
Neural Word

Embeddings

Roberto Basili, Danilo Croce
Machine Learning, Deep Learning, 2023/2024

Outline
 Language Modeling: recall

 Lexical Acquisition: recall

 Use of Neural Networks for the Learning of language models:

inducing vs. counting

 The CBOW and Skip-gram model

 Computational Tricks

 Applications of word embeddings to Language Processing

Neural Networks

 Powerful and flexible Machine Learning algorithm

 They can learn highly non linear functions and

learn complex concepts

 difficult to train until 2006 with the Deep Learning

movement

 One of the key elements of Deep Learning is the

use of pre-training techniques

Pre-training

 NNs are known to model non-linear classification functions

 The main difficulty is that NN cost functions are not convex

 high probability of stopping in a local minimum

 Pre-training is a technique to initialize the network

parameters

 in a way that they are nearer to the global minimum

 or at least in a better region of the cost function surface

Pre-training

 Pre-training can be obtained through

 Auto-Encoders

 Restricted Boltzmann Machines

 Training with other data (e.g. heuristically annotated data)

 In NLP, often a form of pre-training is obtained by

adopting Word Embeddings

 a d-dimensional space representing words

 each word vector encodes in its dimensions useful

information to drive the learning process

Word representations in NNs

 Word vectors are related also to fighting the “curse of

dimensionality” of standard word representations

 In a BOW model, the greater the vocabulary size the more

examples you need to learn all the relevant variations of each
feature

 If we know, that two words are similar given a dense vector

representation of them

 we could not observe all the necessary variations of the data

 but instead we could rely on the similarity to make similar inferences

during training

Language Models

 A model of how the words behave and interact in a language when

forming sentences

 Probabilistic Language Modeling for

 compute the probability of a sentence

 compute the probability of the upcoming word

 A model trained to output these quantities is a Language Model

 In Machine Translation is adopted to rank different possible translations of a

given sentence

 In Speech Recognition is adopted to rank different transcription hypotheses

1 2 3() (, , ,...,)nP W P w w w w=

4 1 2 3(| , ,)P w w w w

Language Models

 How to compute P(W)
 Chain rule

 Ex.

P(“John kills Mary with a knife”) =

P(John) P(“kills” |“john”) P(“Mary”|”kills”, “John”) P(“with”|”Mary”,”kills”, “John”) ….

 How to estimate these quantities?

 count the occurrences of sequences of words

 affected by the problem of “curse of dimensionality”

 a sequence will be observed few times

 Traditional solution

 adopt Markov assumption and count n-grams

 P(“with”|”Mary”, “kills”, “John”) or with bi-grams P(“with”|”Mary”, “kills”,)

1 2 3 1 2 1() (, , ,...,) (| , ,...,)n n n

i

P W P w w w w P w w w w −= =

Neural Networks and LM

 How do LM relates to word representations?

 Parameters estimation can be done in a NN architecture

 The target NN is expected to learn jointly:

 the parameters of the probability function

 a representation of the words

 The vectors representing words captures different aspects of

the word meaning by:

 making similar words near in the space

 helping the fight against the “curse of dimensionality”

Why it should work?

 For example, given the two sentences

 The cat is walking in the bedroom

 A dog was running in a room

 If we know that the pairs (cat, dog), (is,was) (walking,running),

(bedroom, room) are similar

 we could try to compute that the two sentences are similar

 it means that we rely on the similarity of words and not on the

occurrence of a specific pattern

 this helps in fighting the curse of dimensionality

A neural probabilistic language

model (Bengio et al, 2003)

 Training set is a sequence of words w1, …, wT in a vocabulary V

 The objective is to learn a mapping

 Decompose the function f in two components

 A mapping C from any element i of V to a real vector C(i) ∈ Rm. It

represents the feature vectors associated with each word in the

vocabulary.

 The probability function over words, expressed with C

t t-n+1 t 1 t-1(w ,··· ,w) (w | w ,...,w)f P=

(Bengio et al., 2003): the idea

 The general idea behind the very first neural approach to

Language Modeling corresponds to the following three steps:

 Associate with each word in the vocabulary a distributed word feature

vector (a real-valued vector in Rm),

 Express the joint probability function of word sequences in terms of the

feature vectors of these words in the sequence, and

 Learn simultaneously both notions:

 the word feature vectors as a matrix of lexical feature vectors and

 the parameters that corresponds to the NN that estimate the

probability function of the language model.

The model

 A function g maps an input sequence, (C(wt−n+1),··· ,C(wt−1)), to
a conditional probability distribution over words in V for the
next word wt.

