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How to train a large 

scale encoder?



Challenge: 16GB GPU resources

ChatGPT’s resources: 10-30.000 GPUs 1xTesla T4



Scale: impact

 How to cool them?

 Currently, to cool the systems used for GPT, water is being 
used by Microsoft and OpenAI (the method of cooling is 
called "evaporative cooling"). As reported in the research 
paper [1], Microsoft's state-of-the-art data center in the US 
can easily consume 700,000 litres of clean fresh water 
(potable water).

 To compare the metrics of water usage, the same 
amount of water can be used to

 manufacture 370 BMW cars

 manufacture 320 Tesla Evs

 could quench the thirst of 2,30,000 people (considering an avg
of 3 litres of water drunk in a day by a person) in one single day

Pengfei Li et al., 2023, Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models.

ChatGPT uses 10000 graphic cards and 

285000 processor chips to process the 

data.

https://arxiv.org/abs/2304.03271


Pretrainable Adapters: the 

idea

What are the optimal architectures for adapters?



Architecture Search methods

 Architectural Choices: 

 Which Activation function?

 Which Encoder?

 Which Adapter Placement?

 DART algorithm for architecture
search

 Define the search options O and 
design an hypernetwork where 
layer weights and architectural 
parameters O are trainable in an 
end-to-end fashion

 Extracts the final sub-network a 
posteriori by selecting the best 
operation on each edge and 
dropping the lower-score 
operations

 Retrain from scratch the final sub-
network on the original train set with 
randomly initialized parameters.



Architecture Search: Outcomes



Low Rank Adaptation: 

Motivations

 Fine-tuning is computationally challenging when applied to 
large pre-trained models as it involves the adjustment of millions 
of parameters. Effective traditional fine-tuning demands huge 
computational resources and time, so that it has a limited 
applicability to model adaption for specific tasks.

 In traditional fine-tuning, the adjustment involves altering the 
original weight matrix W of the network. The changes made to W
during fine-tuning can be collectively represented by ΔW, such 
that the updated weights can be expressed as W+ΔW

 As intrinsic rank hypothesis may suggest, the significant changes 
(i.e. ΔW) to the neural network can be captured just relying on a 
small lower-dimensional representation.



Adapters: the idea



LoRA: aims
 A pre-trained model can be shared and used to build many small LoRA modules for 

different tasks. 
 The shared model can be freezed and efficient switching among tasks is achieved by replacing 

the matrices A and B, reducing the storage requirement and task-switching overhead 
significantly.

 LoRA makes training more efficient and lowers the hardware barrier to entry by up to 3 
times when using adaptive optimizers since we do not need to calculate the gradients 
or maintain the optimizer states for most parameters. 
 Only the injected, much smaller low-rank matrices are optimized.

 A simple linear design allows us to merge the trainable matrices with the frozen weights 
when deployed, that does not introduce any inference latency compared to a fully fine-
tuned model, by construction.

 LoRA is orthogonal to many prior fine-tuning methods and can be combined with many 
of them, such as prefix-tuning. 

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models. 
arXiv:2106.09685



Exploting implicit Low Rank 

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models. 
arXiv:2106.09685



Exploting implicit Low Rank (2)

Low Rank of A and B implies a rank r

(with r<<d) significantly reduces the 

number of trainable parameters. 

If W is a dxd matrix, standard W

updating involves d² parameters. 

With B and A of sizes dxr and rxd

respectively, the total number of 

parameters reduces to 2dr, which is 

much smaller when r<<d.



Low-Rank Adaptation (LoRA)
(Hu et al., 2021)

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models. 
arXiv:2106.09685

Low Rank Adaptation (LoRA: 

Hu et al., 2021): create the 

parallel (fine-tunable) 

adapters as smaller matrices:

• add the adapters to the 

base model while keeping 

the base model frozen

LoRA is NOT learning any 

parameter, but the changes

in the parameters!

W0 + ∆W = W0 + BA

Traditional
FT

LoRA
FT



Advantages
 When applied to very large language models, the Low-Rank 

Adaptation (LoRA) method largely reduces the number of 
trainable parameters, offering several benefits, :

1. Reduced Memory Requirements: LoRA decreases memory needs 
by lowering the number of parameters to update, aiding in the 
management of large-scale models.

