
Novel Trends: Low

Rank, RAGs.

Roberto Basili, Danilo Croce
Deep Learning, 2023/2024

Outline
 How to fine tune Large Scale Decoder-only architectures

 Scale problems

 Adapters for LLMs

 Alignment through External Sources

 Retrieval Augmented LLMs

 RAG: the architecture

 Applications of RAGs

 Vector Databases

 Knowledge Distillation

How to train a large

scale encoder?

Challenge: 16GB GPU resources

ChatGPT’s resources: 10-30.000 GPUs 1xTesla T4

Scale: impact

 How to cool them?

 Currently, to cool the systems used for GPT, water is being
used by Microsoft and OpenAI (the method of cooling is
called "evaporative cooling"). As reported in the research
paper [1], Microsoft's state-of-the-art data center in the US
can easily consume 700,000 litres of clean fresh water
(potable water).

 To compare the metrics of water usage, the same
amount of water can be used to

 manufacture 370 BMW cars

 manufacture 320 Tesla Evs

 could quench the thirst of 2,30,000 people (considering an avg
of 3 litres of water drunk in a day by a person) in one single day

Pengfei Li et al., 2023, Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models.

ChatGPT uses 10000 graphic cards and

285000 processor chips to process the

data.

https://arxiv.org/abs/2304.03271

Pretrainable Adapters: the

idea

What are the optimal architectures for adapters?

Architecture Search methods

 Architectural Choices:

 Which Activation function?

 Which Encoder?

 Which Adapter Placement?

 DART algorithm for architecture
search

 Define the search options O and
design an hypernetwork where
layer weights and architectural
parameters O are trainable in an
end-to-end fashion

 Extracts the final sub-network a
posteriori by selecting the best
operation on each edge and
dropping the lower-score
operations

 Retrain from scratch the final sub-
network on the original train set with
randomly initialized parameters.

Architecture Search: Outcomes

Low Rank Adaptation:

Motivations

 Fine-tuning is computationally challenging when applied to
large pre-trained models as it involves the adjustment of millions
of parameters. Effective traditional fine-tuning demands huge
computational resources and time, so that it has a limited
applicability to model adaption for specific tasks.

 In traditional fine-tuning, the adjustment involves altering the
original weight matrix W of the network. The changes made to W
during fine-tuning can be collectively represented by ΔW, such
that the updated weights can be expressed as W+ΔW

 As intrinsic rank hypothesis may suggest, the significant changes
(i.e. ΔW) to the neural network can be captured just relying on a
small lower-dimensional representation.

Adapters: the idea

LoRA: aims
 A pre-trained model can be shared and used to build many small LoRA modules for

different tasks.
 The shared model can be freezed and efficient switching among tasks is achieved by replacing

the matrices A and B, reducing the storage requirement and task-switching overhead
significantly.

 LoRA makes training more efficient and lowers the hardware barrier to entry by up to 3
times when using adaptive optimizers since we do not need to calculate the gradients
or maintain the optimizer states for most parameters.
 Only the injected, much smaller low-rank matrices are optimized.

 A simple linear design allows us to merge the trainable matrices with the frozen weights
when deployed, that does not introduce any inference latency compared to a fully fine-
tuned model, by construction.

 LoRA is orthogonal to many prior fine-tuning methods and can be combined with many
of them, such as prefix-tuning.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models.
arXiv:2106.09685

Exploting implicit Low Rank

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models.
arXiv:2106.09685

Exploting implicit Low Rank (2)

Low Rank of A and B implies a rank r

(with r<<d) significantly reduces the

number of trainable parameters.

If W is a dxd matrix, standard W

updating involves d² parameters.

With B and A of sizes dxr and rxd

respectively, the total number of

parameters reduces to 2dr, which is

much smaller when r<<d.

Low-Rank Adaptation (LoRA)
(Hu et al., 2021)

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen (2021). LoRA: Low-Rank Adaptation of Large Language Models.
arXiv:2106.09685

Low Rank Adaptation (LoRA:

Hu et al., 2021): create the

parallel (fine-tunable)

adapters as smaller matrices:

• add the adapters to the

base model while keeping

the base model frozen

LoRA is NOT learning any

parameter, but the changes

in the parameters!

W0 + ∆W = W0 + BA

Traditional
FT

LoRA
FT

Advantages
 When applied to very large language models, the Low-Rank

Adaptation (LoRA) method largely reduces the number of
trainable parameters, offering several benefits, :

1. Reduced Memory Requirements: LoRA decreases memory needs
by lowering the number of parameters to update, aiding in the
management of large-scale models.

2. Faster Adaptation/Training: By simplifying computational demands,
LoRA accelerates the training and fine-tuning of large models for
new tasks.