 The function g is realized through a neural network with
parameters ω

 The matrix behind the C mapping is learnt during the training
process

 The whole parameters set is thus (C, ω)

1 1 1 1(, ,...,) (, (),..., ())t t n t t nf i w w g i C w C w− − + − − +=

The model: training

 Training maximize the

training corpus penalized

log-likelihood

 How the probabilities in the

output layer are computed?

 where:

1 1

1
log (, ,..., ;) ()t t t n

t

L f w w w R
T

 − − += +

𝑃(𝑤𝑡|𝑤𝑡−1, . . . , 𝑤𝑡−𝑛+1) =
𝑒𝑦𝑤𝑡

σ𝑖 𝑒𝑦𝑖

1 2 1

tanh()

((), (),..., ())t t t n

y b Wx U d Hx

x C w C w C w− − − +

= + + +

=

The model: details

 The whole set of learned parameters

are then

1 1(| ,...,)
wt

i

y

t t t n y

i

e
P w w w

e
− − + =

1 2 1

tanh()

((), (),..., ())t t t n

y b Wx U d Hx

x C w C w C w− − − +

= + + +

=

(, , , , ,)b d W U H C =

What about co-occurrences?

 In previous lessons we studied co-occurrence

based models

 We have seen that co-occurrences modeling

works very well to generalize the meaning of
words in compact vector representations

A co-occurrence matrix

and::
CC R

and::
CC L

a::DT
R

a::DT
L

verb::
N R

verb::
N L

be::V
R

be::V
L

class::
N R

of::IN
R

class::
N L

of::IN
L

lexicon:
:N R

verbnet::
N L

vn::N
R

vn::N
L

syntacti
c::J R

syntacti
c::J L

and::CC: 0 0 0 0 0 0 0 0 0 0,142 0 0,142 0 0 0 0 0 0,253

a::DT: 0 0 0 0 0 0 0 0,155 0,155 0 0 0,210 0 0 0 0 0,210 0

verb::N: 0 0 0 0 0 0 0 0 0,244 0 0 0 0,302 0 0 0 0 0

be::V: 0 0 0,174 0 0 0 0 0 0 0 0 0 0 0,255 0 0,255 0 0

of::IN: 0,147 0,147 0,219 0 0 0 0 0 0,180 0 0 0 0 0 0 0 0,237 0

class::N: 0 0 0,000 0,184 0 0,271 0 0 0 0 0 0,205 0 0 0,271 0 0 0

the::DT: 0 0 0 0 0 0 0 0,214 0 0 0 0 0 0 0 0 0 0

to::TO: 0 0 0 0 0 0 0 0 0 0 0 0,200 0 0 0 0 0,256 0

in::IN: 0 0 0,295 0 0 0,320 0,320 0 0 0 0,320 0 0 0 0,397 0 0 0

xtag::N: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lexicon::N
: 0 0 0 0 0 0,331 0 0 0 0 0 0 0 0 0 0 0 0

syntactic::
J: 0,344 0 0 0,289 0 0 0 0 0 0 0 0,313 0 0 0 0 0 0

with::IN: 0 0 0,259 0 0 0,280 0 0 0 0 0 0 0 0 0 0 0 0

semantic:
:J: 0 0,304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,343

What about co-occurrences?

 We have seen that co-occurrences modeling works very
well to generalize the meaning of words in compact

vector representations

 Can we think a NN modeling how the language works

and jointly accounting for the co-occurrences?

 YES

CBOW and Skip-gram

(Mikolov et al, 2013)

 Mikolov and colleagues proposed two NN based models

that accounts for co-occurrences in the learning of word

vectors

 CBOW (Contextual Bag-Of-Word)

 model the co-occurrences in the input to a neural network

 Skip-gram

 model the co-occurrences in the output of a neural network

(Mikolov et al., 2013)

CBOW

 Contextual Bag-of-Words model

 TASK: Given a context, predict the word within that context

 Each word is represented with a distributed representation

 a d-dimensional vector

 The learning process makes similar the representations of similar

words

 How?

CBOW architecture

 x1k, …, xCk is a context

 each xij is mapped into a vector

 the vectors are contained in the

matrix W (as rows)

 hi maps the input context into a

hidden compact representation

 in this case is the mean of the context
vectors

 in the output layer the network is

expected to compute a

probability distribution

 the probability of the correct word

in a context should be higher

CBOW architecture

 The matrix containing the word
vectors (W) are induced during

the training of the network

 If two words share many contexts

during training their

representations will be similar

 as their similar contexts will be

forced to reconstruct either one or

the other

 The training process will be

directed to optimizing the log-

likelihood of recovering the
correct yj given its context.