2. Faster Adaptation/Training: By simplifying computational demands, 
LoRA accelerates the training and fine-tuning of large models for 
new tasks.

3. Lower HW requirements: LoRA’s lower parameter count enables the 
fine-tuning of substantial models on less powerful hardware, like 
modest GPUs or CPUs.

4. Larger Scale Models: LoRA facilitates the expansion of AI models 
without a corresponding increase in computational resources, 
making the management of growing model sizes more practical.



LoRA trends: ALoRA



ALoRA: algorithm



Alpaca LoRA

Within just a few days following the release of 

Alpaca's training material, LoRA was utilized to fine-

tune LLaMa into Alpaca efficiently, using only a 

«small» GPU:

 https://github.com/tloen/alpaca-lora



Aligning LLMs



RAG: motivations

 Large pre-trained language models have been shown to store 

factual knowledge in their parameters, and achieve state-of-

the-art results when fine-tuned on downstream NLP tasks.

 However, their ability to access and precisely manipulate 

knowledge is still limited, and hence on knowledge-intensive 

tasks, their performance lags behind task-specific architectures. 

 Additionally, providing provenance for their decisions and 

updating their world knowledge remain open research 

problems. 



Knowledge Integration and 

LLMs: RAG Models

 Retrieval Augmented
Generation (Lewis et al., 2020)

 At generation time contextual
information able to qualify the LLM 
response is made available

 It is essential for knowledge 
intensive tasks 

 It is possible to apply RAG either to 
the pre-training or to the fine-
tuning and prompting stage

 It has been shown to impact 
positively onto hallucinations

(Lewis et al, 2020) Retrieval-augmented generation for knowledge-intensive NLP tasks. Proceedings 

of NIPS, Advances in Neural Information Processing Systems,  33 (2020): 9459-9474.

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html


The basic Retrieval workflow

Need COLLECTION



RAG: the steps

1. INPUT: It corresponds to the question posed to an LLM system. If no 
RAG is applied, LLM responds to the question through standard 
decoding

2. INDEXING: To employ RAG, a set of reference documents are to be 
indexed. 

 It involves chunking the documents, embeddings these chunks, and then 
indexing embeddings into a vector store. 

 The input query is also embedded.

3.RETRIEVAL: Relevant documents are retrieved by comparing the query 
embedding against the document vectors.

4.GENERATION: Retrieved documents are first merged with the original 
prompt to provide additional context and then the LLM response 
generation is triggered:

 This combined text and prompt is the input for response generation, that 
produces the final output provided to the user.



The RAG architecture



RAG models: 

the  information flow



RAG models: 

the training task



Types of RAG



Advanced RAGs

 It employs optimization across the (A) pre-

retrieval, (B) retrieval, and (C) post-retrieval 

processes.

A. The pre-retrieval phase involves refining data 

indexing through five key stages: 

 enhancing data granularity, 

 optimizing index structures, 

 adding metadata, 

 alignment optimization, and 

 mixed retrieval



Advanced RAGs

 It employs optimization across the (A) pre-
retrieval, (B) retrieval, and (C) post-retrieval 
processes.

B. The retrieval phase involves optimizing the 
embedding model itself to maximize the 
quality of context chunks. Strategies may 
include:

 fine-tuning embeddings to improve retrieval 
relevance or 

 employing dynamic embeddings that better 
capture contextual nuances (e.g., OpenAI’s
embeddings-ada-02 model)



Advanced RAGs

 It employs optimization across the (A) pre-
retrieval, (B) retrieval, and (C) post-retrieval 
processes.

C. The post-retrieval phase focuses on 
circumventing context window limitations 
and managing noisy or distracting 
information. Re-ranking is a common 
approach to address these challenges, 
involving techniques such as 

 relocating relevant context to the edges of the 
prompt or

 recalculating semantic similarity between the 
query and relevant text chunks. 

 Prompt compression techniques may also aid 



Modular RAG
• SEARCH MODULE: Tailored for specific 

use-cases, it can perform direct 
searches on various corpora, 
utilizing LLM-generated code and 
query languages.

