
$P\left(O_{1}=\operatorname{Cap}, O_{2}=\operatorname{Cof}, X_{1}=C P, X_{2}=T P, X_{3}=T P\right)=$
$P\left(O_{1}=C a p, O_{2}=\operatorname{Cof} \mid X_{1}=C P, X_{2}=T P, X_{3}=T P\right) P\left(X_{1}=C P, X_{2}=\right.$
$\left.\left.T P, X_{3}=T P\right)\right)=$
$P(C a p, C o f \mid C P, T P, T P) P(C P, T P, T P))$ Now:
$P(\operatorname{Cap}, \operatorname{Cof} \mid C P, T P, T P)$ is the probability of output Cap, Cof during
transitions from $C P$ to $T P$ and $T P$ to $T P$
and

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence $X=(C P, T P, T P)$
$P\left(O_{1}=\operatorname{Cap}, O_{2}=\operatorname{Cof}, X_{1}=C P, X_{2}=T P, X_{3}=T P\right)=$
$P\left(O_{1}=C a p, O_{2}=\operatorname{Cof} \mid X_{1}=C P, X_{2}=T P, X_{3}=T P\right) P\left(X_{1}=C P, X_{2}=\right.$
$\left.\left.T P, X_{3}=T P\right)\right)=$
$P(C a p, C o f \mid C P, T P, T P) P(C P, T P, T P))$ Now:
$P(\operatorname{Cap}, \operatorname{Cof} \mid C P, T P, T P)$ is the probability of output Cap, Cof during
transitions from $C P$ to $T P$ and $T P$ to $T P$
and $P(C P, T P, T P)$ is the probability of the transition chain.
Therefore,

A Simple Example of Hidden Markov Model (2)

Solution for the problem 1 For the given state sequence
$X=(C P, T P, T P)$
$P\left(O_{1}=\operatorname{Cap}, O_{2}=\operatorname{Cof}, X_{1}=C P, X_{2}=T P, X_{3}=T P\right)=$
$P\left(O_{1}=\operatorname{Cap}, O_{2}=\operatorname{Cof} \mid X_{1}=C P, X_{2}=T P, X_{3}=T P\right) P\left(X_{1}=C P, X_{2}=\right.$
$\left.\left.T P, X_{3}=T P\right)\right)=$
$P(C a p, C o f \mid C P, T P, T P) P(C P, T P, T P))$ Now:
$P(\operatorname{Cap}, C o f \mid C P, T P, T P)$ is the probability of output Cap, Cof during
transitions from $C P$ to $T P$ and $T P$ to $T P$
and $P(C P, T P, T P)$ is the probability of the transition chain.
Therefore,
$=P(\operatorname{Cap} \mid C P, T P) P(C o f \mid T P, T P)=($ in our simplified model $)$
$=P(C a p \mid C P) P(C o f \mid T P)=0.2 \cdot 0.2=0.04$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
$P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=$
$P($ Tea, Cof $)=($ as sequences are a partition for the sample space $)$
$=\sum_{X_{1}, X_{2}, X_{3}} P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{1}, X_{2}, X_{3}\right)$ where