Skip-gram

 The same principle as CBOW, but

 the input layer contains one word wi

 in the output layer the context words

of wi will be predicted

 Again, the word vectors are learned

during training

 The training process will maximize the

log-likelihood of recovering the

correct context given a target word

 On the output layer, we are outputting C
distributions

 Each output is computed using the same
hidden → output matrix

Skip-gram details
 After a forward step, in the output layer we want to obtain

the probability distribution of the context words

 wc,j is the j-th word on the c-th panel

 wO,c is the actual c-th word in the context (gold standard)

 wI is the input word

 yc,j is the output of the j-th unit on the c-th panel

 uc,j is the net input of the j-th unit on the c-th panel

 The objective function is thus the probability of recovering all

the context words given the target

,

, , ,

'

'

exp()
(|)

exp()

c j

c j O c I c j

j

j

u
p w w w y

u
= = =

,

,1 ,2 ,

'

'

exp()
log (, ,..., |) log

exp()

c j

O O O c I

c j

j

u
E p w w w w

u
= − = −

Skip-gram and CBOW

 CBOW model averages over the context in the input; it “smooths” the

original distributional statistics

 it is a sort of regularization, as the model learns from a “corrupted” input

 The Skip-gram model does not; it needs more data but it doesn’t modify

the input

 given that you have enough data, the Skip-gram model generally learns better
vectors

 Both learns word vectors as a supervised process

 however the input are raw texts, i.e. there is no need of a real supervision!

 They can be implemented very efficiently, and can produce word

vectors starting from corpora of million of words

 a couple of optimization techniques makes the learning process very fast.

Speed optimizations

 Are meant to avoid the full computation/update of
parameters at each iteration

 Hierarchical Softmax

 it’s a technique to avoid the full computation of the output layer
(which can potentially contain millions of neurons)

 The hierarchical softmax uses a binary tree representation of
the output layer

 the words in the vocabulary are the leaves

 for each leaf, there exists a unique path from the root to the unit

 this path is used to estimate the probability of the word
represented by the leaf unit

Speed optimizations

 Negative sampling

 in the softmax operation we should compute the output vectors

for all the words in the vocabulary (the denominator)

 to avoid this computation just a sampling of the words are

adopted

 This sampling is “negative”, as the chosen words are selected

from the words that should not be “similar”, i.e. they are not in

the context of the target in the Skip-gram model

What does Skip-gram or

CBOW learns?

 Semantically related words

What does Skip-gram or

CBOW learns?

 Semantically related words

Word Embedding Semantics
(slide from cs224n-2017-lecture3 by Socher)

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What does Skip-gram or

CBOW learns?

 Other (meaningful) relationships

What we haven’t touched
 FastText: using subword information

 https://www.aclweb.org/anthology/Q17-1010.pdf

 https://github.com/facebookresearch/fastText

 Embedding N-grams as features

 Words as sequences of features

 Sentence embeddings:

 Doc2Vec

 Quoc Le and Tomas Mikolov: “Distributed Representations of
Sentences and Documents”, 2014; arXiv:1405.4053.

 InferSent

 Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault:
“Supervised Learning of Universal Sentence Representations from
Natural Language Inference Data”, 2017; arXiv:1705.02364.

 Language Independent embeddings

 Neural embedding as a Multiple task learning

 Subwords as core shared basis for multiple languages

https://www.aclweb.org/anthology/Q17-1010.pdf
https://github.com/facebookresearch/fastText
https://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1705.02364

Using word embeddings

from (Conneau et al, 2017)

Evolution of neural models

of the lexicon
 From word to sentence embeddings

 Train NNs about the task of combining words to embed
sentences

 Character (instead of word) embeddings

 Contextual pretraining

 Attempt to made embeddings better capturing differences in
contextual use, aka senses

 Multiple biLSTMs (ELMo, 2017)

 Adopting bidirectional transformers, BERT (2018)

 Pretraining: Bidirectional Transformers for LM

 Pretraining: Masking

 Fine-tuning: Sentence prediction tasks

Differences in recent

approaches

Summary

 Model language related problems with NN

 fighting the curse of dimensionality with distributional representations of words

 Exploit the flexibility of Neural Networks for

 transforming an unsupervised process into a supervised one

 compute efficiently new representations

 The CBOW and Skip-gram models are not related to Deep Learning

 they have nothing of a deep architecture

 However

 they emerged in the Deep Learning “era”

 they are adopted as a form of pre-training of Deep Architectures for NLP

problems

References
 (Bengio et al, 2003): Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Janvin. 2003. A neural probabilistic language model. J. Mach. Learn. Res.

3 (March 2003), 1137-1155.

 Mikolov, T.; Chen, K.; Corrado, G. & Dean, J. (2013), Efficient Estimation of Word

Representations in Vector Space, CoRR abs/1301.3781.

 Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig: Linguistic Regularities in Continuous

Space Word Representations. HLT-NAACL 2013: 746-751

 Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean:

Distributed Representations of Words and Phrases and their Compositionality. NIPS

2013: 3111-3119

 Word2Vec parameters learning explained

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://arxiv.org/pdf/1301.3781.pdf
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://www-personal.umich.edu/~ronxin/pdf/w2vexp.pdf

