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Making Language Modeling the 

basis for Artificial Intelligence

 Complex NN architectures are modular

 Enconding architectures as BERT can be seen as the basis for complex NL 
Inference tasks

 Paraphrase Detection

 Textual Entailment

 Stacking Dense Layer is a form of «compositional» mechanism (see Framenet in 
Logical approaches in NLU)

 Large Language Models capture

 Morphologic

 Syntactic

 Semantic phenomena

 as a basis for consistent NLU, reasoning and generation

 Larger language models seem to exhibit stronger generalization
capabilities
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Examples: Language 

understanding
https://github.com/Microsoft/CNTK/wiki/Hands-On-Labs-Language-Understanding

Task: Slot tagging with an LSTM

19  |x 178:1 |# BOS      |y 128:1 |# O

19  |x 770:1 |# show     |y 128:1 |# O

19  |x 429:1 |# flights  |y 128:1 |# O

19  |x 444:1 |# from     |y 128:1 |# O

19  |x 272:1 |# burbank |y 48:1  |# B-fromloc.city_name

19  |x 851:1 |# to       |y 128:1 |# O

19  |x 789:1 |# st. |y 78:1  |# B-toloc.city_name

19  |x 564:1 |# louis    |y 125:1 |# I-toloc.city_name

19  |x 654:1 |# on       |y 128:1 |# O

19  |x 601:1 |# monday |y 26:1  |# B-depart_date.day_name

19  |x 179:1 |# EOS      |y 128:1 |# O
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19  |x 601:1 |# monday |y 26:1  |# B-depart_date.day_name

19  |x 179:1 |# EOS      |y 128:1 |# O

y       "O"        "O"        "O"        "O"  "B-fromloc.city_name"

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Dense |  | Dense |  | Dense |  | Dense |  | Dense |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

+------+   +------+   +------+   +------+   +------+   

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+   +------+   +------+   +------+   +------+   

^          ^          ^          ^          ^

|          |          |          |          |

+-------+  +-------+  +-------+  +-------+  +-------+

| Embed |  | Embed |  | Embed |  | Embed |  | Embed |  ...

+-------+  +-------+  +-------+  +-------+  +-------+

^          ^          ^          ^          ^

|          |          |          |          |

x ------>+--------->+--------->+--------->+--------->+------... 

BOS      "show"    "flights"    "from"   "burbank"
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From attention to 

Transfomers
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Language Modeling and 

Reasoning

 Logical Entailment: the axiomatic «logical» view

 Training Automatic Entailment systems

 From formal logic to NL

 Recognizing Textual Entailment

 Applied RTE

 Sentence Pairs

 Pattern based and Prompting

 Applications



Entailment: the «logical» view

 Logical implication is used to express the 
entailment relationship between two subformulas

 Logics helps in expressing logical reasoning

schemata through normalized forms, e.g., 

 or equivalent variants

𝐴 → 𝐵 ∀𝑥 𝐴(𝑥) → 𝐵(𝑥)

𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵 ∀𝑥 𝐴 𝑥 → 𝐵 𝑥 ≡ ¬𝐴 𝑒 ∨ 𝐵(𝑒) (after Skolemization)

𝐴 → 𝐵 ≡ ¬(𝐴 ∧ ¬𝐵) ∀𝑥 𝐴 𝑥 → 𝐵 𝑥 ≡ ∀𝑥 ¬(𝐴 𝑥 ∧ ¬𝐵(𝑥))



Entailment: semantics

 Logical implication is tightly related to semantics
as it is the basis for an efficent approach to 

logical reasoning.