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
$P\left(\right.$ Tea, $\left.\operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=$
$P($ Tea, $\operatorname{Cof})=($ as sequences are a partition for the sample space $)$
$=\sum_{X_{1}, X_{2}, X_{3}} P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{1}, X_{2}, X_{3}\right)$ where
$P\left(\right.$ Tea, $\left.\operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=P\left(\right.$ Tea $\left.\mid X_{1}, X_{2}\right) P\left(\operatorname{Cof} \mid X_{2}, X_{3}\right)=$
(for the simplified model of the coffee machine)
$=P\left(\right.$ Tea $\left.\mid X_{1}\right) P\left(\operatorname{Cof} \mid X_{2}\right)$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
$P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=$
$P($ Tea, Cof $)=($ as sequences are a partition for the sample space $)$
$=\sum_{X_{1}, X_{2}, X_{3}} P\left(\right.$ Tea, $\left.\operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{1}, X_{2}, X_{3}\right)$ where
$P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=P\left(\right.$ Tea $\left.\mid X_{1}, X_{2}\right) P\left(\operatorname{Cof} \mid X_{2}, X_{3}\right)=$
(for the simplified model of the coffee machine)
$=P\left(\right.$ Tea $\left.\mid X_{1}\right) P\left(\operatorname{Cof} \mid X_{2}\right)$ and (for the Markov constraint)
$P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right)$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
$P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=$
$P($ Tea, $\operatorname{Cof})=($ as sequences are a partition for the sample space $)$
$=\sum_{X_{1}, X_{2}, X_{3}} P\left(\right.$ Tea, $\left.\operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right) P\left(X_{1}, X_{2}, X_{3}\right)$ where
$P\left(\right.$ Tea $\left., \operatorname{Cof} \mid X_{1}, X_{2}, X_{3}\right)=P\left(\right.$ Tea $\left.\mid X_{1}, X_{2}\right) P\left(\operatorname{Cof} \mid X_{2}, X_{3}\right)=$
(for the simplified model of the coffee machine)
$=P\left(\right.$ Tea $\left.\mid X_{1}\right) P\left(\operatorname{Cof} \mid X_{2}\right)$ and (for the Markov constraint)
$P\left(X_{1}, X_{2}, X_{3}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right)$
The simplified model is concerned with only the following transition chains
$(C P, C P, C P),(C P, T P, C P),(C P, C P, T P)$
$(C P, T P, T P)$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
The following probability is given

$$
P(\text { Tea }, C o f)=
$$

$$
\begin{array}{ll}
P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(C P \mid C P)+ & \text { st.: }(C P, C P, C P)) \\
P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(C P \mid T P)+ & \text { st.: }(C P, T P, C P)) \\
P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(T P \mid C P)+ & \text { st.: }(C P, C P, T P)) \\
P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(T P \mid T P)= & \text { st.: }(C P, T P, T P))
\end{array}
$$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
The following probability is given

$$
\begin{array}{rll}
P(\text { Tea }, \text { Cof })= & & \\
& P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(C P \mid C P)+ & \text { st.: }(C P, C P, C P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(C P \mid T P)+ & \text { st.: }(C P, T P, C P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(T P \mid C P)+ & \text { st.: }(C P, C P, T P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(T P \mid T P)= & \text { st.: }(C P, T P, T P)) \\
& & \\
& & \\
& & \\
& & \\
& +0.15 \cdot 0.65 \cdot 1 \cdot 0.0 .2 \cdot 1 \cdot 0.0 .5+ \\
& +0.15 \cdot 0.65 \cdot 1 \cdot 0.0 \cdot 0.0 .5+ & \\
& &
\end{array}
$$

A Simple Example of Hidden Markov Model (2)

Solutions for the problem 2
In general, for any sequence of three states $X=\left(X_{1}, X_{2}, X_{3}\right)$
The following probability is given

$$
\begin{array}{rll}
P(\text { Tea }, \text { Cof })= & & \\
& P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(C P \mid C P)+ & \text { st.: }(C P, C P, C P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(C P \mid T P)+ & \text { st.: }(C P, T P, C P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid C P) P(C P) P(C P \mid C P) P(T P \mid C P)+ & \text { st.: }(C P, C P, T P)) \\
& P(\text { Tea } \mid C P) P(C o f \mid T P) P(C P) P(T P \mid C P) P(T P \mid T P)= & \text { st.: }(C P, T P, T P)) \\
& & \\
& & \\
& & \\
& +0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5+ \\
& +0.15 \cdot 0.65 \cdot 1 \cdot 0.5 \cdot 0.5 \cdot 0.5+ \\
& & 0.15 \cdot 0.2 \cdot 1.0 \cdot 0.5 \cdot 0.7= \\
& =0.024375+0.0045+0.024375+0.0105= \\
& =0.06375
\end{array}
$$

A Simple Example of Hidden Markov Model (2)