3. Lower HW requirements: LoRA’s lower parameter count enables the
fine-tuning of substantial models on less powerful hardware, like
modest GPUs or CPUs.

4. Larger Scale Models: LoRA facilitates the expansion of AI models
without a corresponding increase in computational resources,
making the management of growing model sizes more practical.

LoRA trends: ALoRA

ALoRA: algorithm

Alpaca LoRA

Within just a few days following the release of

Alpaca's training material, LoRA was utilized to fine-

tune LLaMa into Alpaca efficiently, using only a

«small» GPU:

 https://github.com/tloen/alpaca-lora

Aligning LLMs

RAG: motivations

 Large pre-trained language models have been shown to store

factual knowledge in their parameters, and achieve state-of-

the-art results when fine-tuned on downstream NLP tasks.

 However, their ability to access and precisely manipulate

knowledge is still limited, and hence on knowledge-intensive

tasks, their performance lags behind task-specific architectures.

 Additionally, providing provenance for their decisions and

updating their world knowledge remain open research

problems.

Knowledge Integration and

LLMs: RAG Models

 Retrieval Augmented
Generation (Lewis et al., 2020)

 At generation time contextual
information able to qualify the LLM
response is made available

 It is essential for knowledge
intensive tasks

 It is possible to apply RAG either to
the pre-training or to the fine-
tuning and prompting stage

 It has been shown to impact
positively onto hallucinations

(Lewis et al, 2020) Retrieval-augmented generation for knowledge-intensive NLP tasks. Proceedings

of NIPS, Advances in Neural Information Processing Systems, 33 (2020): 9459-9474.

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html

The basic Retrieval workflow

Need COLLECTION

RAG: the steps

1. INPUT: It corresponds to the question posed to an LLM system. If no
RAG is applied, LLM responds to the question through standard
decoding

2. INDEXING: To employ RAG, a set of reference documents are to be
indexed.

 It involves chunking the documents, embeddings these chunks, and then
indexing embeddings into a vector store.

 The input query is also embedded.

3.RETRIEVAL: Relevant documents are retrieved by comparing the query
embedding against the document vectors.

4.GENERATION: Retrieved documents are first merged with the original
prompt to provide additional context and then the LLM response
generation is triggered:

 This combined text and prompt is the input for response generation, that
produces the final output provided to the user.

The RAG architecture

RAG models:

the information flow

RAG models:

the training task

Types of RAG

Advanced RAGs

 It employs optimization across the (A) pre-

retrieval, (B) retrieval, and (C) post-retrieval

processes.

A. The pre-retrieval phase involves refining data

indexing through five key stages:

 enhancing data granularity,

 optimizing index structures,

 adding metadata,

 alignment optimization, and

 mixed retrieval

Advanced RAGs

 It employs optimization across the (A) pre-
retrieval, (B) retrieval, and (C) post-retrieval
processes.

B. The retrieval phase involves optimizing the
embedding model itself to maximize the
quality of context chunks. Strategies may
include:

 fine-tuning embeddings to improve retrieval
relevance or

 employing dynamic embeddings that better
capture contextual nuances (e.g., OpenAI’s
embeddings-ada-02 model)

Advanced RAGs

 It employs optimization across the (A) pre-
retrieval, (B) retrieval, and (C) post-retrieval
processes.

C. The post-retrieval phase focuses on
circumventing context window limitations
and managing noisy or distracting
information. Re-ranking is a common
approach to address these challenges,
involving techniques such as

 relocating relevant context to the edges of the
prompt or

 recalculating semantic similarity between the
query and relevant text chunks.

 Prompt compression techniques may also aid

Modular RAG
• SEARCH MODULE: Tailored for specific

use-cases, it can perform direct
searches on various corpora,
utilizing LLM-generated code and
query languages.

• MEMORY MODULE: Uses the LLM’s
memory for retrieval, improving
alignment with data distributions.

• FUSION: Expands user queries into
diverse perspectives, improving
search results through multi-query
approaches and re-ranking.

• ROUTING: Determines actions for
queries, selecting the appropriate
data source for retrieval.

• PREDICT: Uses the LLM to generate
context instead of direct retrieval to
reduce redundancy and noise.

• TASK ADAPTER: Adapts RAG to various
tasks, enhancing universality and
creating task-specific retrievers.

The fondational RAGs

RAG evaluation

 The evaluation of a RAG framework focuses on

three primary quality scores and four abilities.

 QUALITY SCORES encompass measuring

 context relevance (precision and specificity of retrieved context),

 answer faithfulness (faithfulness of answers to retrieved context),

and

 answer relevance (relevance of answers to posed questions).