 Infact {𝐴} ⊨ 𝐵 iff    {}⊨ (𝐴 → 𝐵)

 B is semantically implied by A (only) if (𝐴 → 𝐵) is a 

tautology. This is used for the algorithms based on 

proof by contradiction, i.e., 

{𝐴} ⊨ 𝐵 iff 𝐴,¬𝐵 ⊨⊥ or

{∆, 𝐴} ⊨ 𝐵 iff ∆, 𝐴, ¬𝐵 ⊨ ⊥

(with ⊥ denoting the always false formula)



Entailment & Transfomers

 Logical implication is usually managed through a chain of 
deductive steps (as in logic programming) from the input query 
(i.e. a theorm to be demonstrated) to its fully resolved facts, or 
through contadictions

 However, when uncertainty does not allow to design all needed
facts (i.e. the axiomatic system ∆ is not fully known a priori) 
deduction can be challenging and inconsistent.

 Neural Networks can be adopted to limit the impact of 
incompleteness or noise in the reference rules and minimze the 
rick of mistakes in entailment.



Entailment & Transfomers (2)

 A possible direction is

 Map the axiomatic system into a training dataset 

 Map the input theorem into a natural language sentence

 Solve the inference task of accepting or rejecting the entailment into

a binary classification task

 In other words, given a training set of axioms such as

 ∆: {𝐴1 → 𝐵1, … , 𝐴𝑛 → 𝐵𝑛}

 Induc a function RTE such that for every future pair (𝐴𝑖 , 𝐵𝑗)

 ℎ(𝐴𝑖 , 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff    {∆, 𝐴𝑖} ⊨ 𝐵𝑗

 or alternatively

 ℎ(𝐴𝑖 → 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff    {∆, 𝐴𝑖} ⊨ 𝐵𝑗



The role of trasformers

 First setting

 ℎ(𝐴𝑖 , 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff  {∆, 𝐴𝑖} ⊩ 𝐵𝑗

 Input given by 2 sentences

 BERT used as the encoder

 A stacked classifier is trained on 

labeled pairs

 Type of Inference:

 PARAPHRASING

 TEXTUAL ENTAILMENT



The role of trasformers (2)

 Second setting

 ℎ(𝐴𝑖 → 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff  {∆, 𝐴𝑖} ⊩ 𝐵𝑗

 Input given 1 sentence expressing
the task over 𝐴𝑖 and 𝐵𝑗

 BERT used as the encoder

 A stacked classifier is trained on 

labeled pairs

 Example (PARAPHRASING):

 «The sentence 𝐵𝑗 has the same

meaning of sentence 𝐴𝑖»

 «Sentence 𝐴𝑖 means the same as 𝐵𝑗»



The role of trasformers (3)

 Second setting

 ℎ(𝐴𝑖 → 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff  {∆, 𝐴𝑖} ⊩ 𝐵𝑗

 Input given 1 sentence expressing the 
task over 𝐴𝑖 and 𝐵𝑗

 BERT used as the encoder

 A stacked classifier is trained on labeled

pairs

 Example (TEXTUAL ENTAILMENT):

 «The sentence 𝐵𝑗 is implied by sentence

𝐴𝑖»

 «Sentence 𝐴𝑖 guarantees the truth of 𝐵𝑗»



Neural Entailment: applications
 The setting

ℎ(𝐴𝑖 → 𝐵𝑗) = 𝑡𝑟𝑢𝑒 iff  {∆, 𝐴𝑖} ⊩ 𝐵𝑗

 correspond to sentences that depend
on on complex interactions between 𝐴𝑖
and 𝐵𝑗 mapped into an individual
sentences

 BERT is always used as the encoder

 The stacked classifier is an automatic
entailment recognition tool

 It can be preserved for future TEXTUAL 
ENTAILMENT tasks, e.g., :

 Topical Classification

 «The sentence 𝐵𝑗 is classified by label 𝐴𝑖»

 «Label 𝐴𝑖 corresponds to the topic of 𝐵𝑗»

 Sentiment Analysis:

 «𝐴𝑖 implies the sentiment label 𝐵𝑗»

 «𝐴𝑖 expresses sentiment 𝐵𝑗»



 Word-by-word attention can 
easily detect simple reorderings
of words in the premise (a).