Solution to the problem 3 (Likelihood)
In the general case, a sequence of n symbols $O=\left(o_{1}, \ldots, o_{n}\right)$ out from any sequence of $n+1$ transitions $X=\left(p_{1}, \ldots, p_{n+1}\right)$ can be predicted by the following probability:

$$
\begin{aligned}
P(O) & =\sum_{p_{1}, \ldots, p_{n+1}} P(O \mid X) P(X)= \\
& =\sum_{p_{1}, \ldots, p_{n+1}} P(C P) \prod_{t=1}^{n} P\left(O_{t} \mid p_{t}, p_{t+1}\right) P\left(p_{t+1} \mid p_{t}\right)
\end{aligned}
$$

Modeling linguistic tasks as Stochastic Processes

Advantages

There are several advantages to model a linguistic problem as an HMM

- It is a powerful mathematical framework for modeling
- It provides clear problems settings for different applications: estimation, decoding and model induction
- HMM-based models provides sound solutions for the above applications

We will see an example as the HMM modeling of POS tagging

Fundamental problems for HMM

Fundamental Questions for HMM

The complexity of training and decoding can be limited by the use of optimization techniques

- Given the observation sequence $O=O_{1}, \ldots, O_{n}$ and a model $\lambda=(E, T, \pi)$, how to efficiently compute $P(O \mid \lambda)$? (Language Modeling)
- Given the observation sequence $O=O_{1}, \ldots, O_{n}$ and a model $\lambda=(E, T, \pi)$, how do we choose the optimal state sequence $Q=q_{1}, \ldots, q_{n}$ responsible of generating O ? (Tagging/Decoding)
- How to adjust model parameters $\lambda=(E, T, \pi)$ so to maximize $P(O \mid \lambda)$? (Model Induction)

HMM: Mathematical Methods

All the above problems can be approached by several optimization techniques able to limit the complexity.

- Language Modeling via dynamic programming (Forward algorithms) $(O(n))$
- Tagging/Decoding via dynamic programming ($O(n)$) (Viterbi)
- Parameter estimation via entropy minimization (the EM algorithm)

A relevant issue is the availability of source data: supervised training cannot be applied always

The task of POS tagging

POS tagging

Given a sequence of morphemes w_{1}, \ldots, w_{n} with ambiguous syntactic descriptions (i.e.part-of-speech tags) t_{j}, compute the sequence of n POS tags $t_{j_{1}}, \ldots, t_{j_{n}}$ that characterize correspondingly all the words w_{i}.

The task of POS tagging

POS tagging

Given a sequence of morphemes w_{1}, \ldots, w_{n} with ambiguous syntactic descriptions (i.e.part-of-speech tags) t_{j}, compute the sequence of n POS tags $t_{j_{1}}, \ldots, t_{j_{n}}$ that characterize correspondingly all the words w_{i}.

Examples:

- Secretariat is expected to race tomorrow
- \Rightarrow NNP VBZ VBN TO VB NR
- \Rightarrow NNP VBZ VBN TO NN NR

The task of POS tagging

An example

Emission

probabilities	. the this cat kid eats runs fish fresh little big
$\langle F F\rangle$	1.0

| Dt |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N |
| V |$|$| 0.6 | 0.4 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Adj | | | | | | |

0.3	0.3	0.4

HMM and POS tagging

Given a sequence of morphemes w_{1}, \ldots, w_{n} with ambiguous syntactic descriptions (i.e.part-of-speech tags), derive the sequence of n POS tags t_{1}, \ldots, t_{n} that maximizes the following probability:

$$
P\left(w_{1}, \ldots, w_{n}, t_{1}, \ldots, t_{n}\right)
$$

that is

$$
\left(t_{1}, \ldots, t_{n}\right)=\operatorname{argmax}_{\text {pos }_{1}, \ldots, \text { pos }_{n}} P\left(w_{1}, \ldots, w_{n}, \operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n}\right)
$$

HMM and POS tagging

Given a sequence of morphemes w_{1}, \ldots, w_{n} with ambiguous syntactic descriptions (i.e.part-of-speech tags), derive the sequence of n POS tags t_{1}, \ldots, t_{n} that maximizes the following probability:

$$
P\left(w_{1}, \ldots, w_{n}, t_{1}, \ldots, t_{n}\right)
$$

that is

$$
\left(t_{1}, \ldots, t_{n}\right)=\operatorname{argmax}_{\text {pos }_{1}, \ldots, \text { pos }_{n}} P\left(w_{1}, \ldots, w_{n}, \operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n}\right)
$$