 Additionally, four abilities measure ADAPTABILITY AND EFFICIENCY of

a RAG system:

 noise robustness,

 negative rejection,

 information integration, and

 counterfactual robustness.

RAG evaluation: DEFs

 Context Relevance - Precision and Specificity of retrieved context (How
much does the context actually relate to the query?)

 Answer Faithfulness - Is the answer true to the retrieved context? Is it
making anything up that isn’t within the context?

 Answer Relevance - Is the answer actually relevant to the core meaning
of the query?

 Noise Robustness - How well can the model ignore useless information
that is retrieved?

 Negative Rejection - How well can the model refrain from responding
when the context does not have the necessary information included?

 Information Integration - How well can the model combine all of the
information into a clean and summarized answer?

 Counterfactual Robustness - How well can the model recognize that the
provided context is actually wrong, and discard the information?

RAG evaluation

A RAG Taxonomy

 Research is active in
different directions

 Retrieval

 Generation

 Textual, Logical and
Procedural
Augmentation

 DBs or KG are often
explored as information
sources

from Luxananda on Medium.com

https://luxananda.medium.com/towards-llm-8-techniques-of-prompt-engineering-retrieval-augmented-generation-part-1-d8ab49175154

Applications of

RAGs

Vector Databases
 A vector database is a type of database

that stores and manages unstructured data,
such as

 texts, images, or audio,

 in vector embeddings (high-dimensional

vectors) to make it easy to find and retrieve

similar objects quickly.

RAG: workflows

RAG: data gathering

RAG potential applications

 Question Answering where facts are derived from the retrieved

texts that represent up-to-date information (in IR style)

 Summarization, where on-the-fly retrieval of supporting
documents is carried out

 DB query in NL, as individual DB records can be seen as texts

 KB retrieval and alignment to specific user’ needs

 …

RAG: business applications
Practical applications of RAG include for exa,ple:

• Customer support: RAG can be used to build chatbots or
AI assistants that provide personalized assistance across
various questions and issues.

• Content generation: RAG enables the automation of
content creation tasks, such as writing aids or content
curation apps.

• Education: RAG can serve as a learning assistant,
providing explanations and summaries of educational
content.

• Research: RAG can assist researchers in obtaining
relevant information and insights from large document
collections.

Future directions

AlphaGeometry (Google

DeepMind, Jan 2024)

Trinh, Trieu H., Wu Yuhuai, Le Quoc V., He He, Luong Thang, Solving olympiad geometry without
human demonstrations, Nature, 625, 2024.

https://www.nature.com/articles/s41586-023-06747-5

AlphaGeometry (Google

DeepMind, Jan 2024)

Problem 3 of the 2015 International Mathematics Olympiad (left) and

a condensed version of AlphaGeometry’s solution (right). The blue

elements are added constructs. AlphaGeometry’s solution has 109

logical steps.

Trinh, Trieu H., Wu Yuhuai, Le Quoc V., He He, Luong Thang, Solving olympiad geometry without
human demonstrations, Nature, 625, 2024.

https://www.nature.com/articles/s41586-023-06747-5

LORA and RAG: bibliography

 LoRA: LoRA: Low-Rank Adaptation of Large Language Models, Edward Hu et
al., 2021

 Learned Adapters Are Better Than Manually Designed Adapters, Zhang et al.,
2023

 ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language
Models, liu et al., 2024

 RAG:
 (Lewis et al, 2020) Retrieval-augmented generation for knowledge-intensive NLP

tasks. Proceedings of NIPS, Advances in Neural Information Processing Systems, 33

(2020): 9459-9474.

 RAG surveys & tutorial:
 Retrieval-Augmented Generation for Large Language Models: A Survey, Gao et

al, 2023
 A Survey on Retrieval-Augmented Text Generation for Large Language Models, Yizheng

Huang and Jimmy X. Huang, 2024

 “Towards LLM #8: Techniques of Prompt Engineering — Retrieval-Augmented

Generation (Part 1)”, LAKSHMI VENKATESH on Luxananda - Medium.com

▪ Pengfei Li et al., 2023, Making AI Less "Thirsty":

Uncovering and Addressing the Secret Water

Footprint of AI Models.

https://arxiv.org/abs/2106.09685
https://aclanthology.org/2023.findings-acl.468/
https://arxiv.org/abs/2403.16187
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://arxiv.org/abs/2312.10997
https://arxiv.org/search/cs?searchtype=author&query=Gao,+Y
https://arxiv.org/abs/2404.10981
https://luxananda.medium.com/towards-llm-8-techniques-of-prompt-engineering-retrieval-augmented-generation-part-1-d8ab49175154
https://arxiv.org/abs/2304.03271