 It is able to resolve synonyms
(“airplane” and “aircraft”, (c) and 
capable of matching multi-word 
expressions to single words 
(“garbage can” to “trashcan”, 3b). 

 Irrelevant parts of the premise, 
e.g., whole uninformative 
relative clauses, are correctly 
neglected for determining 
entailment (“which also has a 
rope leading out of it”, (b). 

 Deeper semantics or common-
sense knowledge (“snow” can be 
found “outside” and a “mother” 
is an “adult”, (e) and (g). 

 The model seems able to resolve 
one-to-many relationships 
(“kids” to “boy” and “girl”, (d) 

 Attention can fail, for example 
when the two sentences and 
their words are entirely 
unrelated (3f). 

Attention and RTE

from “Reasoning About Entailment With Neural 
Attention” (Rocktaschel et al., ICLR 2016)
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ENCODER-DECODERS 

for NLP



EncDec Architectures for NLP



Traditional use of LMs



NLP Tasks: Input and Output
[Task-specific prefix]: [Input text]

 CoLA (GLUE; Classification):

 Input: sentence, output: labels “acceptable” or “not acceptable”

 “cola sentence: The course is jumping well.” -> “not acceptable”

 “cola sentence: The course is jumping well.” -> “hamburger” (Fail!)

 STS-B (GLUE; Regression):

 Input: pair of sentences, output: similarity score [1,5]

 “stsb sentence1: The rhino grazed. sentence2: A rhino is grazing.” -> “3.8”

 EnDe (Translation):

 “translate English to German: That is good” -> “Das ist gut”

 CNNDM (Summarization):

 “summarize: state authorities dispatched…” -> “six people hospitalized after storm”



EncDec: the T5 model



Pretraining Objectives

 PREFIX LANGUAGE MODELING

 INPUT: Thank you for inviting

 TARGETS: me to your party last week.

 BERT-STYLE:

 INPUT: Thank you <M> <M> me to your party apple week

 TARGETS: Thank you for inviting e to your party last week.

 Strategies, Rates and Corrupted Span lengths suggests

variants



Multitask pretraining



BART (Lewis et al., 2019) - Facebook

 Enconding decoding architecture based on Pretraining and fine        
tuned towards different tasks such as: RTE, SA, …

 Two stages of PRETRAINING

 Text is first corrupted with an arbitrary noising function, 

 A sequence-to-sequence model is learned to reconstruct the original text.

 FINE TUNING: 
 MNLI (Williams et al., 2017), a bitext classification task to predict whether one 

sentence entails another. The fine-tuned model concatenates the two 
sentences with appended an EOS token, and passes them to both the BART 
encoder and decoder. In contrast to BERT, the representation of the EOS token 
is used to classify the sentences relations. 

 ELI5 (Fan et al., 2019), a long-form abstractive question answering dataset. 
Models generate answers conditioned on the concatenation of a question and 
supporting documents.



Applying BART



Command: “Prendi il volume sul tavolo vicino la 
finestra"

MD: b1, conosciuto anche come libro o volume, 
è un’istanza della classe BOOK, t1, conosciuto
anche come tavolo o scrivania, è un’istanza
della classe TABLE # b1 è vicino t1

Input: Command + MD

Output: 
TAKING(Theme(b1))

GrUT-IT

Linguistic 
Extraction

Entities
Retrieval

GrUT: The Overall Flow

Hromei et al, 2022, "Embedding Contextual Information in Seq2seq Models 

for Grounded Semantic Role Labeling"



Model
Learning

Rate FP
AIC-

Exact 
Match

AIC-Head 
Match

LU4R - 95.32% 77.67% 86.35%

GrUT-IT 5⋅10-5 96.86% 82.30% 85.19%

FP = Frame Prediction
AIC = Argument Identification and 
Classification
EM = Exact Match
HM = Head Match

Results here are reported as F1 values on 10-fold cross-
validation schema with 80/10/10 data split.