Note that this is equivalent to the following:
$\left(t_{1}, \ldots, t_{n}\right)=\operatorname{argmax}_{\text {pos }_{1}, \ldots, \text { pos }_{n}} P\left(\operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n} \mid w_{1}, \ldots, w_{n}\right)$
as: $\frac{P\left(w_{1}, \ldots, w_{n}, p o s_{1}, \ldots, p_{1}\right)}{P\left(w_{1}, \ldots, w_{n}\right)}=P\left(\operatorname{pos}_{1}, \ldots\right.$, pos $\left._{n} \mid w_{1}, \ldots, w_{n}\right)$
and $P\left(w_{1}, \ldots, w_{n}\right)$ is the same for all the sequencies $\left(\operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n}\right)$.

HMM and POS tagging

How to map a POS tagging problem into a HMM

The above problem

$$
\left(t_{1}, \ldots, t_{n}\right)=\operatorname{argmax}_{\text {pos }_{1}, \ldots, \text { pos }_{n}} P\left(\operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n} \mid w_{1}, \ldots, w_{n}\right)
$$

can be also written (Bayes law) as:

$$
\begin{gathered}
\left(t_{1}, \ldots, t_{n}\right)= \\
\operatorname{argmax}_{\text {pos }_{1}, \ldots, \text { pos }_{n}} P\left(w_{1}, \ldots, w_{n} \mid \operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n}\right) P\left(\operatorname{pos}_{1}, \ldots, \operatorname{pos}_{n}\right)
\end{gathered}
$$

HMM and POS tagging

The HMM Model of POS tagging:

- HMM States are mapped into POS tags $\left(t_{i}\right)$, so that $P\left(t_{1}, \ldots, t_{n}\right)=P\left(t_{1}\right) P\left(t_{2} \mid t_{1}\right) \ldots P\left(t_{n} \mid t_{n-1}\right)$
- HMM Output symbols are words, so that $P\left(w_{1}, \ldots, w_{n} \mid t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right)$
- Transitions represent moves from one word to another

Note that the Markov assumption is used

- to model probability of a tag in position i (i.e. t_{i}) only by means of the preceeding part-of-speech (i.e. t_{i-1})
- to model probabilities of words (i.e. w_{i}) based only on the tag $\left(t_{i}\right)$ appearing in that position (i).

HMM and POS tagging

The final equation is thus:

$$
\begin{array}{r}
\left(t_{1}, \ldots, t_{n}\right)=\operatorname{argmax}_{t_{1}, \ldots, t_{n}} P\left(t_{1}, \ldots, t_{n} \mid w_{1}, \ldots, w_{n}\right)= \\
\operatorname{argmax}_{t_{1}, \ldots, t_{n}} \prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right)
\end{array}
$$

Fundamental Questions for HMM in POS tagging

(3) Given a model what is the probability of an output sequence, O :
Computing Likelihood, Language Modeling.
(2) Given a model and an observable output sequence O (i.e. words), how to determine the sequence of states $T=\left(t_{1}, \ldots, t_{n}\right)$ such that it is the best explanation of the observation O :
Decoding Problem
(3) Given a sample of the output sequences and a space of possible models how to find out the best model, that is the model that best explains the data:
how to estimate parameters?

F undamental Questions for HMM in POS tagging

- 1. (Language Modeling) Not much relevant for POS tagging, where $\left(w_{1}, \ldots, w_{n}\right)$ are always known.
Trellis and dynamic programming technique.
- 2. (Decoding) Viterbi Algorithm for evaluating $P(T \mid O)$. Linear in the sequence length.
- 3. Baum-Welch (or Forward-Backward algorithm), that is a special case of Expectation Maximization estimation. Weakly supervised or even unsupervised.
Problems: Local minima can be reached when initial data are poor.