• MEMORY MODULE: Uses the LLM’s 
memory for retrieval, improving 
alignment with data distributions.

• FUSION: Expands user queries into 
diverse perspectives, improving 
search results through multi-query 
approaches and re-ranking.

• ROUTING: Determines actions for 
queries, selecting the appropriate 
data source for retrieval.

• PREDICT: Uses the LLM to generate 
context instead of direct retrieval to 
reduce redundancy and noise.

• TASK ADAPTER: Adapts RAG to various 
tasks, enhancing universality and 
creating task-specific retrievers.



The fondational RAGs



RAG evaluation

 The evaluation of a RAG framework focuses on 

three primary quality scores and four abilities. 

 QUALITY SCORES encompass measuring 

 context relevance (precision and specificity of retrieved context), 

 answer faithfulness (faithfulness of answers to retrieved context), 

and 

 answer relevance (relevance of answers to posed questions). 

 Additionally, four abilities measure ADAPTABILITY AND EFFICIENCY of 

a RAG system: 

 noise robustness, 

 negative rejection, 

 information integration, and 

 counterfactual robustness.



RAG evaluation: DEFs

 Context Relevance - Precision and Specificity of retrieved context (How 
much does the context actually relate to the query?) 

 Answer Faithfulness - Is the answer true to the retrieved context? Is it 
making anything up that isn’t within the context?

 Answer Relevance - Is the answer actually relevant to the core meaning 
of the query? 

 Noise Robustness - How well can the model ignore useless information 
that is retrieved? 

 Negative Rejection - How well can the model refrain from responding 
when the context does not have the necessary information included? 

 Information Integration - How well can the model combine all of the 
information into a clean and summarized answer? 

 Counterfactual Robustness - How well can the model recognize that the 
provided context is actually wrong, and discard the information? 



RAG evaluation



A RAG Taxonomy

 Research is active in 
different directions

 Retrieval

 Generation 

 Textual, Logical and 
Procedural 
Augmentation

 DBs or KG are often 
explored as information 
sources



from Luxananda on Medium.com

https://luxananda.medium.com/towards-llm-8-techniques-of-prompt-engineering-retrieval-augmented-generation-part-1-d8ab49175154


Applications of 

RAGs



Vector Databases
 A vector database is a type of database 

that stores and manages unstructured data, 
such as 

 texts, images, or audio, 

 in vector embeddings (high-dimensional 

vectors) to make it easy to find and retrieve 

similar objects quickly.



RAG: workflows



RAG: data gathering



RAG potential applications

 Question Answering where facts are derived from the retrieved

texts that represent up-to-date information (in IR style)

 Summarization, where on-the-fly retrieval of supporting
documents is carried out

 DB query in NL, as individual DB records can be seen as texts

 KB retrieval and alignment to specific user’ needs

 …



RAG: business applications
Practical applications of RAG include for exa,ple:

• Customer support: RAG can be used to build chatbots or 
AI assistants that provide personalized assistance across 
various questions and issues.

• Content generation: RAG enables the automation of 
content creation tasks, such as writing aids or content 
curation apps.

• Education: RAG can serve as a learning assistant, 
providing explanations and summaries of educational 
content.

• Research: RAG can assist researchers in obtaining 
relevant information and insights from large document 
collections.



Future directions



AlphaGeometry (Google 

DeepMind, Jan 2024)

Trinh, Trieu H., Wu Yuhuai, Le Quoc V., He He, Luong Thang, Solving olympiad geometry without 
human demonstrations, Nature, 625, 2024.

https://www.nature.com/articles/s41586-023-06747-5


AlphaGeometry (Google 

DeepMind, Jan 2024)

Problem 3 of the 2015 International Mathematics Olympiad (left) and 

a condensed version of AlphaGeometry’s solution (right). The blue 

elements are added constructs. AlphaGeometry’s solution has 109 

logical steps.

Trinh, Trieu H., Wu Yuhuai, Le Quoc V., He He, Luong Thang, Solving olympiad geometry without 
human demonstrations, Nature, 625, 2024.

https://www.nature.com/articles/s41586-023-06747-5
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