Performance for LU4R is reported in italic as it is not 
entirely comparable with.

LU4R: TAKING(Theme(“libro”))

GrUT-IT: TAKING(Theme(b1))

Experimental Evaluation



The Transformer was only the 

beginning

A transformer is made of two components

 Encoder

 Decoder



GPT-2: decoder only

architectures (Radford et al., 2019)

 “We demonstrate that language models begin to learn these tasks 
without any explicit supervision when trained on a new dataset of 
millions of webpages called WebText”

 GPT-2 is a large transformer-based language model with 1.5 billion 
parameters, trained on a dataset of 8 million web pages. 

 GPT-2 is trained with a simple objective: predict the next word, 
given all of the previous words within some text. 

 The diversity of the dataset causes this simple goal to contain 
naturally occurring demonstrations of many tasks across diverse 
domains. 

 GPT-2 is a direct scale-up of GPT, with more than 10X the 
parameters and trained on more than 10X the amount of data



 Multitask QA Networks (MQAN ) (McCann et al, 2018)

 Our speculation is that a language model with sufficient capacity will begin to learn to 
infer and perform the tasks demonstrated in natural language sequences in order to 
better predict them, regardless of their method of procurement. If a language model is 
able to do this it will be, in effect, performing unsupervised multitask learning.

GPT-2: sources of insipiration



The GPT Architecture 
and Its Decoder-Only Design 
(Radford et al., 2018)

 Decoder-Focused Architecture:

 GPT (Generative Pre-trained Transformer) 
is built on a decoder-only framework, 
exclusively using the decoder part of the 
original Transformer model.

 Purpose of Decoder-Only Approach:

 to generate meaningful text, focusing on 
producing coherent and contextually 
relevant output sequences.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by Generative Pre-

Training. Technical report, OpenAI.



The task: 

Next Token Prediction

GPT is trained to predict the next token in a sequence, 

learning to generate text based on the preceding context.

Yesterday I went to the concert with my

GPT

concert with friendmy
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Yesterday       I            went to          the concert

 It works similarly as 
in the Transformer

 But query, 
value and key 
only depends 
on the input 
sequence

 Auto-regressive

 Masked 
attention is 
crucial



GPT-2: architecture

 Modifications:
 Local attention: Sequence tokens are divided into blocks of similar length and

attention is performed in each block independently. In our experiments, we

choose to have blocks of 256 tokens.

 Memory-compressed attention: After projecting the tokens into the query, 

key, and value embeddings, we reduce the number of keys and values by 

using a strided convolution. The number of queries remains unchanged.

 “They allow us in practice to process sequences 3x in length over the T-

D model (Vaswani et al., 2017).” 



GPT-2: architecture (2)

 From (Radford et al., 2017, GPT paper)



GPT Demonstrations



GPT-2: results

 The LAMBADA dataset (Paperno et al., 2016) 

 It tests the ability of systems to model long-range dependencies in text. 

 The task is to predict the final word of sentences which require at least 50 tokens of 
context for a human to successfully predict. 



GPT-2: results on Lambada
 The LAMBADA dataset (Paperno et al., 2016) 

 It tests the ability of systems to model long-range dependencies in text. 

 The task is to predict the final word of sentences which require at least 50 
tokens of context for a human to successfully predict. 

 GPT-2 improves the state of the art from 99.8 (Grave et al., 2016) to 8.6 perplexity 
and increases the accuracy of LMs on this test from 19% (Dehghani et al., 2018) to 
52.66%. Adding a stop-word filter as an approximation to this further increases 
accuracy to 63.24%.