HMM and POS tagging

Advantages for adopting HMM in POS tagging

- An elegant and sound theory
- Training algorithms:
- Estimation via EM (Baum-Welch)
- Unsupervised (or possibly weakly supervised)
- Fast Inference algorithms: Viterbi algorithm Linear wrt the sequence length $(O(n))$
- Sound methods for comparing different models and estimations
(e.g. cross-entropy)

Forward algorithm

In computing the likelihood $P(O)$ of an observation we need to sum up the probability of all paths in a Markov model. Brute force computation is not applicable in most cases. The forward algorithm is an application of dynamic programming.

Forward algorithm

Figure 6.6 The forward trellis for computing the total observation likelihood for the ice-cream events 313. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $\alpha_{t}(j)$ for two states at two time steps. The computation in each cell follows $\mathrm{Eq} \cdot 6.11: \alpha_{t}(j)=\sum_{i=1}^{N-1} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$. The resulting probability expressed in each cell is $\mathrm{Eq} \cdot 6.10: \alpha_{t}(j)=$ $P\left(o_{1}, o_{2} \ldots o_{t}, q_{t}=j \mid \lambda\right)$.

HMM and POS tagoing. Forward_Aloorithm

function FORWARD(observations of len T, state-graph) returns forward-probability
mum-states \leftarrow NUM-OF-STATES(state-graph)
Create a probability matrix forward[mum-states $+2, T+2$]
forward $[0,0] \leftarrow 1.0$
for each time step t from 1 to T do
for each state s from 1 to mum-states do

$$
\text { forward }[\mathrm{s}, \mathrm{t}] \longleftarrow \sum_{1 \leq s^{\prime} \leq \text { mum-states }} \text { forward }\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right)
$$

return the sum of the probabilities in the final column of forward

Figure 6.8 The forward algorithm; we've used the notation forward $[s, t]$ to represent $\alpha_{t}(s)$.

1. Initialization:

$$
\begin{equation*}
\alpha_{1}(j)=a_{0 j} b_{j}\left(o_{1}\right) \quad 1 \leq j \leq N \tag{6.12}
\end{equation*}
$$

2. Recursion (since states 0 and N are non-emitting):

$$
\begin{equation*}
\alpha_{t}(j)=\sum_{i=1}^{N-1} \alpha_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right) ; \quad 1<j<N, 1<t<T \tag{6.13}
\end{equation*}
$$

3. Termination:

$$
\begin{equation*}
P(O \mid \lambda)=\alpha_{T}(N)=\sum_{i=2}^{N-1} \alpha_{T}(i) a_{i N} \tag{6.14}
\end{equation*}
$$

Forward Algorithm and Viterbi

Decoding: the Viterbi algorithm

Viterbi algorithm

observation O. The Viterbi algorithm follows the same approach (dynamic programming) of the Forward.
Viterbi scores are attached to each possible state in the sequence.

Figure 6.9 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream eating events 313 . Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The figure shows the computation of $v_{t}(j)$ for two states at two time steps. The computation in each cell follows Eq 6.10: $v_{t}(j)=\max _{1 \leq i \leq N-1} v_{t-1}(i) a_{i j} b_{j}\left(o_{t}\right)$ The resulting probability expressed in each cell is Eq 6.16: $v_{t}(j)=P\left(q_{0}, q_{1}, \ldots, q_{t-1}, o_{1}, o_{2}, \ldots, o_{t}, q_{t}=j \mid \lambda\right)$.

HMM and POS tagoing: the Viterbi Aloorithm

function Viterbi(observations of len T,state-graph) returns best-path
mum-states \leftarrow NUM-OF-STATES(state-graph)
Create a path probability matrix viterbi[mum-states $+2, T+2$]
viterbi[$[0,0] \leftarrow 1.0$
for each time step t from 1 to T do
for each state s from 1 to mum-states do

$$
\begin{aligned}
& \text { viterbi }[\mathrm{s}, \mathrm{t}] \leftarrow \underset{1 \leq s^{\prime} \leq \text { num-states }}{\max } \text { viterbi }\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s} * b_{s}\left(o_{t}\right) \\
& \text { backpointer }[\mathrm{s}, \mathrm{t}] \leftarrow \underset{1 \leq s^{\prime} \leq \text { num-states }}{\operatorname{argmax}} \text { viterb }\left[s^{\prime}, t-1\right] * a_{s^{\prime}, s}
\end{aligned}
$$

Backtrace from highest probability state in final column of viterbi[] and return path

Figure 6.10 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda=(A, B)$, the algorithm returns the state-path through the HMM which assigns maximum likelihood to the observation sequence. Note that states 0 and $\mathrm{N}+1$ are non-emitting start and end states.

