INTRODUCTION TO STATISTICAL LEARNING THEORY

ROBERTO BASILI, UNIVERSITÀ DI ROMA, TOR VERGATA

DEEP LEARNING, MARCH 2024

OUTLINE

- Statistical Learning Theory
 - PAC learnability
 - VC dimension
 - Learning Machines
 - Model Optimization and Concept Class complexity
 - Model Optimization via Cross-Validation
 - Towards perceptrons and SVMs

24/03/2024

FROM STATISTICAL LEARNING THEORY TO SVMS

LEARNING A CLASS FROM EXAMPLES

Class C of a "family car"

- Prediction Is car x a "family car"?
- Knowledge extraction What do people expect from a family car?

Output:

Positive (+) and negative (-) examples

Input representation:

 x_1 : price, x_2 : engine power

TRAINING SET \boldsymbol{X}

HYPOTHESIS CLASS ${\mathcal H}$

7

S, G, AND THE VERSION SPACE

PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

How many training examples are needed so that the tightest rectangle S which will constitute our hypothesis, will probably be approximately correct?

• We want to be confident (above a level) that

... the error probability is bounded by some value

- A concept class C is called *PAC-learnable* if there exists a PAC-learning algorithm such that, for any $\varepsilon > 0$ and $\delta > 0$, there exists a fixed sample size such that, for any concept $c \in C$ and for any probability distribution on X, the learning algorithm produces a probably-approximately-correct hypothesis *h*
- a (PAC) probably-approximately-correct hypothesis h is one that has error at most ε with probability at least $1-\delta$.

PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

In PAC learning, given a class C and examples drawn from some unknown but fixed distribution p(x), we want to find the number of examples N, such that with probability at least 1-δ, h has error at most ε? (Blumer et al., 1989)

$P(C\Delta h \le \varepsilon) \ge 1 - \delta$

• where $C\Delta h$ is (area of the) "the region of difference between C and h", and $\delta > 0$, $\varepsilon > 0$.

PAC LEARNING

How many training examples *m* should we have, such that with probability at least $1 - \delta$, *h* has error at most ε ? (Blumer et al., 1989)

- Let prob. of a + ex. in each strip be at most $\varepsilon/4$
- Pr that a random ex. misses a strip: $1 \epsilon/4$
- Pr that *m* random instances miss a strip: $(1 - \varepsilon/4)^m$
- Pr that *m* random instances instances miss 4 strips: $4(1 - \epsilon/4)^m$
- We want $1-4(1-\varepsilon/4)^m \ge 1-\delta$ or $4(1-\varepsilon/4)^m \le \delta$
- Using $1 x \le e^{-x}$ an even stronger condition is: $[(1 - \varepsilon/4) \le exp(-\varepsilon/4)$ so $(1 - \varepsilon/4)^m \le exp(-\varepsilon/4)^m = exp(-\varepsilon m/4)]$ $4e^{-\varepsilon m/4} \le \delta$ OR
- Divide by 4, take In... and show that $m \ge (4/\epsilon) \ln(4/\delta)$

PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING

How many training examples m should we have, such that with probability at least $1 - \delta$, our hypothesis *h* has error at most ε ? (Blumer et al., 1989)

$m \geq (4/\varepsilon) ln(4/\delta)$

• *m* increases slowly with $1/\varepsilon$ and $1/\delta$

Say $\mathcal{E}=1\%$ with confidence 95%, pick $m \ge 1752$

Say $\mathcal{E}=10\%$ with confidence 95%, pick $m \ge 175$

MODEL COMPLEXITY VS. NOISE

- Use the simpler one because
- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

X

MULTIPLE CLASSES, C_i **i=1,...,K**

 $\mathcal{X} = \{\mathbf{x}^{t}, \mathbf{r}^{t}\}_{t=1}^{N}$ $r_{i}^{t} = \begin{cases} 1 \text{ if } \mathbf{x}^{t} \in C_{i} \\ 0 \text{ if } \mathbf{x}^{t} \in C_{j}, j \neq i \end{cases}$

Train hypotheses $h_i(\mathbf{x}), i = 1,...,K$:

$$h_i(\mathbf{x}^t) = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$$

Price

REGRESSION

x: milage