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FROM STATISTICAL LEARNING THEORY TO SVMS



LEARNİNG A CLASS FROM EXAMPLES

 Class C of a “family car”

 Prediction: Is car x a “family car”?

 Knowledge extraction: What do people expect from a family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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CLASS C
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In general we do not know C(x).

   2121   power engine   AND  price eepp 



HYPOTHESİS CLASS H
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Empirical error:
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S, G, AND THE VERSİON SPACE

LECTURE NOTES FOR E ALPAYDIN 2004 INTRODUCTİON TO MACHİNE LEARNİNG © THE 
MIT PRESS (V1.1)

8

most specific hypothesis, S

most general hypothesis, G

h H, between S and G is consistent
and make up the version space

(Mitchell, 1997)



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, 
will probably be approximately correct?

 We want to be confident (above a level) that 

 … the error probability is bounded by some value

 A  concept  class  C is  called  PAC-learnable if  there  exists  a  PAC-learning  algorithm  such that,  
for  any ε>0  and δ>0,  there  exists  a fixed  sample  size  such  that,  for  any  concept  c C and  
for  any  probability  distribution  on  X,  the  learning  algorithm  produces  a  probably-
approximately-correct   hypothesis h

 a  (PAC) probably-approximately-correct hypothesis h is one that  has error at most  ε with  
probability  at least   1-δ.
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1-δ

ε



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

 In PAC learning, given a class C and examples drawn from some unknown but fixed 
distribution p(x), we want to find the number of examples N, such that with probability at 
least 1-δ, h has error at most ε ? (Blumer et al., 1989)

 P( CDh   )  1-

 where CDh is (area of the) “the region of difference between C and h”,  and δ>0, ε>0.
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PAC LEARNİNG How many training examples m should we 
have, such that with probability at least 1 - δ, h

has error at most ε ? (Blumer et al., 1989)
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• Let prob. of a + ex. in each strip be at most ε/4

• Pr that a random ex. misses a strip: 1- ε/4

• Pr that m random instances miss a strip: 
(1 - ε/4)m

• Pr that m random instances instances miss 4 strips: 
4(1 - ε/4)m

• We want 1-4(1 - ε/4)m ≥ 1-δ or 4(1 - ε/4)m ≤ δ 

• Using 1-x ≤ e-x an even stronger condition is: 
[(1-ε/4) ≤ exp(-ε/4) so (1-ε/4) m≤exp(-ε/4) m = exp(-εm/4)]    

4e –εm/4≤ δ OR

• Divide by 4, take ln... and show that m ≥ (4/ε)ln(4/δ) 



PROBABLY APPROXİMATELY CORRECT (PAC) LEARNİNG

How many training examples m should we have, such that with probability at least 1 - δ, our
hypothesis h has error at most ε ? (Blumer et al., 1989)

m ≥ (4/ε)ln(4/δ)

 m increases slowly with 1/ε and 1/δ

 Say ε=1% with confidence 95%, pick m  1752

 Say ε=10% with confidence 95%, pick m  175
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MODEL COMPLEXİTY VS. NOISE

 Use the simpler one because

 Simpler to use (lower computational complexity)

 Easier to train (lower space complexity)

 Easier to explain (more interpretable)

 Generalizes better (lower variance – Occam’s 
razor)
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MULTIPLE CLASSES, Cİ İ=1,...,K
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Train hypotheses 
hi(x), i =1,...,K:
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REGRESSİON
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