HMM and POS tagging: Parameter Estimation

Supervised methods in tagged data sets:

- Output probs: $P\left(w_{i} \mid p^{j}\right)=\frac{C\left(w_{i}, p^{j}\right)}{C\left(p^{j}\right)}$
- Transition probs: $P\left(p^{i} \mid p^{j}\right)=\frac{C\left(p^{i}\right.}{}$ follows $\left.\quad \mathrm{p}^{j}\right)$
- Smoothing: $P\left(w_{i} \mid p^{j}\right)=\frac{C\left(w_{i}, p^{j}\right)+1}{C\left(p^{j}\right)+K^{i}}$
(see Manning\& Schutze, Chapter 6)

HMM and POS tagging: Parameter Estimation

Unsupervised (few tagged data available):

- With a dictionary: $P\left(w_{i} \mid p^{j}\right)$ are early estimated from D, while $P\left(p^{i} \mid p^{j}\right)$ are randomly assigned
- With equivalence classes u_{L}, (Kupiec92):

$$
P\left(w^{i} \mid p^{L}\right)=\frac{\frac{1}{|L|} C\left(u^{L}\right)}{\sum_{u_{L^{\prime}}} \frac{C\left(u^{L^{\prime}}\right)}{\left|L^{\prime}\right|}}
$$

For example, if $L=\{$ noun, verb $\}$ then $u_{L}=\{$ cross, drive, $\ldots\}$

HMM and POS tagging:
 Equivalence classes (Kupiec '92)

Figure 4. Probabilities for adjective/noun paths.

POS tagging: References

- F. Jelinek, Statistical methods for speech recognition, Cambridge, Mass.: MIT Press, 1997.
- Manning \& Schutze, Foundations of Statistical Natural Language Processing, MIT Press, Chapter 6.
- Jurafsky\& Martin, Speech and Language Processing, Chapt. 8. URL: https://web.stanford.edu/~jurafsky/slp3/
- Church (1988), A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text, http://acl.ldc.upenn.edu/A/A88/A88-1019.pdf
- Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
- Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, IT-13(2), 260-269.
- Parameter Estimation (slides):
http://jan.stanford.edu/fsnlp/statest/henke-ch6.ppt

Other References

- "Introduction to Information Retrieval", Christopher D. Manning, Prabhakar Raghavan and Hinrich Schu̧tze, Cambridge University Press. 2008. Chapter 12. http://www-csli.stanford.edu/ hinrich/information-retrieval-book.
- Rabiner, Lawrence. "First Hand: The Hidden Markov Model". IEEE Global History Network. Retrieved 2 October 2013. at http://www.ieeeghn.org/wiki/index.php/ First-Hand:The_Hidden_Markov_Model
- Applet at: http://www.cs.umb.edu/ srevilak/viterbi/

Exercise

Consider a two-bit register. The register has four possible states: 00 , 01,10 and 11 . Initially, at time 0 , the contents of the register is chosen at random to be one of these four states, each with equal probability. At each time step, beginning at time 1 , the register is randomly manipulated as follows: with probability $1 / 2$, the register is left unchanged; with probability $1 / 4$, the two bits of the register are exchanged (e.g., 01 becomes 10); and with probability $1 / 4$, the right bit is flipped (e.g., 01 becomes 00). After the register has been manipulated in this fashion, the left bit is observed. Suppose that on the first three time steps, we observe $0,0,1$.

- Formulate the register as an HMM. What is the probability of transitioning from every state to every other state? What is the probability of observing output (0 or 1) in each state?
- What is the probability of being in each state at time t after observing only the first t bits, for $t=1,2,3$.