 Investigating GPT-2’s errors showed most predictions are valid continuations of the 
sentence, but are not valid final words



GPT-3
2020

BART
2019

BERT
2018

Transformers
2017

Encoder-Decoder 
RNNs
2014

RNNs
1986

Bidirectional
RNNs
1997

Machine learning paradigms underlying ChatGPT



GPT3: novelty
 «Language Models are Few-Shot Learners” 

(Brown et al., 2020)



GPT-3





GPT-3: size

 Here nparams is the total number of trainable parameters, nlayers

is the total number of layers, dmodel is the number of units in 
each bottleneck layer (we always have the feedforward 

layer four times the size of the bottleneck layer, dff=4xdmodel), 

and dhead is the dimension of each attention head. 

 All models use a context window of nctx = 2048 tokens



After two days of intense debate, the United Methodist Church has agreed to a historic 

split - one that is expected to end in the creation of a new denomination, one that will be 

"theologically and socially conservative," according to The Washington Post. The majority of 

delegates attending the church's annual General Conference in May voted to strengthen a ban 

on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate 

at same-sex weddings. But those who opposed these measures have a new plan: They say they 

will form a separate denomination by 2020, calling their church the Christian Methodist 

denomination. The Post notes that the denomination, which claims 12.5 million members, was in 
the early 20th century the "largest Protestant denomination in the U.S.," but that it has been 

shrinking in recent decades. The new split will be the second in the church's history. The first 

occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical 

United Brethren Church. The Post notes that the proposed split "comes at a critical time for the 

church, which has been losing members for years," which has been "pushed toward the brink of a 

schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has 

divided the church. In 2016, the denomination was split over ordination of transgender clergy, with 

the North Pacific regional conference voting to ban them from serving as clergy, and the South 

But does GPT 'only' know how to 

predict the next word in a 

sentence?

Title: United Methodists Agree to Historic Split

Subtitle: Those who oppose gay marriage will form their own denomination

Article:

• If we are smart enough, we can use the generation 
capability of GPT to solve a task, but…
• We can ask GPT to do something, e.g. write an article:



The «powers» of GPT3

Diverse Task Performance Without Fine-Tuning

 Exhibits strong performance across various NLP tasks through text 

interactions alone, including translation, question-answering, and 

reasoning tasks.
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Encoder-based architectures experienced rapid initial growth and 
enormous success until 2021, after which interest shifted.
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Encoder-Decoder based architectures experienced a more limited 
success but largerly used, especially tasks requiring generation



More on 

Prompting



Trends …



Learning Modalities

 Fine Tuning (as BERT/BART)

 In-context learning

 Prompting



IN-context Learning

 Pretrain a large language model on a task

 Manually design a «prompt» that shows how

to define a novel taks as a generation  task

 There is no need to train further the model, 

i.e. update model weights



PROMPTING

 “A good prompt is one that is specific and provides enough context for 
the model to be able to generate a response that is relevant to the task.” 
(GPT-3)

 Earliest work in prompts traces back to GPT-1/2 (Radford et al., 2018,2019)

 If LMs are given good prompts they can achieve significant zero-shot 
performance on NLP tasks ranging from sentiment classification to reading 
comprehension



Prompting LLMs



PROMPT based fine tuning

FINE TUNING: more paremeters for the stacked classifier, more examples (even in few-shot scenarios)

PROMPT-BASED FINE TUNING: need for good prompts, no further parameters to tune



Prompt-based fine tuning: 

the process



Prompt-based fine tuning: 

the process



Prompt based fine tuning: 

tasks



Prompting



Datasets



Prompt based on 

demonstration

 Demonstration is based on the idea that in few-shot learning you can exemplify a 
task by using instances from the training set that demonstrate how to solve a task

 Selective demonstration (INTUITION): Apply demonstrations that are semantically 
close to the input for optimal results



Examples of demonstrations



Prompting with 

demostrations

 From ‘Making Pre-trained Language Models Better Few-shot Learners‘, Gao et al, ACL 2021 paper

 Paper

 VIDEO

https://aclanthology.org/2021.acl-long.295.pdf
https://aclanthology.org/2021.acl-long.295/
https://aclanthology.org/2021.acl-long.295.mp4
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